-~

Parallelization Improvements to BoxLib .

SR EBRENS

Applications with Tiling and OpenMP BERKELEY LAB

Jessica Kawana = Willamette University = Center for Computational Sciences and Engineering

Tiling vs Loop Level Weak Scaling Results

Soft . f | Through profiling of FluctHydro, bottlenecks were
0 warle rame”wlor of Heat Equation Example Speedup on a Babbage Node identified and removed for better MPI scaling
MassIVEly paralic _ 100 Pr—r— ™| —e— Tiling OpenMPp e Code now scales ~50k processors with MPI + OpenMP
structured gri d PDE ‘-"_.‘ 90 F 4 —#— Loop Level OpenMP
simulations 50 L | FluctHydro Weak Scaling on Edison
* Implemented as __ ol) 25 — | |
il Pure MP| —e—
layered C++ / Fortran el _ MPI + 12 OMP threads —e—
_ . |) 4 S 20 - ~
My work myolved | 4 jEi § sl)) /
implementing hybrid & ol _ 3 —
parallelism: oL) o 151 -
MPI + OpenMP =
20 - i % 10k]

10 - E

|_

0 I I I I I
18 30 60 120 240 T . / -
Loop Level OpenMP Number of Threads
0 I I I

FluctHydro (a multi-component flow solver) 64 512 4096

= |nclude OpenMP directives around work loops Subroutine Speed-up on a Babbage Node Number of MPI Tasks

= Splits up loop iterations over different threads stag applyop
to be done in parallel dOI:I")Ifl’&‘; 40— . . , Hiling OpenMP : : :

— ity {7 Loop Level Openi? Discussion and Conclusions

ISomp parallel do private(i) e

CIOj =1, 16 dOIzg’oSizl, 16 i

doi=1, 16 end oy MEPPEnS i = Addition of tiling constructs in combination with
end do Q. . .
I work happens Boi=0, 12 = OpenMP is more effective than loop level OpenMP
end do doi=1,16 3) : L. : : .
end do _, /lwork happens & * These hybrid parallelization techniques with tiling are
I$omp end parallel do d‘j — projected to work efficiently on next generation
" wor happens | architectures
end do
end do i = Simpler codes such as the heat equation example
0 F—— ' ' experience larger gains but production codes such as
181630 60 120 240 .
Number of Threads FluctHydro also show improvement
Tiling *Speedup is in relation to single thread loop level runtimes) S.oeed-up due to tiling is related to.problem size, tile
size, and the nature of the subroutine

- Parallelization by region, - FurtIIer research may be done jco characterize the
i.e. “tiles”, instead of Som paralle Ad . PR relation of these factors on various codes
loop iteration loop ngeerttI[IiIeeSbox vantages or 1iing

= QOccurs at a “higher level” in call workHappens(tlo, thi)
the code ?;Od;g‘);’nd varallel = Customize tile size to fit in cache
= Parallelism starts before = Reduces cache misses due to data locality Acknowledgments
call to subroutine psuedocode example = Tiling enables better load balancing on
= Loops within subroutine architectures with the ability to spawn very large | would like to thank my mentor Andy Nonaka,
adjusted to bounds of tile numbers of threads group leader Ann Almgren and the other members
of CCSE who helped me throughout the summer

