
Profiling Tutorial #1

Introduction and TINYPROFILER

What do we
need to work
on next?

What’s
working
great?

Profiling… do it. Here’s why:

What are our
limitations?

What can we
do better than
anyone else?

How does our
code work?

FUNDING

PAPERS

JOBS

MODELING
COOL THINGS

Is it doing what I want it to do?

Is it behaving at 4000 nodes?

Where is my code slow?

Look at what I did!

Get YOUR features into the
profiling!

FUNDING

PAPERSProfiled Code “Just Work” Code

What is Profiling?

“Profiling”: Information on what parts of the libraries your application uses,
which MPI ranks use them, when they are used and how long they are used.

● Where does your application spend its time?
● Is your application load balanced?
● What changes when you run on 1000 ranks? When you turn on a different

model? When you change the domain of your problem?
● Where are my communication barriers? Are those necessary?

Typically try to work on the scale of “functions” or substantial, describable
pieces of the code. (Order of hundred of calls, not millions, per profiled region.)

What is AMReX Profiling?

● Already built into AMReX in the form of C++ functions/macros.
● At runtime: Collects and writes a database of profiling information: “bl_prof”.

Works at scale with minimal/no comms.
● Yields a minimal overhead to your overall code (1-2% at most.)
● Database is analyzed with AMRVis.

○ Allows visualization, breakdown and filtering of the data.
○ Creates plotfiles of profiling data for additional, more detailed analysis.
○ New features and visualization methods are made right here.

★ Features are implemented with just a couple Make flags and function calls.

ProfParser Current Features - ProfParser

ProfParser Current Features - Sends Plotfile

ProfParser Current Features - Function Plot

ProfParser Current Features - Timeline

ProfParser Future Plan
Currently Being Developed:

1. Get ProfParser GUI working at scale.
2. Move all features into the GUI.
3. User suggested features.
4. Complex filtering: Regions, Time Ranges, Processor Lists, Communicators.
5. GPU Profiling

TINYPROFILER

TINYPROFILER

Introduction, baseline AMReX profiler.

Adds timers to user-defined C++
sections of code.

Results put into stdout at the
conclusion of the simulation:

● # of calls.
● Timer results across MPI ranks.
● Total % time in that function.

Implementing TINYPROFILER

Make flags:

PROFILE=FALSE (If TRUE, this will override the TINY_PROFILER)

TINY_PROFILE=TRUE

CMake flags:

AMReX_BASE_PROFILE=OFF (Again, will override TINY)

AMReX_TINY_PROFILE=ON

(This inserts the compiler flag: -DBL_TINY_PROFILING)

Implementing TINYPROFILER

int main(...) {

amrex::Initialize(argc, argv);

BL_PROFILE_VAR(“main()”,
pmain);

……

BL_PROFILE_VAR_STOP(pmai
n);

amrex::Finalize();

Add these lines directly
inside AMReX’s initialize
and finalize steps.

Now, the TINYPROFILER
is on and working!!

Will output AMReX built-in
instrumented variables.

TINYPROFILER Output
Without any additional instrumentation, the TINYPROFILER output will print to
stdout at the end. Specifically, it’s the first thing done in amrex::Finalize().

However, you may need to print before amrex::Finalize, e.g:
- you think there might be an error, or
- you want to use your entire batch submission allotment,

Print early by inserting the macro BL_PROFILE_TINY_FLUSH().
+ Will write finished timers up to the point of the call to stdout.
+ Be sure to place outside as many timers as possible and document
well in stdout! (e.g. add additional output marking which result this is.)

BL_PROFILE_VAR: C++

C++:

Profiling variables are scoped and will automatically run a
stop timer and properly close when it’s destructor is
implemented:

void YourClass:Your Function () {
BL_PROFILE_VAR(“ref_name”, object_name);

… your function ...
}

For profiling within a scope, use `stop` to end the timer:

BL_PROFILE_VAR(“ref_name”, object_name);
….your code….

BL_PROFILE_VAR_STOP(object_name);

To restart an already defined timer
elsewhere (to capture two separate code
blocks in the same timer), use `start`:

BL_PROFILE_VAR(“ref”, refTimer);
….your code block A….

BL_PROFILE_VAR_STOP(refTimer);

….untimed code….

BL_PROFILE_VAR_START(refTimer);
….your code block B….

BL_PROFILE_VAR_STOP(refTimer);

• Implemented in both the tiny
profiler and the full profiler.

BL_PROFILE_VAR: Fortran

Profiling variables cannot be scoped and so explicit starts and
stops are needed:

call bl_proffortfuncstart(“func_name”)
call bl_proffortfuncstop(“func_name”)

For a little extra speed, you can assign a numerical value to avoid
the string lookup:

call bl_proffortfuncstart_int(int n)
call bl_proffortfuncstop_int(int n)

You can assign a name to a given number in top of your main():

BL_PROFILE_CHANGE_FORT_INT_NAME(“fname”, n)

• Fortran timers are currently only
implemented in the full profiler.

• Unavailable in the Tiny Profiler.

As fortran variables cannot be
scoped, there is no special
implementation to capture two code
blocks in one timer:

call bl_proffortfuncstart(“func_name”)
CODE BLOCK 1

call bl_proffortfuncstop(“func_name”)

UNTIMED CODE

call bl_proffortfuncstart(“func_name”)
CODE BLOCK 2

call bl_proffortfuncstop(“func_name”)

BL_PROFILE_VAR: Details

Creates a profiling variable that stores the timer
for this instance of the call and the stack to
calculate exclusive times.

If profiling is not turned on, it does NOTHING.

void
TinyProfiler::start ()
{
#ifdef _OPENMP
#pragma omp master
#endif
if (stats.empty())
{

Real t = amrex::second();
ttstack.push(std::make_pair(t, 0.0));

global_depth = ttstack.size();
for (auto const& region : regionstack)
{

Stats& st = statsmap[region][fname];
++st.depth;
stats.push_back(&st);

}
}
}

#ifdef BL_PROFILING

#define BL_PROFILE_VAR(fname, vname) amrex::BLProfiler bl_profiler__##vname((fname));

#elif defined(BL_TINY_PROFILING)

#define BL_PROFILE_VAR(fname, vname) amrex::TinyProfiler
tiny_profiler__##vname((fname));

#else

#define BL_PROFILE_VAR(fname, vname)

Src/Base/AMReX_BLProfiler.{H, cpp}
Src/Base/AMReX_TinyProfiler.{H,cpp}

Output

NCalls: # of times BL_PROFILE_VAR
was called on I/O Processor.

Exclusive Times: Time spent ONLY
in that part of the code.

Inclusive Timers: All time spent
within that variable, including nested
variables.

Max %: Maximum % of time spent in
that variable, across all MPI ranks.

Inclusive vs. Exclusive Timers

Outer
Function

InnerA
Function

InnerB
Function

Exclusive timers sum to
100%.

Inclusive is fixed if you
add additional timers.

At the inner most level,
inclusive timers =
exclusive timers.

Exclusive TimersInclusive Timers Profiler Timer Locations

Note: In AMReX output, % is
based on maximum % across
ranks, so exclusive timers can
sum to >100% due to noise,
variation and/or load imbalance.

Regions

Might also see “Regions”

Regions delineate sections
of code to be analyzed
separately.

If you see one, the output for
a function matches that of
the total code. Data inside
the region has just been
isolated for convenience.

For Profiling Help, Contact:

Kevin Gott:

kngott@lbl.gov

