

HIGH-ORDER METHOD FOR LOW MACH NUMBER COMBUSTION

Will Pazner

Division of Applied Mathematics, Brown University
The Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory

Problem Statement

- We want to effectively model low Mach number flames with complex chemistry.
- Combustion simulations have important implications for clean fuels and renewable energy.
- Simulations can obtain results impossible or impractical to obtain via experiment.
- This problem involves **multiple**, **vastly different time-scales**: we need a method that addresses the **stiffness** of the problem.
- Until now, methods have been **low order** or **unstable** when generalized to higher orders.

Fig. 1: Simulation of a premixed hydrogen flame (CCSE)

Method

The current state-of-the art low Mach number combustion code¹ uses a modified **multi-implicit spectral deferred correction**² method, solving the following "correction equations" at every timestep:

$$\frac{\partial(\rho Y_m)}{\partial t} = Q_{\rho Y_m}(t) + \dot{\omega}_m(Y, T), \tag{1}$$

$$\frac{\partial t}{\partial \mu} = Q_{\rho h}(t), \tag{2}$$

where Q represents the contribution of advection and diffusion.

Stability analysis of the higher-order generalization of this method reveals a **stringent timestep restriction**!

We return to a formulation more "in the spirit" of MISDC that benefit from highly favorable stability conditions.

We subdivide one timestep $[0, \Delta t]$ into two **substeps**

according to the Gauss-Lobatto quadrature rule.

Instead of solving correction equations (1) and (2), we instead use a Backward Euler discretization

$$(\rho Y_m)^{n+1} = (\rho Y_m)^n + \Delta t (\tilde{Q}_{\rho Y_m} + \dot{\omega}_m(Y, T)) + I_{\rho Y_m}$$
(3)

$$(\rho h)^{n+1} = (\rho h)^n + \Delta t(\tilde{Q}_{\rho h}) + I_{\rho h}$$
(4)

Because we have three nodes, the quadrature is fourth-order accurate.

This **non-linear system of equations** is very **difficult** and **costly** to solve using Newton's method. But, we can use equations (1) and (2) to obtain a **provisional solution**.

This solution is used as the **initial guess** in the Newton solver for equations (3) and (4). We converge to a tolerance of 10^{-18} within only a couple iterations!

Results

With successive iterations, this simple, low-order correction results in a high-order method.

The overall **order of accuracy** p of the method is given by

$$p = \min\{q, k\},\$$

where q is the order of the quadrature rule, and k is the number of correction iterations performed

Therefore, to obtain the desired fourth-order accuracy, we need:

Three Gauss-Lobatto nodes

Four MISDC iterations

This method has been implemented in the full 1D low Mach number combustion code with complex chemistry. We have successfully simulated the following flames:

Hydrogen

Methane (GRI-Mech)

Dimethyl Ether

with up to 53 different chemical species and 325 chemical reactions.

Attaining 4th-Order Accuracy

As a **test bed** we solve an A-D-R **model equation**

$$u_t = au_x + \epsilon u_{xx} + ru(u - 1)(u - 1/2) \tag{5}$$

Implementing the above method, we achieve the desired overall fourth order accuracy in space and time.

Fig. 3: Convergence results for model PDE

Stability Restrictions

In order for the method to converge, we have to satisfy the **stability criterion**.

The regions are analytically derived.

Fig. 4: Stability regions for new (Backward Euler) and previous (correction ODE) methods

Stability Analysis

We can consider the MISDC method as an **iterative scheme**, converging to the solution of the coupled A-D-R processes. In order for the iterations to converge, we require

$$\lim_{k \to \infty} |y^{(k+1)} - y^{(k)}| = 0.$$

Studying the linear ODE

$$y' = ay + dy + ry,$$

where 'advection' is treated explicitly, and 'diffusion' and 'reaction' are treated implicitly, we can write

$$\left|y^{\Delta t,(k+1)} - y^{\Delta t,(k)}\right| \leq \alpha \left|y^{\Delta t/2,(k)} - y^{\Delta t/2,(k-1)}\right| + \beta \left|y^{\Delta t,(k)} - y^{\Delta t,(k-1)}\right|,$$

We see that $\alpha, \beta < 1$ is a sufficient condition for convergence!

Computing explicitly (normalizing a to 1 and denoting $d\Delta t$ and $r\Delta t$ by d and r for convenience),

$$\alpha = \left| \frac{-12dr + 8(r-2)(r+1) + 2d^2(2+r)}{3(d-2)^2(r-2)^2} \right|, \qquad \beta = \left| \frac{-28 + 2d(54-19d) + r(d-2)(41d-44) - 4r^2(3d^2 - 9d + 7)}{12(d-2)^2(r-2)^2} \right|$$

The condition $\alpha, \beta < 1$ leads to the stability region depicted in Figure 4. We notice that these expressions lead to a region which is **asymptotically horizontal**. This property is required because diffusion terms, given by the **eigenvalues of the** Laplacian operator scale like $1/h^2$.

In constrast, the previous method, when generalized, results in a coefficient α such that $\alpha \to \infty$ as $d \to -\infty$, for any choice of r > 0. The conclusion is that the previous method is **unstable** whenever $\Delta t \sim \Delta x$, and $\Delta x \to 0$.

Fig. 5: Simulation of a hydrogen-air mixture burning (CCSE)

Conclusions

- We have provided a **rigorous mathematical analysis** of why the previous methods resulted in instability at higher orders.
- Additionally, we have formulated a numerical method, which is **demonstrably higher-order**, and whose **stability properties** allow us to run with **the same timestep** as the second-order code.
- This method has been implemented in a 1D low Mach number solver, and results in fourth order in time accuracy.

Future Directions

- This method provides a **clear path forward** towards an **overall fourth order** algorithm for low Mach number combustion with complex chemistry.
- The time-stepping scheme easily generalizes to arbitrary order.
- Implementing fourth-order spatial operators in multiple dimensions introduces some very interesting and challenging problems.

Literature Cited

- [1] A. Nonaka et al. "A deferred correction coupling strategy for low Mach number flow with complex chemistry". In: *Combustion Theory and Modelling* 16.6 (2012), pp. 1053–1088. DOI: 10.1080/13647830.2012.701019.
- [2] Anne Bourlioux, Anita T. Layton, and Michael L. Minion. "High-order multi-implicit spectral deferred correction methods for problems of reactive flow". In: *Journal of Computational Physics* 189.2 (2003), pp. 651–675. ISSN: 0021-9991. DOI: http://dx.doi.org/10.1016/S0021-9991 (03) 00251-1.
- [3] Alok Dutt, Leslie Greengard, and Vladimir Rokhlin. "Spectral Deferred Correction Methods for Ordinary Differential Equations". English. In: *BIT Numerical Mathematics* 40.2 (2000), pp. 241–266. ISSN: 0006-3835. DOI: 10.1023/A: 1022338906936.
- [4] Michael L. Minion. "Semi-implicit spectral deferred correction methods for ordinary differential equations". In: *Commun. Math. Sci.* 1.3 (Sept. 2003), pp. 471–500
- [5] A. S. Almgren et al. "On the Use of Higher-Order Projection Methods for Incompressible Turbulent Flow". In: *SIAM Journal on Scientific Computing* 35.1 (2013), B25–B42. DOI: 10.1137/110829386.