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Problem Statement

e We want to effectively model low Mach number flames with com-
plex chemistry.

e Combustion simulations have 1mportant 1mplications for
clean fuels and renewable energy.

e Simulations can obtain results impossible or impractical to obtain via
experiment.

e This problem involves multiple, vastly different time-scales: we
need a method that addresses the stiffness of the problem.

e Until now, methods have been low order or unstable when general-
1zed to higher orders.

Fig. 1: Simulation of a premixed hydrogen flame (CCSE)

Method

The current state-of-the art low Mach number combustion code! uses a
modified multi-implicit spectral deferred correction? method, solving
the following “correction equations’ at every timestep:
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where () represents the contribution of advection and diffusion.

Stability analysis of the higher-order generalization of this method

reveals a stringent timestep restriction!

We return to a formulation more “in the spirit” of MISDC that benefit from
highly favorable stability conditions.

We subdivide one timestep |0, At] into two substeps

o L
0 At/2 At

according to the Gauss-Lobatto quadrature rule.

Instead of solving correction equations (1) and (2), we instead use a Back-
ward Euler discretization

(PYm)"™ = (pYm)" + M@y, + (Y. D) + Ly, ()
(ph)" T = (ph)" + AHQ ) + Ly, (4)

Because we have three nodes, the quadrature is fourth-order accurate.

This non-linear system of equations is very difficult and costly to solve
using Newton’s method. But, we can use equations (1) and (2) to obtain a
provisional solution.

This solution is used as the initial guess in the Newton solver for equa-

tions (3) and (4). We converge to a tolerance of 10~'® within only a
couple iterations!
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Results

With successive iterations, this simple, low-order correction results 1n a high-order method.

The overall order of accuracy p of the method is given by

p = min{q, k},

where ¢ is the order of the quadrature rule, and £ is the number of correction iterations performed

Therefore, to obtain the desired fourth-order accuracy, we need:

Three Gauss-Lobatto nodes Four MISDC 1iterations

This method has been implemented 1n the full 1D low Mach number combustion code with complex chemistry.
We have successtully simulated the following flames:

Hydrogen Methane (GRI-Mech) Dimethyl Ether

with up to 53 different chemical species and 325 chemical reactions.

Attaining 4th-Order Accuracy Stability Restrictions

In order for the method to converge, we have to satisfy
the stability criterion.
The regions are analytically derived.

As a test bed we solve an A-D-R model equation

Ut = aUg + €ugy + ru(u — 1)(u — 1/2) (5)

Implementing the above method, we achieve the desired e —
overall fourth order accuracy in space and time. Ll l
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Fig. 4: Stability regions for new (Backward Euler) and previous (correction

Fig. 3: Convergence results for model PDE ODE) methods

Stability Analysis

We can consider the MISDC method as an iterative scheme, converging to the solution of the coupled A-D-R processes. In
order for the iterations to converge, we require

kimoo ‘y(/{—l—l) - y(k)‘ 0.

Studying the linear ODE
y = ay + dy + ry,

where ‘advection’ is treated explicitly, and ‘diffusion’ and 'reaction’ are treated implicitly, we can write

‘ym,(kﬂ) B yAt,(k)‘ < a ‘yAt/Q,(k) B yAt/Q,(k—1)| + 4 ‘ym,(k) B yAt,(k—l)

)

We see that «v, 5 < 1 is a sufficient condition for convergence!

Computing explicitly (normalizing a to 1 and denoting dAt and rAt by d and r for convenience),

—28 + 2d(54 — 19d) + r(d — 2)(41d — 44) — 4r*(3d?> — 9d + 7)
12(d — 2)2(r — 2)?

—12dr + 8(r — 2)(r + 1) + 2d*(2 + 7)
3(d — 2)2(r — 2)2 ’

B =

The condition o, 5 < 1 leads to the stability region depicted in Figure 4. We notice that these expressions lead to a region
which is asymptotically horizontal. This property is required because diffusion terms, given by the eigenvalues of the
Laplacian operator scale like 1/h°.

In constrast, the previous method, when generalized, results in a coefficient « such that « — oo as d — —oo, for any choice
of r > 0. The conclusion is that the previous method is unstable whenever At ~ Az, and Az — 0.

Fig. 5: Simulation of a hydrogen-air mixture burning (CCSE)

Conclusions

e We have provided a rigorous mathematical analysis of why the
previous methods resulted in instability at higher orders.

e Additionally, we have formulated a numerical method, which 1s
demonstrably higher-order, and whose stability properties al-
low us to run with the same timestep as the second-order code.

e This method has been implemented in a 1D low Mach number
solver, and results in fourth order in time accuracy.

Future Directions

e This method provides a clear path forward towards an overall
fourth order algorithm for low Mach number combustion with
complex chemistry.

e The time-stepping scheme easily generalizes to arbitrary order.

e Implementing fourth-order spatial operators in multiple dimen-
sions introduces some very interesting and challenging problems.

Literature Cited

[1] A.Nonaka et al. “A deferred correction coupling strategy for low Mach number
flow with complex chemistry”. In: Combustion Theory and Modelling 16.6 (2012),
pp. 1053-1088. DOI: 10.1080/13647830.2012.701019.

[2] Anne Bourlioux, Anita T. Layton, and Michael L. Minion. “High-order multi-
implicit spectral deferred correction methods for problems of reactive flow”. In:
Journal of Computational Physics 189.2 (2003), pp. 651 —675. 1SSN: 0021-9991.
DOI: http://dx.doi.org/10.1016/S0021-9991(03)00251-1.

[3] Alok Dutt, Leslie Greengard, and Vladimir Rokhlin. “Spectral Deferred Cor-
rection Methods for Ordinary Differential Equations”. English. In: BIT Numerical
Mathematics 40.2 (2000), pp. 241-266. 1SSN: 0006-3835. pOI: 10 .1023 /A :
1022338906936.

[4] Michael L. Minion. “Semi-implicit spectral deferred correction methods for or-
dinary differential equations”. In: Commun. Math. Sci. 1.3 (Sept. 2003), pp. 471-
500.

[5] A. S. Almgren et al. “On the Use of Higher-Order Projection Methods for In-
compressible Turbulent Flow”. In: SIAM Journal on Scientific Computing 35.1
(2013), B25-B42.D01: 10.1137/110829386.



