

Parallelization Improvements to BoxLib Applications with Tiling and OpenMP

Jessica Kawana • Willamette University • Center for Computational Sciences and Engineering

BoxLib

- Software framework for massively parallel structured grid PDE simulations
- Implemented as layered C++ / Fortran
- My work involved implementing hybrid parallelism: MPI + OpenMP

Loop Level OpenMP

Include OpenMP directives around work loops

 Splits up loop iterations over different threads to be done in parallel

Tiling

- Parallelization by <u>region</u>,
 i.e. "tiles", instead of
 loop iteration
- Occurs at a "higher level" in the code
 - Parallelism starts before call to subroutine
 - Loops within subroutine adjusted to bounds of tile

Psuedocode example

Tiling vs Loop Level

FluctHydro (a multi-component flow solver)
Subroutine Speed-up on a Babbage Node

Advantages of Tiling

- Customize tile size to fit in cache
- Reduces cache misses due to data locality
- Tiling enables better load balancing on architectures with the ability to spawn very large numbers of threads

Weak Scaling Results

- Through profiling of FluctHydro, bottlenecks were identified and removed for better MPI scaling
- Code now scales ~50k processors with MPI + OpenMP

Discussion and Conclusions

- Addition of tiling constructs in combination with OpenMP is more effective than loop level OpenMP
- These hybrid parallelization techniques with tiling are projected to work efficiently on next generation architectures
- Simpler codes such as the heat equation example experience larger gains but production codes such as FluctHydro also show improvement
- Speed-up due to tiling is related to problem size, tile size, and the nature of the subroutine
- Further research may be done to characterize the relation of these factors on various codes

Acknowledgments

I would like to thank my mentor Andy Nonaka, group leader Ann Almgren and the other members of CCSE who helped me throughout the summer