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Abstract

Implicit LES methods are numerical methods that capture the energy-containing and inertial

ranges of turbulent flows, while relying on their own intrinsic dissipation to act as a subgrid

model. We present a scheme-dependent Kolmogorov scaling analysis of the solutions produced

by such methods. A consequence of the analysis is that an effective Reynolds number can

be defined, which can also be applied to under-resolved viscous simulations. Simulations of

maintained homogeneous isotropic turbulence and the Taylor-Green vortex are presented to

support this proposal and highlight similarities and differences with real-world viscous fluids.

Direct comparison with data from high resolution dns calculations provides validation of the

effective viscosity and effective Kolmogorov length scale.

1 Introduction

The broad range of time and length scales present in high Reynolds number turbulent flows is

prohibitively expensive for direct numerical simulation (dns) to capture completely, and vari-

ous techniques are used to attempt to overcome this problem. An approach that is receiving

increasing attention is the use of a form of large eddy simulation (les) known as implicit les

(iles), where numerical schemes are used such that the inviscid energy cascade through the

inertial range is captured accurately and the inherent numerical dissipation emulates the effects

of the dynamics beyond the grid-scale cut-off. This approach was introduced in Boris [5] (see

also Boris et. al. [6]), and referred to there as the Monotone Integrated Large Eddy Simulation

(miles), and has recently come to encompass a broader range of schemes under the name of

iles.
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Many iles codes are run without the inclusion of a viscous term, but others include a small

amount of explicit viscosity, e.g. Fureby and Grinstein [15], with the viscous scales not fully

resolved. Both approaches are considered to be iles simulations in the literature, but although

there is likely to be little difference for practical applications, there is a subtle difference in theory

that will be discussed below. For this reason, we consider the three situations to be distinct;

fully-resolved dns, completely inviscid iles, and iles with viscosity (a subset of under-resolved

dns).

Since turbulence is characterised by high levels of fluctuating vorticity and, therefore, sharp

velocity gradients similar to compressible shocks, the schemes used in iles are inspired by

ideas from shock-capturing schemes used for compressible flows. In particular, high-order, non-

oscillatory, finite-volume (nfv) schemes are particularly well-suited here. In the early 90’s,

several authors published successful applications of these types of schemes, e.g. Porter et. al. [30]

and Youngs [37], but it was Boris [6] who first identified the “convenient conspiracy”, as it was

later dubbed by Oran and Boris [28], specifically that the numerical dissipation inherent in these

schemes acts at the small scales in a manner similar to a subgrid-scale model. Furthermore,

the cell-averaging discretisation of the flow variables can be thought of as an implicit filter.

Particular success has been found in free shear flows, where the influence of small-scale viscous

dissipation is small, e.g. Fureby and Grinstein [15]. Using a ppm-based method, Sytine et. al. [34]

and Porter et. al. [31] showed that it is possible to recover energy spectra with a minus five-thirds

decay. A collection of works that provides an overview of the technique, including a history and

applications, can be found in the book by Grinstein et. al. [19].

Efforts to derive effective viscosities for iles computations include Grinstein and Guirguis [18],

who compared simulations using a Flux-Corrected Transport algorithm with viscous theory for

a two-dimensional (laminar) shear layer, and the modified equation analysis of Fureby and Grin-

stein [15], Grinstein and Fureby [17], Margolin and Rider [24] and [25], who relate the modified

equation to an implicit subgrid-scale model. The latter can lead to useful insights, but is heuristic

in nature because modified equation analysis is valid at long wavelengths, but not at the length

scales where the numerical dissipation is acting. An additional issue with modified equation

analysis is that the analysis can become prohibitively cumbersome without drastic simplifying
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assumptions about the numerical method that may render the results meaningless. For exam-

ple, the scheme used in the present study involves projections to enforce the incompressibility

constraint (e.g. [1]), which cannot be readily incorporated into the analysis.

We will use the notion of a hypothetical fluid described by an iles scheme and the term “iles

fluid”. The concept of a hypothetical fluid that arises from numerical simulation has been

suggested before by Muschinski [27], where a similar framework is used. A Smagorinsky model

is used there to specify an explicit eddy-viscosity coefficient, and so the analysis differs from the

approach used here.

What we do instead in this paper is use scaling to examine the turbulence that arises in an iles

fluid and compare it to real turbulence; we then use this comparison to validate the use of iles

in special cases and highlight its limitations.

2 Theory

An incompressible homogeneous viscous flow is characterized by three parameters, the integral

length scale l, the energy dissipation rate ε, and the fluid viscosity ν. A important dimensionless

parameter is the Reynolds number,

Reε ≡
ε

1

3 l
4

3

ν
. (1)

Turbulence involves a cascade of kinetic energy from large scales (the ones that contain most of

the energy) to small scales where the energy is dissipated by viscosity. Kolmogorov introduced

the length scale

η ≡

(

ν3

ε

)
1

4

, (2)

now known as the Kolmogorov length scale, which allows the Reynolds number to be written as

Reε ≡

(

l

η

)4/3

, (3)

which is assumed here to be large.

In terms of a kinetic energy wavenumber spectrum, dimensional analysis suggests

κ5/3E

ε2/3
= ϕν (κl, κη) , (4)
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for some dimensionless function ϕν .

Kolmogorov’s first similarity hypothesis states that at length scales r ≪ l, i.e. κl ≫ 1, the

turbulent statistics are universal, determined uniquely by the energy dissipation rate and the

viscosity, i.e. κ5/3ε−2/3E = ϕ(κη). This range of scales is known as the universal equilibrium

range. Furthermore, Kolmogorov’s second similarity hypothesis states that for scales η ≪ r ≪ l,

i.e. κη ≪ 1, the statistics are independent of viscosity and so are determined uniquely by the

energy dissipation rate, i.e. there is complete similarity (see Barenblatt [3]) and κ5/3ε−2/3E = Cκ,

the Kolmogorov constant. This range of scales is known as the inertial (sub)range. The range of

scales comparable to the Kolmogorov length scale, where kinetic energy is dissipated, is known

as the dissipation (sub)range. This analysis implicitly assumes that t

Experimental observation and direct numerical simulation suggest a value for Cκ between 1.2

and 2. In the dissipation range, ϕν has been observed to decay exponentially, for example in

large-scale experiments by Saddoughi and Veeravalli [32] and in dns calculations by Kerr [22].

The same approach can be taken for an iles fluid. The characteristic parameters are now ε

and l (as before), but now the computational cell width ∆x replaces the fluid viscosity. A new

dimensionless group that can be formed with these parameters is N ≡ l/∆x, the number of cells

across the integral length scale.

As before, dimensional analysis can be used to form an expression for the kinetic energy

wavenumber spectrum:

κ5/3E

ε2/3
= ϕi (κl, κ∆x) , (5)

for some dimensionless function ϕi.

A theory can then be formed by analogy with Kolmogorov’s. The first similarity hypothesis

asserts that for length scales r ≪ l, i.e. κl ≫ 1, then turbulent statistics are universal (for a

particular numerical algorithm) determined solely by the energy dissipation rate and the com-

putational cell width, i.e. κ5/3ε−2/3E = ϕi (κ∆x); each numerical algorithm posses a universal

equilibrium range. The second similarity hypothesis can then be restated such that for scales

∆x ≪ r ≪ l, i.e. κ∆x ≪ 1, the statistics are independent of the computational cell width,

i.e. again there is complete similarity and the normalised energy spectrum is a constant. Fur-
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thermore, assuming that the algorithm captures the advection term correctly, then this constant

should be the same as in a viscous fluid, i.e. the Kolmogorov constant.

There is no reason to assume that the dissipation range in an iles fluid should be the same

as in a viscous fluid, or that we can directly associate the transition between the inertial and

dissipation subranges with ∆x; at best, only the inertial range can be expected to be similar.

It will be shown in the next section that normalising κ with ∆x does not collapse the kinetic

energy spectrum, and another length scale has to be used.

The extent of the inertial range is directly related to the Reynolds number, and so, given l, the

shortest length scale in the inertial range will be indicative of the Reynolds number. Consider

the integral

D =
1

V

∫

V
u · ∇

2udV. (6)

In spectral space, u · ∇2u will resemble κ2E(κ), and so it can be expected to grow as κ1/3 in

the inertial range and decay exponentially in the dissipation range. Therefore, the dominant

contribution to the integral D will come from length scales at the transition between the two

subranges. Furthermore, in a viscous fluid, D arises in the kinetic energy equation, and is related

to the energy dissipation rate according to ε = νD, and so provides a link between an iles fluid

and a viscous fluid.

We propose that D can be used to derive expressions for effective viscosity and effective Kol-

mogorov length scale that are loosely independent of the structure of the dissipation range, and

are common to both an iles fluid and a viscous fluid. Specifically, νe = ε/D and ηe = ε1/2/D3/4,

which makes the relation ν3
e = εη4

e consistent with a viscous fluid.

Dimensional analysis suggests that

ηe

∆x
≡

ε1/2

∆xD3/4
= Πi

(

l

∆x

)

(7)

for some dimensionless function Πi, noting that l/∆x ∼ Re
3/4
e . Complete similarity would imply

that ηe/∆x is a constant, but this will be shown not to be the case, at least for the numerical

scheme used here.

With this definition of an effective Kolmogorov length scale, the analogy with Kolmogorov’s
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theory, equation 5, can be recast in the form of equation 4.

3 Simulations

The numerical code that is used throughout this study is iamr, which was available from the

Center for Computational Sciences and Engineering at the Lawrence Berkeley National Labo-

ratory [13]. Iamr is an incompressible, variable-density Navier-Stokes solver that is suitable for

iles calculations. Before briefly discussing the algorithmic approach in iamr, we emphasize that

our focus here is on developing a methodology for assessing iles approaches, not on advocating

for a particular method.

Iamr employs a finite-volume approach with a two-step predictor-corrector method based on

the unsplit second-order Godunov methodology introduced for gas dynamics by Colella [9]. The

advective velocities are constructed using a monotonicity-limited fourth-order centred-difference

slope approximation, see Colella [8]. An intermediate mac projection, see Bell et. al. [4], is used

to ensure these velocities are discretely divergence free before the flow variables are advected.

Finally, an approximate projection, see Almgren et. al. [2], is used to enforce the divergence-free

constraint in the updated velocity field. The overall algorithm is second-order in both space

and time. For further details, see Almgren et. al. [1] and the references therein. It should be

noted that second-order accuracy is sufficient to be considered “high-order” and suitable for

the iles approach, see Drikakis [11] or Harten [20]. Moreover, Margolin et. al. [26] argue that

second-order may be the only suitable way to construct an iles scheme.

The equations of motion are the standard incompressible Navier-Stokes equations,

∇ · u = 0,

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p+ ν∇2u + F,

where the density, velocity, pressure and viscosity are denoted by ρ, u, p and ν, respectively, and

F is a forcing term to be defined. In the following simulations, the viscosity is simply set to zero

for inviscid iles calculations, and the viscosity of under-resolved calculations will be specified

when appropriate.
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3.1 Maintained Homogeneous Isotopic Turbulence

Simulations were run of homogeneous isotropic turbulence in a triply-periodic unit cube1. To

reduce the detrimental impact of long-range correlations that affect decaying turbulence (see

Davidson [10], for example), a zero-mean time-dependent low-wavenumber forcing term was

prescribed as

F(x, t) =
∑

|κ|∈[1,3]

ai,j,k cos(fi,j,kt+ ψi,j,k) cos(2πκix+ pi,j,k) cos(2πκjy + qi,j,k) cos(2πκkz + ri,j,k),

for random amplitudes ai,j,k ∈ [0, 1), frequencies fi,j,k ∈ [π, 2π), and phases ψi,j,k, pi,j,k, qi,j,k

and ri,j,k ∈ [0, 2π). The flow was initiated with a low-level low-wavenumber velocity field, and

unit density.

Inviscid (iles) simulations were performed at resolutions from 323 to 10243. Viscous simulations

were performed at 2563 (with viscosities of ν = 10−2, 10−3 and 10−4), 5123 (with viscosities of

10−3 and 10−4) and at 10243 (with viscosities of 2.5 × 10−4, and 10−4). Not all of the viscous

simulations were expected to be fully-resolved; evaluating Πν ≡ ε1/2/(ηD) provides a way to

establish which simulations are well-resolved (Πν = 1) and which are not (Πν > 1). Simulations

were run until t = 8, except for the 10243 cases, which were run until times between 3 and 4

due to computational expense.

Figures 1(a-d) show the evolution of the terms in the kinetic energy equation for all of the

simulations; (a) is the total kinetic energy, (b) is the energy injected by the forcing term, (c) is

the actual energy dissipation evaluated according to ε = φ−dE/dt, where φ = (1/V )
∫

u · F dV ,

and (d) is D as defined in (6). Inviscid and viscous runs are denoted by solid and broken lines,

respectively, and colour denotes resolution. The flow passes through an initial transient as the

energy cascade begins, the dissipation rate reaches a peak at around t ≈ 1, and shortly thereafter

becomes fully-developed. It is clear from these plots that the forcing term dominates the flow,

but importantly maintains a time-dependent zero-mean velocity field with a dissipation rate

that is independent of the resolution and viscosity. Figure 1 demonstrates that the resolution

and viscosity affect only the small-scale energy dissipation; it is only the Laplacian term D in

figure 1(d) that is affected by changes in resolution or viscosity. In the most viscous case, the

1Throughout this section, the units are arbitrary, and Reynolds numbers will be presented where appropriate.
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Reynolds number is too low for a sufficient separation of scales, and both the initial transient

and the late-time evolution are heavily damped.

Figure 2(a) shows the evolution of the dimensionless quantity Πi ≡ ε1/2/(∆xD) for the iles

simulations. For the resolutions presented here, the effective Kolmogorov length scale ηe = Πi∆x

is between about one quarter and one third of a computational cell width, which is much smaller

than would be required for a well-resolved dns calculation.

In each simulation, the value of Πi becomes approximately constant once the flow has become

well-developed, but the lack of complete similarity alluded to in section 2 is evident here. Fig-

ure 2(b) considers the dependence of Πi on the effective Reynolds number. The solid black line

is a best fit to the power law Πi = 0.169Re0.085
e , which can be stated equivalently in terms of

resolution as Πi = 0.203N0.102, where N is the number of cells across the integral length scale.

This relationship demonstrates an incomplete similarity in equation (7).

The source of this dependency is not clear, but two possible influences have been discounted:

the numerical slope limiting used to preserve monotonicity, and the use of a large scale forcing

term. The simulations were run without utilising slope limiting, but this only resulted in slightly

smaller values for Πi, the Reynolds number dependency remained. The decaying simulations in

the next section will also be shown to possess a similar degree of dependency, discounting the

forcing term.

It may be the case that the Reynolds number dependency is just a manifestation of an underlying

limitation in relating an iles simulation to a viscous fluid, which may be related to some other

property of turbulence not considered here, such as intermittency. Recently, Sreenivasan [33]

has argued that the resolution requirements for well-resolved dns calculations grow at a rate

that exceeds the three-quarters that natural scaling suggests, which may be related to the

observations presented here.

The measure Πν , shown in figure 3, distinguishes the viscous simulations that are well-resolved

(Πν ≈ 1) from those that are not (Πν > 1). The simulations at 2563 with ν = 10−2, 5123 with

ν = 10−3 and 10243 with ν = 2.5 × 10−4 are thought to be well-resolved as the maxima in Πν

after the initial transient are 1.0052, 1.0045, and 1.0054, respectively (some error is expected
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due to evaluating the numerical derivatives for the temporal change in the total kinetic energy

and the Laplacian). The simulations at 2563 with ν = 10−3 and 10243 with ν = 10−4 are close,

but not quite fully-resolved, where the maxima in Πν are 1.0145 and 1.0295, respectively. The

other two simulations at ν = 10−4 are clearly not well-resolved.

Using the measured effective Kolmogorov length scales, the kinetic energy spectra can be nor-

malised according to ε−2/3η
−5/3
e E(κηe), and are plotted in figure 4; the low Reynolds number

dns simulation has been omitted. The same colour scheme as before has been used, and the

dashed black line shows the theoretical inertial range decay Cκκ
−5/3 with a Kolmogorov constant

of Cκ = 2. Even though iles spectra are not expected to be identical to the viscous spectra,

this normalisation appears to collapse both kinds of spectra in the universal equilibrium range.

Not only do the iles spectra collapse to a single profile, that profile does not appear to be too

far removed from the viscous profile. In particular, it should be noted that the iles spectra

have a much shorter dissipation range than the viscous spectra; in the viscous simulations it

is necessary to dedicate a significantly higher proportion of resolution to the dissipation range.

Consequently, at the other end of the spectra, the iles simulations have inertial ranges that ex-

tend to smaller wavenumbers than the viscous spectra, suggestive of higher Reynolds numbers.

This behaviour can be seem more clearly in the compensated spectra, plotted in figure 5(a,b).

Here, another difference between the two types of spectra can be discerned; the dip around

κη ≈ 0.05 appears to be slightly greater in the iles case. Figure 5(c,d) plots the compensated

spectra semilogarithmically to consider exponential decay in the dissipation range. The dashed

black line is A exp(−βκη), with A = 6.5 and β = 5.2, taken from the dns simulations of Kerr [22]

and the boundary-layer experiments of Saddoughi and Veeravalli [32], with which the viscous

simulations are in very close agreement. The iles simulations, however, present slightly differ-

ent behaviour; there is a range with steeper decay followed by a flattening near the grid-scale.

In summary, there are identifiable differences between the universal equilibrium ranges of iles

and viscous spectra, but these differences are not sufficient to disrupt the collapse presented in

figure 4, at least for the numerical scheme considered here. The scheme captures an inertial

range close to the Kolmogorov constant, and the effective Kolmogorov length scale permits a

normalisation that collapses the spectra to an equilibrium range that is universal for the scheme,
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and close to that of a real viscous fluid.

Figure 6(a) shows the evolution of the effective viscosity. The same measure is used in both the

viscous and inviscid cases; the actual viscosity is not used explicitly, and so provides another

measure of how well resolved the viscous calculations are. The vertical dashed line shows t ≈

2.57, which corresponds to the time at which the spectra are plotted in figures 4-5. A key

point to note here is that the extent to which the inertial range of each spectrum extends to

low wavenumbers (figure 4) corresponds directly to the effective viscosity at the time shown by

the vertical dashed line (figure 6a). As Reynolds number increases, a larger inertial range is

observed due to the greater separation of scales, so since all other quantities are approximately

equal, the Reynolds number is represented by the effective viscosity, which follows exactly the

same trend as the energy spectra at large scales. This suggests that the effective viscosity that

has been derived is an accurate representation of the flow; if an iles simulation and a viscous

fluid have inertial ranges that extend over the same range of wavenumbers, then the method

outlined above provides a way of deriving the effective viscosity of the iles fluid corresponding

to the true viscosity of the real fluid. The resulting effective Taylor Reynolds numbers

Reλ =
ûλ

νe
for λ2 =

15νeû
2

ε
,

where û is the rms velocity, are plotted in figure 6(b).

Some iles schemes are run with small amounts of viscosity, e.g. Fureby and Grinstein [15]. Other

viscous simulations are run using a non-oscillatory finite volume approach, where the resolution

may not completely capture the dissipation range. To account for these circumstances, it is

possible to extend the characterisation to the situation of a viscous iles calculation. There are

three measures of viscosity that need to be considered; the specified (under-resolved) viscosity

νu, the effective viscosity for an inviscid simulation at that resolution ν∆x, and the resulting

effective viscosity νe. Dimensional considerations suggest a functional dependence of the form

νe

ν∆x
= f

(

νu

ν∆x

)

, (8)

for some dimensionless function f , where f(x) → 1 as x→ 0, and f(x) → x as x→ ∞.

To investigate this dependence, a variety of under-resolved simulations were run in addition to

those already presented, the results of which are shown in figure 7. For each simulation, the
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marker denotes the time t = 2.57, and the surrounding points shows time dependence. The

dotted line shows f(x) = 1 (the inviscid limit), the dashed line is f(x) = x (the well-resolved

viscous limit), and the solid black line is the heuristic candidate function

f(x) = x+ exp(−bx),

which naturally satisfies the restrictions on (8). The value of b shown here is 1/2. There is

clear agreement for all simulations, which suggests that an a priori prediction for the effective

viscosity of an under-resolved viscous calculation using this scheme can be written as

νe = νu + ν∆x exp

(

−
1

2

νu

ν∆x

)

.

3.2 The Taylor-Green Vortex

The Taylor-Green vortex [35] has become a popular test case for iles methods, see the recent

studies of Drikakis et. al. [12] and Hickel et. al. [21], and so has been investigated here. Fol-

lowing [12], the domain used was a triply-periodic cube of length 2π. The velocity field was

initialised according to

u0(x) = u0













cos(kx) sin(ky) cos(kz)

− sin(kx) cos(ky) cos(kz)

0













,

where k = 1. The inherent symmetry of the problem can be exploited to reduce the domain size

by a factor of 8. Simulations were run at effective resolutions of 323 to 20483. Viscous simulations

were run at an effective resolution of 5123, at Reynolds numbers of approximately 120, 1200,

3000, and 12000, where the Reynolds number is defined to be Re = u0/kν, corresponding to the

initial conditions; as in the previous section, this range of Reynolds numbers spans the range

from under-resolved at this resolution to too viscous for a separation of scales. Throughout this

section velocities will be non-dimensionalised by u0 and lengths by k−1.

Figures 8(a,b) show the evolution of the normalised total kinetic energy, (c) shows the temporal

derivative of the kinetic energy, and (d) shows the Laplacian term D. At early times, kinetic

energy is conserved (in the inviscid and high Reynolds number cases), then as the cascade process
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begins, a growth in the Laplacian term is observed along with a corresponding decay in kinetic

energy. The energy dissipation rate reaches a peak at around dimensionless time t ≈ 9, and the

late-time energy decay follows t−2, characteristic of the Taylor-Green vortex. The most viscous

case prevents transition to turbulence, and the vortex spins down at a rate that can be seen to

be faster than t−2 at late times.

In the iles results of Drikakis et. al. [12] and the dns results of Brachet [7] at a Reynolds number

of 5000, the energy dissipation is observed to peak at a value around 0.016, and it is suggested

in Frisch [14], for example, that a limit independent of Reynolds number is being approached.

However, the peak energy dissipation in the 10243 case presented in figure 8(c) is approximately

25% higher, and so suggests that much higher Reynolds numbers will be needed to draw any

definitive conclusions. The simulation at 20483 does not attain a peak as high as the 10243 case.

This is because the Taylor-Green vortex is extremely sensitive to shear instabilities, which are

damped at lower resolutions.

Figure 9(a) shows the dimensionless quantity Πi. There is a slightly greater variability in the

value of Πi for each simulation than there was for the simulations in the previous section, and

again there is a dependence on resolution. Figure 9(b) shows the Reynolds number dependency

of Πi for each simulation. The solid black line denotes the best fit to the data, which is of the

form Πi = 0.152Re0.087
ε . The dashed black line shows the best fit from the simulations from the

previous section, which has a similar power-law growth, but a slightly higher coefficient (recall

the best fit from the previous section was Πi = 0.169Re0.085
ε ).

Figure 10 shows the dimensionless quantity Πν (a), and the effective viscosities (b). The least

viscous case is clearly identified as being under-resolved, but because the flow is decaying, the

simulation approaches the well-resolved limit at late times. The Re = 3000 case appears to be

marginally under-resolved, but the other two viscous cases appear to be well-resolved.

Figure 11 shows the kinetic energy spectra, normalised as before using the effective Kolmogorov

length scale and energy dissipation rate, along with reference spectra from the maintained ho-

mogeneous isotropic turbulence simulations from the previous section, specifically the inviscid

simulation at 10243 and the well-resolved viscous simulation at 5123 with ν = 10−3; the dashed
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black line denotes Cκκ
−5/3, with Cκ = 2. Again, the normalisation collapses the data well, not

only the viscous and inviscid simulations, but also the maintained and decaying flows; a univer-

sal equilibrium range is indeed recovered in these iles simulations, and appears to be similar to

that recovered in a viscous fluid.

Compensated spectra are shown in figures 12(a,b) for two different times: (a) is at t ≈ 16.4, the

latest time that the highest resolution case was run, and (b) is at t ≈ 50. At the first time, the

compensated spectra demonstrate that the decay is indeed close to minus five-thirds and the

data compares well with the maintained spectra. However, at the later time, the decay is less

than five-thirds. Note, in particular, that even well-resolved dns spectra do not achieve a minus

five-thirds decay. This is a consequence, and one of the drawbacks, of decaying turbulence;

it should be emphasised that it is not a consequence of using the iles approach. Without a

source of energy at the large scales, a much larger domain and separation of scales is required

for truly free decay; Pope [29] suggests that a lower bound on the domain size is around eight

integral length scales, and Davidson [10] argues that the factor should be more like twenty to

forty; in particular refer to the section on “the dangers of periodicity” in [10]. This is the likely

cause of the lack of universality in Πi observed here. It also highlights a difference between iles

and traditional les, where the aim it is to extend the minus-five thirds decay to, or as close as

possible to, the cutoff length scale, and may explain the behaviour observed by Garnier [16].

Another key difference between iles simulations and real-world viscous or dns fluids arises

in flows that are decaying, and is due to the fixed effective Kolmogorov length scale in the

iles case. In a viscous fluid, as the flow decays, the energy dissipation rate drops, and so

the Kolmogorov length scale increases according to (2). This cannot happen in an iles fluid;

instead, the effective viscosity decreases. The consequence of this is that all small-scale structure

is removed from the viscous simulation, but high-wavenumber velocity gradients persist in the

iles case. This is highlighted in figure 13, which shows vertical slices of the magnitude of

vorticity at t = 10, 100 and 1000 for both a viscous calculation (5123, Re ≈ 3000) and an

inviscid calculation (2563). Naturally, the plots are similar at the early time, but at later times

diffusive effects dominate the viscous flow and the Kolmogorov length scale grows. The iles

plots are qualitatively similar at the intermediate and late times because of the fixed effective
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Kolmogorov length scale. Unnormalised kinetic energy spectra are shown in figure 14. Again,

at the early time, the agreement is close, but it is clear that at later times the distribution of

energy across the scales is significantly different.

This is the reason we make the distinction between inviscid iles simulations and iles simulations

with viscosity. If an iles simulation is performed including a small amount of explicit viscosity,

then in a decaying flow, that viscosity will eventually begin to play a role. If the viscosity is

kept constant the small-scale structure will eventually be removed, regardless of how small the

viscosity is.

4 Discussion and Conclusions

In this paper, we have presented a characterisation of implicit les methods in general, and pro-

posed a methodology for characterising individual iles schemes. This was achieved by drawing

an analogy with the characterisation of viscous fluids following Kolmogorov [23]. More specifi-

cally, an iles method can be characterised in terms of an equilibrium range that is universal to

that approach, and is determined uniquely by the energy dissipation rate ε, as in a viscous fluid,

and the computational cell width ∆x, which replaces the fluid viscosity as the characteristic

measure of small-scale energy dissipation. By using dimensional analysis, a single dimensionless

parameter Πi ≡ ε1/2/(∆xD) was derived that provides a characteristic estimate of the effect of

the numerical dissipation on the small scales in a developed turbulent flow for an iles scheme.

To mimic the relationships of viscous fluids, an effective Kolmogorov length scale and effective

viscosity can be written as ηe = Πi∆x and νe = ε1/3Πi
4/3∆x4/3.

This approach differs philosophically from previous work as it uses a posteriori diagnostics to

evaluate the characteristic estimate Πi, complementing the previous a priori approaches that

consider modified equation analysis. The present methodology has the benefits that it assesses

a scheme’s performance based on the results, not heuristic predictions, and the framework can

be applied easily to any iles scheme however complicated the algorithm.

For the iles scheme presented here, in the maintained homogeneous turbulence simulations, it
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was found that Πi = 0.169Re0.085
ε or equivalently Πi = 0.203N0.102, where N is the number of

computational cells across the integral length scale, which means that the effective Kolmogorov

length scales were between approximately one fifth and one third of a computational cell width.

The values obtained for Πi were slightly smaller for the decaying Taylor-Green vortex. This

is likely due to a lack of independence from the large scales. For this reason, we believe that

maintained turbulence is a more suitable test case for characterising an iles scheme, and is more

likely to give results consistent with more realistic applications.

These effective measures were used to normalise kinetic energy spectra, and it was demonstrated,

by comparison with well-resolved dns calculations, that an iles flow with an effective viscos-

ity close to that of a dns calculation had an inertial range that spanned the same range of

wavenumbers; this measure of effective viscosity is an accurate representation of an iles fluid.

Furthermore, under-resolved simulations were investigated, and it was found that a simple ex-

pression could be formulated to predict the effective viscosity a priori:

νe = νu + ν∆x exp

(

−
1

2

νu

ν∆x

)

.

This demonstrates that the variation between fully-resolved dns and completely inviscid iles

simulations is continuous, except for a distinction made for completely inviscid simulations for

late-time decaying flows, summarised below. The expression can be used to specify the effective

viscosity in marginally resolved dns studies using an nfv scheme.

Differences were observed between iles and viscous spectra, both at the high wavenumber end

of the inertial range, and within the dissipation range. These differences were small, and only

observed under close scrutiny, the physical implications of which are not yet understood.

A key difference is that the effective viscosity depends on the energy dissipation rate, which is

local in both time and space, and so knowledge of some kind of measure of the dissipation rate

(in whatever average sense applies to the flow) is required. This means that not only does the

effective viscosity vary in time, but can be different at different regions of the flow, and even

both. In a turbulent jet, for example, a higher effective viscosity will be observed along the jet

axis than at the jet edge because of the decreasing dissipation rate with radius, see Townsend [36]

for example. Furthermore, the Reynolds number will increase with streamwise distance, rather
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than remain constant as expected in a round jet.

In decaying flows, a significant consequence is that a completely inviscid iles flow cannot undergo

relaminarisation; there is no final period of decay. In a decaying viscous flow, as the energy

dissipation rate drops, the Kolmogorov length scale increases as small-scale structure is removed

by viscosity. This cannot happen in an inviscid iles fluid; there is an imposed separation of

scales due to the fixed Kolmogorov length scale. The vorticity field will decay, but cannot

become smooth; small-scale structure will persist for all time. However, for iles schemes run

with a small amount of explicit viscosity, a final period of decay will eventually be observed,

regardless of how small the viscosity is.

An expression for the effective viscosity can be written in the form νe = ε/D, which has no

a priori reason to hold true in an iles flow. It may be the case that because this scheme is

second-order accurate (Margolin et. al. [26] argue that second-order may be the only suitable

way to construct an iles scheme), then D is indeed a close measure of how energy is removed

from the system. But the question remains whether this will be the case in other iles codes.

Regardless, it can be argued that D is a suitable measure (even if non-unique) because the

wavenumber spectrum of the integrand will be similar to κ2E(κ). If an iles scheme captures

the inviscid energy cascade, then E(κ) ∼ κ−5/3 in the inertial range, and at some wavenumber,

energy is dissipated and decreases rapidly with wavenumber. Therefore, the spectrum for D

will peak at a length scale around the transition between the integral and dissipation ranges.

So the dominant contribution to the integral will come from around this length scale, and will

not be dominated by the details of the scheme-dependent dissipation scales, just their physical

location. This length scale is also strongly related to the Reynolds number and given the exact

relation for viscous fluids, we expect D to provide the link between numerical dissipation and

effective viscosity for any iles algorithm.

The parameter Πi is the dimensionally correct scaling to characterise a scheme, and the ex-

pression is independent of the numerical scheme. It specifically captures (through D) the effect

of the numerical scheme on small scale dissipation. Its value (and any Reynolds number de-

pendence) will vary between different algorithmic approaches. For example, we speculate that
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higher-order schemes will present spectra with a longer inertial range, i.e. the dissipation range

will be shorter and begin closer the grid-scale, and consequently present smaller values for Πi.

It may also be the case that in the compensated spectrum, the peak energy at the bottleneck

between the inertial and dissipation ranges that is greater than was found here and the dip in

the spectra observed at smaller wavenumbers will also be exaggerated.

An issue that has not been addressed here is how the parameter Πi will behave for inhomogeneous

flows. Consider a jet or shear layer, where there is a transition from fully-developed turbulent

flow to laminar quiescence. Both the numerator ε and the denominator D tend to zero. We

intend to consider this transition in future work.
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Figure 1: Evolution of (a) total kinetic energy E, (b) injection of kinetic energy due to the

forcing term φ, (c) energy dissipation rate ε, and (d) the Laplacian term D. Inviscid and viscous

simulations are denoted by solid and broken lines, respectively, and colour denotes resolution.

The forcing term dominates the flow, but maintains a dissipation rate that is independent of

resolution or viscosity.
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Figure 2: (a) Evolution of the dimensionless quantity Πi for the iles simulations. In each case,

the value settles to a constant after the initial transient. (b) Reynolds number dependence of

Πi. Data shown are for t > 1.2. The best fit is Πi = 0.169Re0.085
ε .
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Figure 3: Evolution of the dimensionless quantity Πν . Πν ≈ 1 corresponds to a well-resolved

viscous calculation, and Πν > 1 denotes lack of resolution.
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Figure 4: Normalised kinetic energy wavenumber spectra, ε−2/3η−5/3E(κη). There is a clear

collapse of both inviscid and viscous spectra. The high resolution simulation present an inertial

range with decay close to the expected minus-five thirds. Note, in particular, how the viscous

simulations are required to dedicate significantly more resolution to the dissipation range.
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Figure 5: Compensated kinetic energy wavenumber spectra, normalised according to

ε−2/3κ5/3E(κη). Inviscid spectra are shown in (a) and (c), and viscous spectra in (b) and

(d). The inertial range is highlighted by logarithmic plots in (a) and (b) (the two black lines

denote the range of values found in the literature for the Kolmogorov constant, i.e. 1.2 to 2),

and the dissipation range is highlighted by semilogarithmic plots in (c) and (d).
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Figure 6: (a) Evolution of the effective viscosity νe, for both the inviscid and viscous simulations;

note the time-dependency of the iles simulations, and that the effective viscosity of the under-

resolved viscous simulations does not agree with the specified viscosity. (b) Evolution of the

Taylor Reynolds number.
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Figure 7: Examination of the dimensionless dependence of the effective viscosity on the specified

viscosity in under-resolved viscous simulations, νe/ν∆x = f (νu/ν∆x).
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Figure 8: Evolution of the terms in the kinetic energy equation for the Taylor-Green vortex:

(a,b) total kinetic energy, (c) temporal change in kinetic energy, (d) Laplacian term D. The

solid lines are the inviscid calculations and the dash-dotted lines are the viscous calculations.
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Figure 9: (a) Evolution of the dimensionless parameters Πi. (b) Dependence of Πi on Reε. Data

shown are for t > 12. Solid black line denotes best fit, Πi = 0.152Re0.087
ε . Dashed black line is

the best fit from the previous section.
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Figure 10: (a) Evolution of the dimensionless parameter Πν . (b) Evolution of the effective

viscosity νe.
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Figure 11: Kinetic energy wavenumber spectra, ε−2/3η−5/3E(κη), at dimensionless time t ≈ 16.4.

Two maintained simulations from the previous section (labelled hit) are shown for comparison;

specifically the inviscid simulation at 10243 and the viscous simulation at 5123 with ν = 10−3.
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(b)

Figure 12: Compensated kinetic energy wavenumber spectra for the Taylor-Green vortex, nor-

malised according to ε−2/3κ5/3E(κη). (a) t ≈ 16.4, (b) t ≈ 50.
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Figure 13: Vertical slices showing magnitude of vorticity in a inviscid calculation at 2563 (top)

and in a viscous calculation at 5123 with Re = 3000 (bottom) at three different times t ≈ 10

(left), t ≈ 100 (middle), t ≈ 1000 (right). It is clear how small-scale structure is removed by

viscosity, but persists in an iles calculation due to the imposed separation of scales.
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Figure 14: Unnormalised kinetic energy spectra corresponding to the vorticity slices shown in

figure 13 illustrating differences in relaminarisation for different approaches. The three pairs of

spectra show how energy decreases at the three different times. Note in particular the lack of

energy at large wavenumbers for the viscous case.
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