
Profiling Tutorial #2

ProfVis Setup and REGIONS

Outline:

1) Creating a BL_PROF profiling database at runtime.

2) Building an AMRVis executable that can read the database.

3) Adding REGIONS to improve your ability to filter through the database.

4) Open your database and try it out.

PROFILE

Creating a profiler database: PROFILE

AMReX Make flags:

PROFILE=TRUE

AMReX CMake flags:

AMReX_BASE_PROFILE=ON

(This inserts the compiler flag: -DBL_PROFILING)

➢ Provides only the most basic profiling functionality.
○ Tracks timers, but not MPI calls or the call stack.

➢ In most cases, want to turn on the full set of profiling options.

COMM_PROFILE & TRACE_PROFILE

(This inserts the compiler flags: -DBL_COMM_PROFILING & -DBL_TRACE_PROFILING)

AMReX Make flags:

COMM_PROFILE=TRUE

TRACE_PROFILE=TRUE

AMReX CMake flags:

AMReX_COMM_PROFILE=ON

AMReX_TRACE_PROFILE=ON

Comm
● Stores information on MPI Calls.
● Required for the Timeline, Send/Recv

information, etc.

Trace
● Stores the call stack.
● Required for regions, time filtering

and the all call times plot file.

★ Generally, unless fine-tuning (e.g. for a
big run and you want to look a specific
thing to reduce I/O), it is good practice
is turn all three on.

If either COMM_PROFILE or TRACE_PROFILE are on, PROFILE will be turned on.

Tiny profiler vs. Full profiler
void
TinyProfiler::start ()
{
#ifdef _OPENMP
#pragma omp master
#endif
if (stats.empty())
{

Real t = amrex::second();
ttstack.push(std::make_pair(t, 0.0));

global_depth = ttstack.size();
for (auto const& region : regionstack)
{

Stats& st = statsmap[region][fname];
++st.depth;
stats.push_back(&st);

}
}
}

void BLProfiler::start() {
#ifdef _OPENMP
#pragma omp master
#endif
{

bltelapsed = 0.0;
bltstart = ParallelDescriptor::second();
++mProfStats[fname].nCalls;
bRunning = true;
nestedTimeStack.push(0.0);

#ifdef BL_TRACE_PROFILING
int fnameNumber;
std::map<std::string, int>::iterator it = BLProfiler::mFNameNumbers.find(fname);
if(it == BLProfiler::mFNameNumbers.end()) {

fnameNumber = BLProfiler::mFNameNumbers.size();
BLProfiler::mFNameNumbers.insert(std::pair<std::string, int>(fname, fnameNumber));

} else {
fnameNumber = it->second;

}
++callStackDepth;
BL_ASSERT(vCallTrace.size() > 0);
Real calltime(bltstart - startTime);
vCallTrace.push_back(CallStats(callStackDepth, fnameNumber, 1, 0.0, 0.0, calltime));
CallStats::minCallTime = std::min(CallStats::minCallTime, calltime);
CallStats::maxCallTime = std::max(CallStats::maxCallTime, calltime);

callIndexStack.push_back(CallStatsStack(vCallTrace.size() - 1));
prevCallStackDepth = callStackDepth;

#endif
} }

How the database is written:

Output is hardwired to bl_prof.
If exists, moves old database to: “bl_prof.old.(unique#id)”.

Contains a single directory with up to three types of files:
bl_prof: Basic Profiling
bl_comm_prof: Comm Profiling
bl_call_stats: Trace Profiling

Number of files written, when the data is flushed, etc. can
be set similar to standard I/O. Details will be covered
another week.

But: if you need to flush early, use BL_PROFILE_FLUSH().

Controlling when the bl_prof database is written

The bl_prof database will be written:

1) When amrex::Finalize() is called.
2) When the stored data becomes larger than the default flush size.
3) When BL_PROFILE_FLUSH() is called.

Whenever written, the database stores the timer information collected up to that
point in the simulation. The database is viable and accessible as long as the writing
step is not interrupted. (The analysis doesn’t require a final time and can be written
in multiple sub steps or sporadically as needed. The data is just limited to the last
successful write.)

ProfVis

Building a ProfVis Executable

Pull the AMRVis repo:

git clone https://github.com/AMReX-Codes/Amrvis.git

Master branch: Current stable branch of AMRVis.

Profvis branch: Development of profiling features. (UAOR)

AMRVis Make Flags

DIM = 2 (Currently, all profiling info is in 2d.)

USE_PROFPARSER = TRUE (Turns on PROFILE and TRACE_PROFILE.)

PROFILE = TRUE

TRACE_PROFILE = TRUE (Recommended to add these explicitly as well.)

COMM_PROFILE = TRUE (Again, adds, doesn’t restrict, so turn it on.)

USE_MPI = ?? (Probably want one of both. MPI for larger databases.)

This will still allow opening and parsing of regular plotfiles. Just adds reading of profiling databases.

Palette & Defaults

Found in the AMRVis directory: “Palette” & “amrvis.defaults”

AMRVis looks for the defaults file at:

1) ./amrvis.defaults (Priority for specific cases.)
2) /home/username/amrvis.defaults (Pick whichever of these you prefer,)
3) /home/username/.amrvis.defaults (and move amrvis.defaults there.)

To get color, set the palette entry in amrvis.defaults to point to the Palette file, e.g.:

palette ~/Amrvis/Palette

Flex and Bison

Flex and Bison are required to parse a bl_prof directory.

Should have the required version already on your computers/NERSC systems.

Flex: flex --version (On Cori: 2.5.37)

Bison: bison --version (On Cori: 2.7)

If it’s not on your system and you would like help installing it, let me know.

Set .Xdefaults and call xrdb

Save visual defaults for Xwindow that make the function list readable.

Edit the ~/.Xdefaults file on the computer you are working from (e.g.
your workstation)

Add these lines (or your own, if you know X window):

<executable name>*Background: #280028002800
<executable name>*Foreground: white
<executable name>*fontList: 6x13

Once added, load the new default file: > xrdb .Xdefaults

Note: You cannot use dots (.) in executable
names in your .Xdefaults file.

Rename your compiled amrvis executables if
they contain a dot (or create a link with ‘ls’).

Using AMRVis with NX (NoMachine)

There is a untested fix for running AMRVis with NX on Cori.

Add:

DEFINES += -DAV_NX_FIX

to the AMRVis GNUmakefile.

It has not been fully tested yet. If it fails, let me know the details and use a
regular terminal with “ssh -Y”.

Checking your build

Easiest to create a link to your executable in your bin.

Will work as long as executable has same name.

That name can be used in your .Xdefaults file.

> cd ~/bin (or mkdir if you don’t have one)

> ln -s <executable> <link name>

> “amrvis2d” <bl_prof_dir>/bl_prof

If your AMRVis opens the
window, has color and the
function list has appropriate
alignment, your build is
successful and complete.

BL_PROFILE_REGION

What are Regions?

● User-defined blocks of code that allow deeper filtering of profiling data.
● Everything within a region can be easily filtered into/out of your profiling

analysis.
● Describes how the overview of your code is structured.

Region requirement: Each MPI rank calls each profiling region the same number
of times.

Adding Regions to your profiling

BL_PROFILE_REGION_START(“Region Name String”);

… Code with (BL_PROFILE_VAR objects)

BL_PROFILE_REGION_STOP(“Region Name String”);

➢ Does not create a timer. Uniquely identifies all timers inside the region to
allow filtering through the database.

➢ If you want to also time the region, place a BL_PROFILE_VAR()
inside/outside it. (I suggest inside, so you see % of un-profiled
time.)

START and STOP
strings must match.

Your First Filtering

Loading the database

Profiling directories need to start with bl_prof to identify it is a profiling
database.

Can add to the directory name to make your own identifications: bl_prof.Hyper

Load a database with:

<amrvis> bl_prof

or from the GUI: File… Open.

GUI Clicks & Buttons:

Left click: Print info on location to the AMRVis window.

Boxing of regions on the plot.

Right click: Add region to the selected list.

Middle click: Remove region from the selected list.

All On, All Off: Select/de-select all regions.

Generate Function List: Generate a new function list of the selected regions.

Click on a Function: Generate a rank vs. runtime for the clicked function.

For Profiling Help Contact:

Kevin Gott:

kngott@lbl.gov

