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Problem Statement
• We want to effectively model low Mach number flames with com-

plex chemistry.

• Combustion simulations have important implications for
clean fuels and renewable energy.

• Simulations can obtain results impossible or impractical to obtain via
experiment.

• This problem involves multiple, vastly different time-scales: we
need a method that addresses the stiffness of the problem.

• Until now, methods have been low order or unstable when general-
ized to higher orders.

Fig. 1: Simulation of a premixed hydrogen flame (CCSE)

Method
The current state-of-the art low Mach number combustion code1 uses a
modified multi-implicit spectral deferred correction2 method, solving
the following “correction equations” at every timestep:
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where Q represents the contribution of advection and diffusion.

Stability analysis of the higher-order generalization of this method
reveals a stringent timestep restriction!

We return to a formulation more “in the spirit” of MISDC that benefit from
highly favorable stability conditions.

We subdivide one timestep [0,�t] into two substeps

0 �t/2 �t

according to the Gauss-Lobatto quadrature rule.

Instead of solving correction equations (1) and (2), we instead use a Back-
ward Euler discretization
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Because we have three nodes, the quadrature is fourth-order accurate.

This non-linear system of equations is very difficult and costly to solve
using Newton’s method. But, we can use equations (1) and (2) to obtain a
provisional solution.

This solution is used as the initial guess in the Newton solver for equa-
tions (3) and (4). We converge to a tolerance of 10�18 within only a
couple iterations!

Results
With successive iterations, this simple, low-order correction results in a high-order method.

The overall order of accuracy p of the method is given by

p = min{q, k},
where q is the order of the quadrature rule, and k is the number of correction iterations performed

Therefore, to obtain the desired fourth-order accuracy, we need:

Three Gauss-Lobatto nodes Four MISDC iterations

This method has been implemented in the full 1D low Mach number combustion code with complex chemistry.
We have successfully simulated the following flames:

Hydrogen Methane (GRI-Mech) Dimethyl Ether

with up to 53 different chemical species and 325 chemical reactions.

Attaining 4th-Order Accuracy
As a test bed we solve an A-D-R model equation
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Implementing the above method, we achieve the desired
overall fourth order accuracy in space and time.

Fig. 3: Convergence results for model PDE

Stability Restrictions
In order for the method to converge, we have to satisfy
the stability criterion.
The regions are analytically derived.
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Fig. 4: Stability regions for new (Backward Euler) and previous (correction

ODE) methods

Stability Analysis
We can consider the MISDC method as an iterative scheme, converging to the solution of the coupled A-D-R processes. In
order for the iterations to converge, we require

lim
k!1

|y(k+1) � y

(k)| = 0.

Studying the linear ODE
y

0 = ay + dy + ry,

where ‘advection’ is treated explicitly, and ‘diffusion’ and ’reaction’ are treated implicitly, we can write
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We see that ↵, � < 1 is a sufficient condition for convergence!

Computing explicitly (normalizing a to 1 and denoting d�t and r�t by d and r for convenience),
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The condition ↵, � < 1 leads to the stability region depicted in Figure 4. We notice that these expressions lead to a region
which is asymptotically horizontal. This property is required because diffusion terms, given by the eigenvalues of the
Laplacian operator scale like 1/h2.

In constrast, the previous method, when generalized, results in a coefficient ↵ such that ↵ ! 1 as d ! �1, for any choice
of r > 0. The conclusion is that the previous method is unstable whenever �t ⇠ �x, and �x ! 0.

Fig. 5: Simulation of a hydrogen-air mixture burning (CCSE)

Conclusions

• We have provided a rigorous mathematical analysis of why the
previous methods resulted in instability at higher orders.

• Additionally, we have formulated a numerical method, which is
demonstrably higher-order, and whose stability properties al-
low us to run with the same timestep as the second-order code.

• This method has been implemented in a 1D low Mach number
solver, and results in fourth order in time accuracy.

Future Directions

• This method provides a clear path forward towards an overall
fourth order algorithm for low Mach number combustion with
complex chemistry.

• The time-stepping scheme easily generalizes to arbitrary order.

• Implementing fourth-order spatial operators in multiple dimen-
sions introduces some very interesting and challenging problems.
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