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Abstract. An important issue in the development of higher-order methods for incompressible
and low Mach number flows is how they perform when the flow is turbulent. A useful diagnostic
of a method for turbulent flow is the minimum resolution that is required to adequately resolve the
turbulent energy cascade at a given Reynolds number. In this paper, we present careful numerical
experiments to assess the utility of higher-order numerical methods based on this metric. We first
introduce a numerical method for the incompressible Navier-Stokes equations that is fourth-order
accurate in space and time for smooth flows. The method is based on an auxiliary variable formulation
and combines fourth-order finite volume differencing with a semi-implicit spectral deferred correction
temporal integration scheme. We also introduce, for comparison purposes, second-order versions of
both the spatial and temporal discretizations. We demonstrate that for smooth problems, each of the
methods exhibits the expected order of convergence. We next examine the behavior of these schemes
on prototypical turbulent flows; in particular, we consider homogeneous isotropic turbulence in which
long wavelength forcing is used to maintain the overall level of turbulent intensity. We provide
comparisons of the fourth-order method with the comparable second-order method as well as with a
second-order semi-implicit projection method based on a shock-capturing discretization. The results
demonstrate that, for a given Reynolds number, the fourth-order scheme leads to dramatic reduction
in the required resolution relative to either of the second-order schemes. In addition, the resolution
requirements appear to be reasonably well predicted by scaling relationships based on dimensional
analysis, providing a characterization of resolution requirements as a function of Reynolds number.
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1. Introduction. A broad range of problems in fluid mechanics can be studied
using a low Mach number formulation of the equations of motion. These types of
models, derived from low Mach number asymptotics, exploit the separation of scales
between fluid motion and acoustic waves to derive specialized systems for which the
natural time scale of the system is based on the fluid velocity rather than the speed of
sound. Prototypical of this type of system are the incompressible Navier-Stokes equa-
tions. Low Mach number extensions of the incompressible Navier-Stokes equations
have been developed for combustion (see, e.g., [27, 34, 31, 24, 35, 16]), atmospheric
flows (see, e.g., [33, 17, 13]) and astrophysics (see, e.g., [6, 32]). Within these more
general contexts, one can incorporate effects of compressibility such as those arising
from reactions and other thermal processes and effects arising from stratification of
the ambient background, while still formulating the problem in the context of a model
that does not include acoustic wave propagation. Many low Mach number flows of
interest involve turbulent flow.

The objective of this paper is to explore the utility of higher-order discretization
approaches for low Mach number formulations of flows in which turbulence plays an
important role. The convergence behavior of a higher-order algorithm for a simplified
test problem is easily documented; however, although we know that, asymptotically, a
higher-order method has reduced error for smooth problems as resolution increases, we
cannot make quantitative predictions of the error for different methods at a given res-
olution. This issue is particularly important in the context of turbulent flows because
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we cannot a priori assume that the minimum resolution falls within the asymptotic
range of the methods. Thus, in order to quantify the potential computational advan-
tage of using a higher-order method for turbulent flows we would like to determine the
minimum resolution required to adequately resolve turbulent flow at a given Reynolds
number for discretizations with different formal accuracies. To do so we will use nu-
merical experiments, focusing on forced isotropic homogeneous turbulence in which a
long-wavelength forcing term is used to maintain a desired turbulence intensity, and
consider the resolution requirements needed to adequately resolve both the inertial
range and the dissipation range of the turbulent energy spectrum.

In moving to a low Mach number formulation, the initial value problem repre-
sented by the compressible flow equations is transformed to a differential algebraic
equation system; i.e., the evolution of the system is now subject to a constraint. This
constrained evolution necessitates a more sophisticated numerical treatment than is
required for compressible formulations. A common approach for low Mach number
systems is the use of projection-type discretizations to enforce a divergence constraint
on the computed velocity. Projection methods can be thought of as fractional step
schemes, wherein the equations are first evolved with a lagged approximation to the
constraint, and then a projection operator is applied to push the solution back onto
the divergence constraint. This type of simple fractional step scheme is inherently lim-
ited to second-order accuracy in time. Many variations of projection methods have
appeared that use second-order spatial discretizations so that the overall method is
second-order accurate. See e.g. [23, 37, 5, 10] or the review article [19].

The fourth-order method used here is based on a variant of the auxiliary variable
formulation of the Navier-Stokes equations that represents an extension to viscous
flows of the fourth-order method introduced in [21]. The spatial discretization of the
method is based on a finite-volume formulation, which can easily be modified to have
either second- or fourth-order spatial accuracy. The temporal discretization is based
on a semi-implicit spectral deferred corrections (SISDC) algorithm, which can also be
trivially modified to produce either second- or fourth-order temporal accuracy. We
note that there are alternative higher-order semi-implicit temporal methods that can
be considered for the incompressible flow equations (e.g. [22, 7, 15]). We consider here
an SDC-type approach because it provides a clear and simple way to compare second-
and fourth-order methods, and it provides a framework for temporal integration that
can be extended to more general low Mach number flows involving additional physical
processes (see, e.g., [8]).

In the next section, we review the auxiliary form of the Navier-Stokes equations
and in Section 3 we present the details of the numerical methods used in this study. In
Section 4, we first present a numerical convergence study that shows that the different
SDC algorithms converge at the expected rates. We also illustrate the behavior of
mixed accuracy versions that are formally second-order in space but fourth-order in
time (and vice-versa). Then we consider the performance of the methods in forced
homogeneous turbulence simulations. In order to show the utility of higher-order
accuracy in both space and time, we compare fully fourth-order and second-order
versions of the SDC algorithm and the second-order projection algorithm used in [2, 4].
We show that the fourth-order in space and time method leads to significant reduction
in the minimum resolution needed to resolve the flow at a given Reynolds number.
Furthermore, the resolution requirements appear to be reasonably well predicted by
scaling relationships based on dimensional analysis, providing a characterization of
resolution requirements as a function of Reynolds number.
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2. Equations of Motion. In this paper, we consider flows with vanishing Mach
number and hence begin with the incompressible Navier-Stokes equations with con-
stant density and viscosity. In this case we can write the equations as

ut = −∇ · (u ◦ u + Ip) + ν∇2u + H (2.1)

∇ · u = 0,

where u and p are the velocity and pressure, respectively; I is the identity tensor,
ν is the kinematic viscosity and H is an explicitly defined forcing term described in
Section 4. Alternative formulations of the Navier-Stokes equations can be derived
by introducing a variable that differs from the velocity by the gradient of a scalar
[36, 18, 10]. Following the terminology in [21], we introduce the auxiliary variable,
u∗, that satisfies

u∗t = −∇ · (u ◦ u + Iq) + ν∇2u∗ + H (2.2)

u = P(u∗) , (2.3)

where q is an a priori prescribed approximation to the pressure that is held fixed over
the time step. The operator P is defined by P(u∗) = u∗ −∇φ where

∇2φ = ∇ · u∗ (2.4)

so that P(u∗) is divergence-free.
The explicitly defined approximation to the pressure, q, in Eq. (2.2) is equivalent

to a choice of gauge in impulse methods [36], and the closer q is to the exact pressure,
p, the closer the auxiliary variable, u∗, is to the exact velocity, u. Since in this study
only periodic boundary conditions are considered and an “exact” projection operator
is being used (see Section 3.2.2), the choice of q does not change the accuracy of the
method. By collecting the gradient terms in Eq. (2.2) and comparing to Eq. (2.1),
one can see that p is related to q and φ by

p = q + φt − ν∇2φ. (2.5)

Hence in our numerical testing, q is reset to approximate the pressure, p, at the
beginning of each time step. Additional detail on how this equation is used to update
the pressure is included at the end of Section 3.4.

The advantage of the auxiliary variable approach is that u∗ is not constrained,
hence a higher-order temporal discretization can be applied directly to the evolution
equation for u∗. In the following section, we present a fourth-order discretization of
the auxiliary variable equations using a conservative finite-volume method in space
and a deferred correction method in time.

We have omitted a discussion of boundary conditions for the equations of motion.
The focus of this paper is on evaluating the benefits of a higher-order discretization
for bulk flow phenomena and hence the numerical tests are done in simplified periodic
geometries. The construction of higher-order temporal methods for PDEs with time-
dependent boundary conditions (even for simple equations) is not straight-forward,
and many papers devoted to avoiding a reduction of order at the boundary have
appeared [20, 12, 1, 3, 11]. The best treatment of boundary conditions for higher-
order, semi-implicit methods for divergence constrained flows is still an open research
problem.
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3. Method. In [21], a fourth-order (in time and space) method for the constant
and variable density, inviscid, low Mach number equations in two dimensions was
presented. The numerical method here is an extension of that method to viscous flows
in three dimensions. The main modification to the method in [21] is the use of a semi-
implicit Spectral Deferred Corrections (SISDC) method to treat the diffusive terms.
Coupling of the SISDC method with an auxiliary variable formulation has appeared
in [28, 30]. In principle, other semi-implicit temporal schemes could be used instead;
however, there are two main motivations for the use of the SDC method. The first is
that the order of the method is easily determined by specifying the number of deferred
correction iterations. The second is that the particular numerical implementation
used for the numerical studies is designed for use on problems with more complicated
equations where multiple operator splitting and multirate time integration is desirable
(as in, e.g., [8, 25, 9]).

3.1. Finite Volume Formulation. To facilitate the explanation, several nota-
tional conventions are first introduced. We assume that the three-dimensional domain
is divided into a uniform array of cells of length, width and height h. Let the cell with
center at (xi, yj , zk) be denoted by Vi,j,k, and let the half-integer subscripts i + 1/2,
j+1/2, k+1/2 denote a shift by distance h/2 in the x-, y- and z-direction, respectively.
We also denote by Ei+1/2,j,k the face of Vi,j,k corresponding to xi+1/2,j,k = xi + h/2;
i.e., Ei+1/2,j,k = {xi+1/2} × [yj−1/2, yj+1/2] × [zk−1/2, zk+1/2]. The other faces are defined
analogously.

The finite-volume approach is based on an evolution equation for the cell average
of the auxiliary variable u∗ defined by

ū∗i,j,k(t) =
1

h3

∫
Vi,j,k

u∗(x, y, z, t) dx dy dz. (3.1)

The finite-volume discretization updates cell averages by the construction of fluxes
that are defined as averages over the faces of the cells. For example,

f̃(t)i+1/2j,k =
1

h2

∫
Ei+1/2,j,k

f(xi+1/2, y, z, t) dz dy (3.2)

with the analogous formulae for other faces
As a further notational convenience, we also use a tilde without index shifting

when referring to the cell-edge averages of a vector quantity when the first compo-
nent of the vector is averaged over Ei+1/2,j,k, the second component is averaged over
Ei,j+1/2,k, and the third over Ei,j,k+1/2. This convention will also be followed for gra-
dients at faces, hence for example,

∇̃φi,j,k = ((φ̃x)i+1/2,j,k, (φ̃y)i,j+1/2,k, (φ̃z)i,j,k+1/2) (3.3)

To specify the finite volume formulation of the conservation law

Qt +∇ · F (Q) = S (3.4)

whereQ(x, y, z, t) is the vector of conserved quantities and F (Q) = (f1(Q), f2(Q), f3(Q))
is the flux function, we integrate the equation over a computational cell and use the
divergence theorem to attain

d

dt
Q̄(t)i,j,k +

1

h3

∫
∂Vi,j,k

F (Q(x, y, z, t)) = S̄(t)i,j,k. (3.5)
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In this equation, the flux integral is defined as∫
∂Vi,j,k

F (Q(x, y, z, t)) dx dy dz

=

∫
Ei+1/2,j,k

f1(Q(xi+1/2, y, z, t)) dz dy −
∫
Ei−1/2,j,k

f1(Q(xi−1/2, y, z, t)) dz dy

+

∫
Ei,j+1/2,k

f2(Q(x, yj+1/2, z, t)) dz dx−
∫
Ei,j−1/2,k

f2(Q(x, yj−1/2, z, t)) dz dx

+

∫
Ei,j,k+1/2

f3(Q(x, y, zk+1/2, t)) dy dx−
∫
Ei,j,k−1/2

f3(Q(x, y, zk−1/2, t)) dy dx,

or using the definition of face average

1

h3

∫
∂Vi,j,k

F (Q(x, y, z, t)) =
f̃1(Q(t))i+1/2,j,k − f̃1(Q(t))i−1/2,j,k

h

+
f̃2(Q(t))i,j+1/2,k − f̃2(Q(t))i,j−1/2,k

h

+
f̃3(Q(t))i,j,k−1/2 − f̃3(Q(t))i,j,k−1/2

h
(3.6)

Since the right hand side of this equation resembles a discretized divergence, we also
write

1

h3

∫
∂Vi,j,k

F (Q(x, y, z, t)) = ∇̃ · F̃ (Q)i,j,k,

i.e., the operator (∇̃·) is the sum of simple differences of averaged quantities over
faces.

Applying the above definitions to Eq. (2.2) yields the system of ODEs,

d

dt
ū∗(t)i,j,k = −∇̃ · F̃ (u∗, q)i,j,k + H̄(t)i,j,k. (3.7)

where we treat q as known and consider u to be computable from u∗ using Eq. (2.3).
Note that Eq. (3.7) is mathematically exact, i.e. no numerical approximations have
been introduced up to this point. The flux function, F, in Eq. (3.7) is split into two
pieces,

F (u∗, q) = A(u∗, q) +D(u∗), (3.8)

where A (which contains the nonlinear terms in F ) is treated explicitly in the temporal
integration scheme and D (the diffusive terms) is treated implicitly. The discretization
of A is described in detail next, followed by the details of the temporal integration
method.

3.2. Explicit Discretization of Nonlinear Terms. The explicit part of the
flux function in Eq. (3.8), A(u∗, q) = (a1(u∗, q), a2(u∗, q), a3(u∗, q)), is defined as

a1 =

 uu+ q
uv
uw

 , a2 =

 vu
vv + q
vw

 , a3 =

 wu
wv

ww + q

 . (3.9)
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Here u = (u, v, w) is defined by Eq. (2.3) and the discretization of the projection, P,
is described in Section 3.2.2.

To compute the nonlinear term, ∇̃ · F̃ (u∗, q), in Eq. (3.7), it is necessary to
construct an accurate approximation of averages of the flux function, namely Ã(u∗, q),
from cell average quantities ū∗ (and q̄). In the temporal method, Ã(u∗, q) is treated
explicitly, and we denote the approximation at a given time tm by Ã(ū∗,m, qm). The
computation of Ã(ū∗,m, qm) proceeds in three separate steps:

1. computing the averages over faces of ũ∗,m and q̃m from the cell averages ū∗,m

and q̄m

2. applying a projection operator to ũ∗,m to yield divergence-free face averages
ũm

3. computing the averages of the flux function Ã(ū∗,m) from the averages ũm

and q̃m.

3.2.1. Computing averages on faces. Given cell average values, φ̄i,j,k, a
fourth-order approximation to the average of φ over face Ei+1/2,j,k is

φ̃i+1/2,j,k =
−φ̄i−1,j,k + 7(φ̄i,j,k + φ̄i+1,j,k)− φ̄i+2,j,k

12
. (3.10)

This approximation is derived by simply integrating a standard one-dimensional in-
terpolation formula over the face. Eq. (3.10) is applied to q̄ and the components of
ū∗ that are normal to each face.

In finite-volume methods for hyperbolic problems, limiters are often applied to the
formula given in Eq. (3.10) near sharp gradients in the solution to avoid introducing
oscillations in the numerical solution (see, e.g., [14]) when the solution is not well-
resolved. A similar procedure has also been employed in an SDC-based method for
one-dimensional problems in [25]. Here, no limiters are used since our focus is on
understanding the behavior of the method when the solution is well-resolved, not
on increasing the robustness of the method when the solution is underresolved. For
second-order versions of the method Eq. (3.10) is replaced by a simple average.

3.2.2. The numerical projection. The fluxes defined in Eq. (3.9) contain the
averages over faces of the divergence-free velocity, u = (u, v, w). Hence, before the
averages of fluxes over faces can be computed, the face average of ũ must be computed
from those of ũ∗ through a numerical projection.

The divergence-free velocities, ũ, are computed by solving a discrete version of
Eq. (2.4) averaged over cells,

∇̃ · ∇̃hφ̄i,j,k = ∇̃ · ũ∗i,j,k. (3.11)

Eq. (3.11) is solved for an approximation to φ̄i,j,k where face averages of ũ∗ are
approximated by the analog of Eq. (3.10), and the averages of normal derivatives at
faces ∇̃φi,j,k (see Eq. (3.3)) are approximated by a fourth-order centered formula,

∇̃hφ̄i,j,k, which, e.g., at Ei+1/2,j,k is

(φ̃x)i+1/2,j,k =
φ̄i−1,j,k + 15(−φ̄i,j,k + φ̄i+1,j,k)− φ̄i+2,j,k

12h
. (3.12)

This yields a 13-point stencil for the discrete Laplacian operator ∇̃·∇̃h. The resulting
linear system is solved using a standard multigrid procedure. For methods with
second-order spatial accuracy, ũ∗ is again computed with a simple average rather
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than Eq. (3.10), and Eq. (3.12) becomes a two-point centered difference that yields
the standard 7-point stencil for ∇̃ · ∇̃h. Then

ũi,j,k = ũ∗i,j,k − ∇̃hφi,j,k (3.13)

are divergence-free edge averages in the sense that

∇̃ · ũi,j,k = 0. (3.14)

In the parlance of projection methods, we are using an “exact” projection of the
values ũ∗, i.e., the averages over faces of the normal velocity components of ũ satisfy
a discrete divergence constraint up to the accuracy of the elliptic solver. However,
in the flux functions defined in Eq. (3.9), all three components of the divergence-
free velocity, u = (u, v, w), are required at each face. The projection procedure just
described determines only the normal velocity at each face The additional tangential
velocities are derived from the solution of Eq. (3.13) by first computing cell-average
velocities,

ūi,j,k = ū∗i,j,k − ∇̄hφ̄i,j,k, (3.15)

where the average of the gradient, ∇̄h, is computed using a centered difference formula
applied to φ̄i,j,k (the solution of Eq. (3.13)), e.g.

(φ̄x)i,j,k =
φ̄i−2,j,k + 8(−φ̄i−1,j,k + φ̄i+1,j,k)− φ̄i+2,j,k

12h
. (3.16)

Averages of the tangential velocities on faces are then computed by using Eq. (3.10)
(or the second-order analog) on the appropriate components of ūi,j,k. Neither ūi,j,k
nor the average of tangential velocities on faces satisfy a discrete divergence constraint.

3.2.3. Computing nonlinear terms. In order to compute higher-order accu-
rate values of averages of the flux functions, it is necessary to compute the average
over faces of the products of velocities appearing in Eq. (3.9). The primary difficulty
in building higher-order finite volume methods is that the average of a product is
not equal to the product of averages. We proceed as in [21] by expressing averages
of a product as the product of averages plus a correction term that depends on ap-
proximations to the tangential derivatives of the quantities on the face. To achieve
fourth-order accuracy, it is sufficient to include only the first derivatives in the cor-
rection.

For example, for an arbitrary quantity φ̃ on face Ei+1/2,j,k

(φ̃ρ)i+1/2,j,k = (φ̃i+1/2,j,k)(ρ̃i+1/2,j,k) +
h2

12
(φ̃yρ̃y + φ̃z ρ̃z) +O(h4), (3.17)

where, for example,

φ̃y =
−5φ̃i+1/2,j+2,k + 34(φ̃i+1/2,j+1,k − φ̃i+1/2,j−1,k) + 5φ̃i+1/2,j−2,k

48h
. (3.18)

When a second-order finite-volume spatial discretization is used, Eq. (3.10) is replaced
by a simple average of adjacent cells, and the O(h2) correction terms in Eq. (3.17)
are omitted. Once the appropriate averages of products of velocities at each cell face
have been computed, Ã(ũ∗) is computed by the simple difference given in Eq. (3.6).
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3.3. Discretization of Diffusive Terms. To complete the description of the
spatial discretization, we now describe the computation of the diffusive terms, ∇̃ ·
D(u∗). From Eq. (2.2), and the definitions above,

∇̃ ·D(u∗) = ν∇̃ · ∇̃u∗. (3.19)

Given cell averages of ū∗,m at tm, we approximate this term using Eq (3.12),

∇̃ ·Dm(ū∗,m) = ν∇̃ · ∇̃hū∗,m. (3.20)

In the time-stepping method described in the next section, the diffusive terms are
computed implicitly except at the beginning of each time step where Eq. (3.20) is
used explicitly.

3.4. Temporal discretization. The spatial discretization described in the pre-
vious section is integrated in time using a Method of Lines approach based on a semi-
implicit Spectral Deferred Corrections (SISDC) method [29]. The basic approach in
the SDC method is to advance the solution of the ODE from time tn to tn+1 through
the use of intermediate values defined by nodes in the interval [tn, tn+1], which here
are denoted generically tm. The SDC method proceeds by first computing a provi-
sional solution using a first-order forward/backward Euler step at each of the nodes
tm. Then, a series of corrections sweeps are performed wherein an approximation to
the error or correction to the provisional solution is computed by a similar first-order
method at the nodes tm. In each of the corrections sweeps, the equation for the
correction contains an explicitly computed approximation to the temporal integral of
the right hand side of the ODE, which is computed using a quadrature rule applied
to the values at the nodes tm. For specific details of semi-implicit SDC methods, the
reader is referred to [29, 26]. For an example of SDC applied to projection methods,
see [28, 30].

Each correction sweep of SDC raises the formal order of accuracy of the overall
method by one when a first-order forward/backward Euler approximation scheme is
used. Hence for the fourth-order temporal methods, four total SDC sweeps (including
the provisional sweep) are performed, while for the second-order methods, two sweeps
are done. The maximum formal order of SDC methods is that of the underlying
quadrature rule defined on the nodes tm. Here, for the fourth-order methods we use
3 Gauss-Lobatto nodes in the SDC sweeps (including the endpoints tn and tn+1) so
that the quadrature rule is equivalent to Simpson’s rule. For second-order temporal
accuracy, the quadrature rule is simply the trapezoid rule, hence no intermediate
nodes are actually used. A detailed study of the the choice of quadrature nodes for
semi-implicit SDC methods appears in [26].

Here we provide a concise summary of one semi-implicit substep in the SDC time
integration method for updating cell average values ū∗. Superscripts are used to
denote the time level of each approximation; for example, the approximation to the
cell-averaged value ū∗(xi, yj , zk, tm) is denoted ū∗,mi,j,k. Superscripts or subscripts are
suppressed when the meaning is apparent.

At the beginning of each time step, we have the quantities ū∗,n and p̄n. Before
the SDC sweeps are begun, ∇̃ · (An(ū∗,n) + Dn(ū∗,n)) and H̄n are computed. The
value of q̄ is also set to p̄n.

Next a provisional solution is approximated at each substep defined by tm+1 using
the forward/backward Euler update

(I − ν∆tm∇̃ · ∇̃h)ū∗,m+1 = ū∗,m + ∆tm(−∇̃ ·Am(ū∗,m) + H̄m), (3.21)
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where ∆tm = tm+1 − tm. This equation is solved with a standard multigrid method.
After ū∗,m+1 is computed, new values Am+1(ū∗,m+1) are computed for the next sub-
step.

Once the provisional solution is computed, additional SDC correction sweeps are
done to improve the accuracy of the provisional solution (three sweeps for the fourth-
order temporal accuracy and one for the second order). In these correction sweeps, a
similar first-order semi-implicit method is done at each substep to a modified equation
(see [29] for details).

Finally, at the end of each full time step, two additional tasks are completed:
(1) Reset ū∗,n+1 to ūn+1 which has been computed in the projection step of

the computation of Am+1(ū∗,m+1) in the final SDC substep as discussed in
Section 3.2.2.

(2) Compute an update to p̄n+1 by discretizing Eq. (2.5),

p̄n+1 = q̄n+1 +
φ̄n+1 − φ̄n

∆t
− ν∇̃ · ∇̃hφ̄n+1. (3.22)

This pressure update yields only a temporally second-order update of the pressure,
but this does not affect the accuracy of the velocities. If an accurate value of pressure
were desired, the time derivative term in Eq. (3.22) equation must be higher-order
accurate. In [21] this derivative is computed to fourth order accuracy by using the
cell average values of φ at 5 SDC substeps. Here, the numerical diagnostics do not
include the pressure, hence, the lower-order update is sufficient.

For the results presented here, p and q are initially set to zero. For each subsequent
time step q is initialized to the approximation of pressure given by Eq. (3.22) at the
beginning of the step, and is then held constant for each SDC substep.

4. Numerical Results. In this section we first demonstrate the convergence
behavior of the SDC schemes for smooth problems. For this first series of tests we
consider four variants of the SDC algorithm, S2T2, S2T4, S4T2, S4T4, where for
SnTm, n refers to the spatial order and m refers to the temporal order. For the
second-order temporal discretization, the quadrature uses the trapezoidal rule and a
single SDC iteration is required. For the fourth-order temporal discretization, we use
Simpson’s rule for the quadrature with 3 SDC iterations.

For the second example, we investigate in more detail the performance of S2T2
and S4T4 on the simulation of three-dimensional maintained homogeneous isotropic
turbulence. Both tests are based on the same basic configuration in which we specify a
smooth initial velocity profile and a smooth forcing term at large scales. In particular
the initial conditions are a single Fourier mode (to give a sensible estimate for ∆t).
The turbulence is maintained through a time-dependent zero-mean source term in the
momentum equation consisting of a superposition of long-wavelength Fourier modes,
following [4]. Specifically, the domain is a triply periodic unit cube, and the forcing
term in (2.1) is specified to be

H(x, t) =
∑
|κ|∈[1,4]

ai,j,k cos (fi,j,kt+ ωi,j,k) cos(2πκix+ ψi,j,k)

× cos (2πκjy + ηi,j,k) cos(2πκkz + ζi,j,k),

for random amplitudes ai,j,k, frequencies fi,j,k ∈ [π, 2π), and phases ωi,j,k, ψi,j,k,
ηi,j,k and ζi,j,k ∈ [0, 2π). The early time behavior of this system, before the turbulent
cascade has had time to populate the higher frequencies, provides a canonical example
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of a smooth flow problem. At later times this system transitions to fully developed
turbulent flow, which we use to examine the behavior for turbulence simulations.

4.1. Convergence Tests. For the convergence tests we consider five different
resolutions ranging from 323 to 5123 and compare the relative errors. For these
simulations we set the kinematic viscosity, ν = 2.0 × 10−3 so that the solution is
well-resolved even on the coarsest grid. In each case we choose a ∆t proportional to
∆x, and hold that value fixed for the simulation. We consider three different ratios
of ∆t to ∆x. The largest, corresponding to ∆tL = 0.012 for the 323 grid, is based on
approximating the maximum stable time step for S2T2. We also consider two smaller
time steps corresponding to a reduction of ∆tL by factors of 2 and 4, respectively.
The final time is T = 0.12 for the runs with the large time step, T = 0.06 for the
medium time step, and T = 0.03 for the smallest time step. For the two smaller
time steps we consider only the three coarsest simulations; all five are considered for
the largest time step. Convergence behavior in L2, estimated by comparing solutions
at adjacent resolutions, for the small, medium and large values of ∆t are presented
in Figure 5.1. For the smooth flow problem considered here, essentially the same
results are obtained in L1 and L∞. For the smallest time step, the error is dominated
by the spatial error with S2T2 and S2T4 showing second-order behavior while S4T4
and S4T2 show fourth-order behavior. At the medium time step, S2T2 and S2T4
remain second-order and S2T4 remains fourth-order. However, for the medium time
step we see a degradation in the convergence rate for S4T2. At the largest time
step, S4T4 remains fourth-order accurate while all of the other variants now exhibit
second-order convergence. The higher-order spatial treatment in S4T2 improves the
overall accuracy but does not alter the rate of convergence.

4.2. Turbulent Flow Diagnostics. We now consider the performance of the
SDC approach when applied to a more complex flow, i.e. maintained homogeneous
isotropic turbulence. The goal here is to assess the potential advantage of using a
fourth-order rather than second-order discretization when the motivation is to be
able to use the coarsest possible spatial resolution that can still accurately resolve
the turbulent flow. For these tests, we restrict consideration to S2T2 and S4T4. In
addition, we also include a comparison to the methodology used for the adaptive
incompressible flow solved discussed in [2]. The advective discretizations in this ap-
proach are based on unsplit second-order Godunov type methodology adapted from
shock-capturing schemes. Here we consider a piecewise linear version of the algorithm,
denoted IAMR and a piecewise parabolic version, denoted PPM.

As noted before, we use the same basic configuration as was used for the con-
vergence tests. To enable a more detailed comparison, we run the S4T4 algorithm
at a resolution of 2563 until the flow has transitioned to a well-developed turbulent
flow. We then restart each of the methods with coarsened versions of this data and
run for approximately one eddy turnover time. We also continue the 2563 S4T4 sim-
ulation to the same time as the coarser versions. This run will be referred to as the
high-resolution solution hereafter.

For the first case, we set ν = 3× 10−4, corresponding to a peak Taylor Reynolds
number of Reλ = uλ/ν ≈ 62, where the Taylor microscale is defined as λ2 = 15νu2/ε,
the energy dissipation rate is ε = u3/l for integral length scale l ≈ 0.1 and rms ve-
locity fluctuation u ≈ 0.775 (arbitrary units). Simulation results of the magnitude of
vorticity for each of the four methods on a 1283 grid are presented in Figure 5.2 along
with the high-resolution simulation. All data are taken from exactly the same point
in time, which corresponds to a local peak in the kinetic energy. We note that the
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shock-capturing schemes both produce reasonable looking solutions but are somewhat
lacking in fine scale detail compared to the high-resolution simulation. The second-
order S2T2 scheme, on the other hand, appears to have more fine-scale detail than
the high-resolution simulation. The S4T4 scheme at 1283, not surprisingly, appears
to be closer to the high-resolution simulation than the other approaches. To make
this comparison more precise, we plot in Figure 5.3 the compensated spectrum from
the simulations. The compensated spectrum is given by κ5/3E(κ) where E(κ) is the
standard energy spectrum, and we note that the data has not been normalized in
any way. In the compensated spectrum a κ−5/3 inertial range appears flat. From
Figure 5.3 we can see that the shock-capturing schemes have significantly less energy
at higher wavelengths than the high-resolution solution. This reflects the role of nu-
merical dissipation in these schemes and is consistent with the loss of fine-scale detail
in Figure 5.2. The second-order SDC scheme, on the other hand, does not dissipate
enough energy at higher wave lengths so the spectrum lies above the high-resolution
solution for high κ. This difference in behavior when the flow is underresolved is
a consequence of the centered treatment of advection in S2T2 versus the upwinding
approach used in IAMR and PPM. Finally, S4T4 does a good job of tracking the spec-
trum of the high-resolution solution. We note that the Reynolds number considered
here is close to the largest value that can be resolved with S4T4 on a 1283 grid; none of
the schemes provide an acceptable solution at 643. In Figure 5.4, we provide a further
comparison, showing the compensated spectrum for the second-order schemes at 2563

compared to S4T4 at 1283. The results here are roughly comparable, suggesting that
the use of the fourth-order SDC algorithm reduces the computational requirements
by about a factor of two in each spatial dimension, thus reducing the total number
of points (space × time) advanced to reach a specified time by a factor of 16 for a
three-dimensional simulation. Measurements from the simulations indicate that the
fourth-order scheme is about a factor of five slower than the second-order schemes;
consequently the use of the higher-order method saves about a factor of 3 in com-
putational costs for this type of simulation. The SDC algorithms are implemented
in the Fortran90 fBoxLib framework which enables many-core parallelization using
both MPI and OpenMP, but we comment that little effort has been made to optimize
performance of the SDC algorithm so it may be possible to significantly improve its
efficiency.

We would expect that dimensional analysis would enable us to scale resolution
requirements with Reynolds number. In particular, the minimum resolution needed
to adequately resolve a turbulent flame should scale with the Kolmogorov length
scale, η. We can estimate η = (ν3/ε)1/4, which allows us to rewrite the Taylor
Reynolds number as Reλ ∼ (l/η)2/3. A reasonable assumption is that the relationship
between resolution and the Kolmogorov scale is linear; i.e., the minimum ∆x is a
constant multiple of η where the constant is a property of the particular method.
With this assumption, since l is a large-scale property of the flow, we can estimate
the resolution needed for a given Reλ for a given method in terms of this constant.
Based on this analysis, we would predict that the maximum Reynolds number that
we could resolve with S4T4 at 643 would be Reλ ≈ 39, corresponding to viscosity,
ν = 7.6 × 10−4. In Figure 5.5 we present vorticity slices from 643 simulations for
ν = 7.6 × 10−4. The qualitative results are similar to what was observed for the
higher Reynolds number on the finer grid, with the shock-capturing scheme missing
some of the fine-scale detail and with S2T2 overemphasizing those details. In Figure
5.6 we present the compensated spectrum for these lower Reynolds number runs. At
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this Reynolds number we do not see a well-developed inertial range, nevertheless the
relative behavior of the four schemes tested is almost identical to the higher Reynolds
number case. This confirms the scaling relationship derived above, which, in turn,
shows that the estimated savings from using a higher-order method is insensitive to
Reynolds number.

5. Summary. We have developed a fourth-order algorithm for the incompress-
ible Navier-Stokes equations based on an auxiliary variable formulation. The method-
ology uses fourth-order finite volume differencing in space and a fourth-order spectral
deferred corrections integration scheme in time. We demonstrated that the method
converges at the expected rate for smooth flows. More importantly, we demonstrated
that the use of the fourth-order discretization provided a significant advantage for
modeling of turbulent flows. In particular, we showed that the fourth-order scheme
provided about a factor two in each direction reduction in the size of the computa-
tional mesh needed to resolve a turbulent flow at a given Reynolds number compared
to a number of different second-order discretization approaches. This last observation
is a key issue in the utility of these types of discretizations for application to more
complex zero Mach number flow models.

The results presented here open up several avenues of investigation. One possi-
bility is to explore variations on the basic discretization, such as choice of quadrature
rule and spatial discretization. Another area would be the development of an adaptive
mesh refinement algorithm based on this approach. Finally, the approach discussed
here can provide the basis for next generation algorithms for zero Mach number flow
models in combustion and astrophysics.
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Fig. 5.1. Here we show the convergence behavior of the S2T2, S2T4, S4T2 and S4T4 al-
gorithms. The black and blue lines show perfect second-order convergence and the red lines show
perfect fourth-order scaling. Panel (a) shows results using the small time step; panel (b) shows
results using the medium time step and panel (c) shows results using the largest stable time step for
these methods. We note that for each panel the number of time steps taken for the coarsest mesh
is the same; thus, in each panel the final times are different. We note that the S2T2 and S2T4
data show almost ideal second-order behavior and the S4T4 data shows almost ideal fourth-order
behavior. The S4T2 data show intermediate convergence.

Fig. 5.2. Simulations for high Reynolds number case.
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Fig. 5.3. Compensated spectrum for high Reynolds number case comparing schemes at 1283
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Fig. 5.4. Compensated spectrum for high Reynolds number case comparing schemes at 2563 to
S4T4 at 1283.



Higher-order Projection 15

Fig. 5.5. Simulations for low Reynolds number case.
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Fig. 5.6. Compensated spectrum for low Reynolds number case.
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