
The Astrophysical Journal Supplement Series, 188:358–383, 2010 June doi:10.1088/0067-0049/188/2/358
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

MAESTRO: AN ADAPTIVE LOW MACH NUMBER HYDRODYNAMICS ALGORITHM FOR STELLAR FLOWS

A. Nonaka
1
, A. S. Almgren

1
, J. B. Bell

1
, M. J. Lijewski

1
, C. M. Malone

2
, and M. Zingale

2
1 Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2 Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
Received 2009 December 3; accepted 2010 April 17; published 2010 May 11

ABSTRACT

Many astrophysical phenomena are highly subsonic, requiring specialized numerical methods suitable for long-time
integration. In a series of earlier papers we described the development of MAESTRO, a low Mach number stellar
hydrodynamics code that can be used to simulate long-time, low-speed flows that would be prohibitively expensive
to model using traditional compressible codes. MAESTRO is based on an equation set derived using low Mach number
asymptotics; this equation set does not explicitly track acoustic waves and thus allows a significant increase in the
time step. MAESTRO is suitable for two- and three-dimensional local atmospheric flows as well as three-dimensional
full-star flows. Here, we continue the development of MAESTRO by incorporating adaptive mesh refinement (AMR).
The primary difference between MAESTRO and other structured grid AMR approaches for incompressible and low
Mach number flows is the presence of the time-dependent base state, whose evolution is coupled to the evolution
of the full solution. We also describe how to incorporate the expansion of the base state for full-star flows, which
involves a novel mapping technique between the one-dimensional base state and the Cartesian grid, as well as a
number of overall improvements to the algorithm. We examine the efficiency and accuracy of our adaptive code,
and demonstrate that it is suitable for further study of our initial scientific application, the convective phase of
Type Ia supernovae.

Key words: convection – hydrodynamics – methods: numerical – nuclear reactions, nucleosynthesis, abundances
– supernovae: general – white dwarfs

1. INTRODUCTION

Many astrophysical phenomena of interest occur in the low
Mach number regime, where the characteristic fluid velocity
is small compared to the speed of sound. Some well-known
examples are the convective phase of Type Ia supernovae (SNe
Ia; Höflich & Stein 2002; Kuhlen et al. 2006; Zingale et al.
2009), classical novae (Glasner et al. 2007), convection in stars
(Meakin & Arnett 2007), and Type I X-ray bursts (Lin et al.
2006). Such problems require a numerical approach capable
of resolving phenomena over timescales much longer than the
characteristic time required for an acoustic wave to propagate
across the computational domain. In a series of papers (see
Almgren et al. 2006a, henceforth Paper I; Almgren et al. 2006b,
henceforth Paper II; Almgren et al. 2008, henceforth Paper III;
and Zingale et al. 2009, henceforth Paper IV), we have described
the initial development of MAESTRO, a low Mach number
hydrodynamics code for computing stellar flows using a time
step constraint based on the fluid velocity rather than the sound
speed. MAESTRO is suitable for two- and three-dimensional local
atmospheric flows as well as three-dimensional full-star flows.
All simulations are performed in a Cartesian grid framework, but
rely on the presence of a one-dimensional radial base state that
describes the average state of the star or atmosphere. Starting
with the development of the low Mach number equation set
(see Paper I), we demonstrated how to capture the expansion of
the base state in a local atmospheric simulation in response to
large-scale heating (Paper II) and incorporate reaction networks
(Paper III). In Paper IV, we presented the initial application
of MAESTRO, following the last two hours of convection inside
a white dwarf leading up to the ignition of an SN Ia using a
three-dimensional, full-star simulation with a base state that is
constant in time.

In general, astrophysical flows are highly turbulent. In the
case of the convective period preceding an SN Ia explosion, the
Reynolds number is O(1014) (Woosley et al. 2004), far larger

than can be modeled on today’s supercomputers. Nevertheless,
to understand the role of turbulence in these events, we must
use increasingly more accurate simulations. In this paper we
describe how to incorporate adaptive mesh refinement (AMR),
in which we locally refine the Cartesian grid in regions of inter-
est, to allow us to efficiently push to higher spatial resolutions
and better capture the turbulent flow in critical regions of the
simulation. The primary difference between MAESTRO and other
structured grid AMR approaches for incompressible and low
Mach number flows is the presence of the time-dependent base
state, whose evolution is coupled to the evolution of the full
solution. We also describe how to incorporate a time-dependent
base state for full-star problems, which involves a novel map-
ping technique between the one-dimensional base state and the
Cartesian grid. This allows us to properly capture the effects of
an expanding base state in full-star simulations. We have also
made a number of overall improvements to the algorithm, and
all together, these enhancements will allow us to compute more
efficient and accurate solutions for our target applications, in-
cluding the convective phase of SNe Ia and Type I X-ray bursts.

This paper is divided into several sections, along with three
detailed appendices. In Section 2, we present the governing
equations. In Section 3, we give an overview of the methodology,
referring the reader to the appendices for full details. In
Section 4, we describe the new mapping procedure between one-
dimensional and three-dimensional data structures in full-star
problems. In Section 5, we discuss the extension of the algorithm
to include AMR. In Section 6, we describe the results of our test
problems. We conclude with Section 7, which includes future
plans for scientific investigation.

2. GOVERNING EQUATIONS

Stellar flows are well characterized by the compressible Euler
equations (i.e., viscosity effects are negligible). These equations
model all compressibility effects in a fluid, and allow for the

358

http://dx.doi.org/10.1088/0067-0049/188/2/358

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 359

formation and propagation of shocks. For low speed convective
flows in a hydrostatically stratified star or atmosphere, we do
not need to explicitly follow the propagation of sound waves.
However, we do need to include large-scale compressibility
effects such as the expansion/contraction of a fluid element as
it changes altitude in the stratified background, and the local
changes to the density of the fluid element through heating
and compositional changes. By reformulating the equations
of hydrodynamics to filter out sound waves but preserve the
correct large-scale fluid motions and hydrostatic balance, we can
retain the compressibility effects we desire while allowing for
much larger time steps than a corresponding compressible code.
The full derivation of the low Mach number hydrodynamics
equations is given in Papers I–III. The resulting equations are

∂(ρXk)

∂t
= −∇ · (ρXkU) + ρω̇k, (1)

∂U
∂t

= −U · ∇U − 1

ρ
∇π − ρ − ρ0

ρ
ger , (2)

∂(ρh)

∂t
= −∇ · (ρhU) +

Dp0

Dt
+ ρHnuc + ρHext, (3)

where ρ, U, and h are the mass density, velocity, and specific
enthalpy, respectively, and Xk are the mass fractions of species k
with associated production rate ω̇k . The species are constrained
such that

∑
k Xk = 1 giving ρ = ∑

k(ρXk) and

∂ρ

∂t
= −∇ · (ρU). (4)

The source terms Hext and Hnuc are the external heating rate
and nuclear energy generation rate per unit mass. The pressure
is decomposed into a hydrostatic base state pressure, p0 =
p0(r, t), and a dynamic pressure, π = π (x, t), such that
|π |/p0 = O(M2) (we use x to represent the Cartesian coordinate
directions of the full state and r to represent the radial coordinate
direction for the base state). We also define a base state density,
ρ0 = ρ0(r, t), which is in hydrostatic equilibrium with p0, i.e.,
∇p0 = −ρ0ger , where g = g(r, t) is the magnitude of the
gravitational acceleration and er is the unit vector in the outward
radial direction.

Mathematically, this system must still be closed by the
equation of state which we express as a divergence constraint
on the velocity field (see Paper III),

∇ · (β0U) = β0

(
S − 1

Γ1p0

∂p0

∂t

)
, (5)

where β0 is a density-like variable that carries background
stratification, defined as

β0(r, t) = ρ0(0, t) exp

(∫ r

0

1

Γ1p0

∂p0

∂r ′ dr ′
)

, (6)

and Γ1 is the lateral average (see Section 4.1) of Γ1 =
d(log p)/d(log ρ) at constant entropy. The expansion term, S,
incorporates local compressibility effects due to heat release
from reactions, compositional changes, and external sources,

S = −σ
∑

k

ξkω̇k +
1

ρpρ

∑
k

pXk
ω̇k + σHnuc + σHext, (7)

where pXk
≡ ∂p/∂Xk|ρ,T ,Xj,j �=k

, ξk ≡ ∂h/∂Xk|p,T ,Xj,j �=k
, pρ ≡

∂p/∂ρ|T ,Xk
, and σ ≡ pT /(ρcppρ), with pT ≡ ∂p/∂T |ρ,Xk

and
cp ≡ ∂h/∂T |p,Xk

is the specific heat at constant pressure.
It is important to note that if the Mach number of the fluid in a

numerical simulation becomes O(1), through large acceleration
due to buoyancy or nuclear energy generation, for example,
the solution of these equations would no longer be physically
meaningful. The low Mach number equations do not enforce
that the Mach number remain small; rather, if the dynamics of
the flow are such that the Mach number does remain small, then
these equations are valid approximations for the evolution of the
flow.

As in Papers II and III, we decompose the full velocity
field into a base state velocity, w0, that governs the base
state dynamics, and a local velocity, Ũ, that governs the local
dynamics, i.e.,

U = w0(r, t)er + Ũ(x, t). (8)

with (Ũ · er) = 0 and w0 = (U · er). The velocity evolution
equations are then

∂w0

∂t
= −w0

∂w0

∂r
− 1

ρ0

∂π0

∂r
, (9)

∂Ũ
∂t

= −U · ∇Ũ − (Ũ · er)
∂w0

∂r
er − 1

ρ
∇π

+
1

ρ0

∂π0

∂r
er − ρ − ρ0

ρ
ger , (10)

where π0 is the base state component of the perturbational
pressure. By laterally averaging to Equation (5), we obtain a
divergence constraint for w0:

∇ · (β0w0er) = β0

(
S − 1

Γ1p0

∂p0

∂t

)
. (11)

The divergence constraint for Ũ can be found by subtracting (11)
into (5), resulting in

∇ · (β0Ũ) = β0(S − S). (12)

In the present paper, we revert back to the method introduced
in Paper II and define a base state enthalpy, (ρh)0. We use
ρ0 and (ρh)0 to define the perturbational quantities ρ ′ =
ρ − ρ0 and (ρh)′ = (ρh) − (ρh)0, which are predicted to the
Cartesian edges to compute fluxes for the conservative updates
of ρ0 and (ρh)0. Experience has shown that by advancing
perturbational quantities, the slope limiters are more effective at
reducing numerical oscillations since they are being applied to
a normalized signal, rather than a signal that spans many orders
of magnitude over a small number of cells. This is a departure
from Paper III where we predicted temperature to the Cartesian
edges. Evolution equations for ρ0 and (ρh)0 are designed so that
ρ0 and (ρh)0 will remain the average over a layer of constant
radius of ρ and (ρh). The fluxes for (ρXk) are computed by first
predicting ρ0, ρ

′, and Xk to time-centered Cartesian edges. The
flux for (ρh) is computed by first predicting (ρh)0 and (ρh)′ to
time-centered Cartesian edges.

We now derive the equations used to predict the time-centered
Cartesian edge values in the actual algorithm. The species
evolution equation is found by combining Equations (1) and (4):

∂Xk

∂t
= −U · ∇Xk + ω̇k. (13)

360 NONAKA ET AL. Vol. 188

Figure 1. Left: for data on the Cartesian grid (shown here in two dimensions), we use a cell-centered convention with indices i, j, k (in three dimensions). Edges are
denoted with a half-integer. Right: the base state lives on a radial array and uses a cell-centered convention with index j. Edges are denoted with a half-integer.

The base state evolution equations for density and enthalpy can
be found by averaging (4) and (3) respectively over a layer of
constant radius, resulting in

∂ρ0

∂t
= −∇ · (ρ0w0er), (14)

∂(ρh)0

∂t
= −∇ · [(ρh)0w0er] + ψ + ρHnuc + ρHext, (15)

where ψ is the Lagrangian change in the base state pressure
defined as ψ ≡ D0p0/Dt ≡ ∂p0/∂t + w0∂p0/∂r and is related
to the total pressure by

Dp0

Dt
= ψ + Ũ · ∇p0. (16)

Subtracting the base state evolution equations from the corre-
sponding full state equations yields

∂ρ ′

∂t
= −U · ∇ρ ′ − ρ ′∇ · U − ∇ · (ρ0Ũ), (17)

∂(ρh)′

∂t
= −U · ∇(ρh)′ − (ρh)′∇ · U − ∇ · [(ρh)0Ũ]

+ Ũ · ∇p0 + (ρHnuc − ρHnuc) + (ρHext − ρHext). (18)

In our treatment of enthalpy, we split the reactions and external
heating from the hydrodynamics, i.e., during the hydrodynamics
step, we neglect the ω̇k , Hnuc, and Hext terms. Also, in our
treatment of species, we similarly split the reactions from the
hydrodynamics.

While Equation (14) properly captures the change in ρ0 due to
atmospheric expansion caused by heating, it neglects changes
that can occur due to significant convective overturning. We
impose the constraint that ρ ′ = 0 for all time. In Paper III, we
quantified the drift in ρ ′ by introducing ηρ in the equation

∂ρ ′

∂t
= −∇ · (ηρer). (19)

However, we incorrectly derived ηρ by assuming ∇ · (ρ ′w0er) =
0, when in general this is not true since ρ ′, when predicted
to time-centered edges, does not in general satisfy ρ ′ = 0.
Therefore, the correct expression is ηρ = (ρ ′U · er). In practice,
we correct the drift by simply setting ρ0 = ρ after the advective
update of ρ. However we still need to explicitly compute ηρ

since it appears in other equations.

Figure 2. Left: for problems in spherical geometry, there is no direct alignment
between the radial array cell centers and the Cartesian grid cell centers. Right:
for problems in planar geometry, there is a direct alignment between the radial
array cell centers and the Cartesian grid cell centers.

3. OVERVIEW OF NUMERICAL METHODOLOGY

We shall refer to local atmospheric flows in two and three
dimensions as problems in “planar” geometry, and full-star flows
in three dimensions as problems in “spherical” geometry. The
solution in both cases consists of the Cartesian grid solution
(Ũ, ρ, h,Xk, T) and the one-dimensional base state solution
(w0, ρ0, (ρh)0, p0), all of which are cell-centered except for w0,
which is edge-centered. Edge-centered data are denoted by a
half-integer subscript. See Figure 1 for a representation of each
grid structure. The time step index is denoted as a superscript.

For planar problems, er is in alignment with the Cartesian
grid unit vector in the outward radial direction, ey (in two
dimensions) or ez (in three dimensions). We choose Δr = Δx
so that there will be a simple, direct mapping between the
radial array and the Cartesian grid. For spherical problems, er

is not in alignment with any Cartesian coordinate direction. Our
choice of Δr can be independent of Δx; as in Paper IV, we
use 5Δr = Δx. Note that for spherical problems, we place the
center of the star at the center of the computational domain,
and therefore the center of the star lies at a corner where eight
Cartesian cells meet. See Figure 2 for an illustration of the
relationships between the radial array and the Cartesian grid for
spherical and planar geometries.

The time-advancement algorithm uses a predictor–corrector
formalism. In the predictor step, we compute an estimate of the
expansion of the base state, and then compute a preliminary
estimate of the state at the new time level. In the corrector step,
we use this preliminary state to compute a new estimate of the
expansion of the base state, and then compute the final state at the
new time level. We incorporate reactions and external heating
using Strang-splitting. As in previous papers, our algorithm is
second order in space and time.

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 361

The full details of the algorithm are presented in Appendix A.
The main algorithm description in Appendix A.4 is similar to
the description in Paper III, but has been significantly updated
to show how we incorporate the time-dependent spherical base
state. There are numerous other improvements we have made
to the algorithm since Papers III and IV, which are described
in Appendix A.1. Note that these changes have also been
incorporated into the main algorithm description. Overall,

1. Appendix A.1 is a summary of algorithmic changes since
Papers III and IV.

2. Appendix A.2 describes how we compute and discretize
gravity.

3. Appendix A.3 is a description of shorthand notation we use
in describing the algorithm.

4. Appendix A.4 steps through the algorithm in detail.
5. Appendix A.5 describes special treatment given to low

density regions in the simulation.

4. MAPPING

At many points in the algorithm, we need to map the full
state on the Cartesian grid onto a one-dimensional radial array
and vice versa. Since Paper IV, we have greatly increased
the accuracy of the numerical mapping to and from these
data structures for spherical problems, most notably the lateral
average routine described below. We refer to the procedure for
mapping a cell-centered Cartesian field to a cell-centered radial
array as a “lateral average,” and we refer to the procedures for
mapping an edge- or cell-centered radial array to an edge- or
cell-centered Cartesian grid as a “fill.”

4.1. Lateral Average

For any Cartesian cell-centered field, φ, we define φ =
Avg(φ) as the lateral average over a layer at constant radius
r, ΩH , as

φ(r) = 1

A(ΩH)

∫
ΩH

φ(r, x)dΩ; A(ΩH) =
∫

ΩH

dΩ.

(20)
Planar. This is a straightforward arithmetic average of cells at

a particular height since the radial cell centers are in alignment
with the Cartesian grid cell centers.

Spherical. It can be shown that any Cartesian cell center
is a radius r̂m = Δx

√
3/4 + 2m from the center of the star,

where m � 0 is an integer. For example, the Cartesian cell with
coordinates (i, j, k) = (1, 1, 1) relative to the center of the star
lies at a distance of Δx

√
3/4 + 6 from the center of the star,

corresponding to m = 3. The Cartesian cells with coordinates
(i, j, k) = (2, 0, 0), (0, 2, 0), or (0, 0, 2) relative to the center of
the star also lie at that same distance. For the 3843 resolution
examples in this paper, we have verified that a non-zero set of
Cartesian cell centers map into each radius r̂m until m is large
enough to correspond to a radius larger than half the width of
the computational domain (i.e., the edge of the domain, not the
corner of the domain). Figure 3 shows the number of Cartesian
cells that map into each radius r̂m, which we refer to as the
“hit count,” for a 3843 domain. We use this mapping to help
construct the lateral average, using the following steps.

1. Create an itemized list, φ̂m, where each element is associ-
ated with a radius r̂m = Δx

√
3/4 + 2m from the center of

the star.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10000 20000 30000 40000 50000 60000

h
it

co
u
n
t

itemized list index, ’m’

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70

Figure 3. Number of Cartesian cells whose centers lie at a radius r̂m (i.e., the “hit
count”) for a 3843 domain vs. the itemized list index, m. Indices m < 18,432
correspond to locations within half the width of the computational domain. A
non-zero set of Cartesian cell centers maps into the radius associated with every
m � 37,912, which corresponds to approximately 0.72 times the width of the
computational domain. The inset plot is a zoom-in of the innermost 75 values
of m.

2. For each φ̂m, compute the arithmetic average value of the
Cartesian cells whose centers lie at the associated radius. As
an additional element in the itemized list, include the center
of the star (corresponding to a radius of r = 0). Compute
this additional value of φ̂ at this location using quadratic
interpolation with φ̂0, φ̂1, and a homogeneous Neumann
condition at r = 0 as the stencil points. Note that for very
large values of m, it is possible that no Cartesian cell centers
exist at a radius r̂m (i.e., the hit count is zero). If so, we say
that φ̂m has an undefined/invalid value, and we ignore such
values for the rest of this procedure.

3. To compute the lateral average, use quadratic interpolation
using the value in the itemized list with the closest associ-
ated radius, φ̂k , and the nearest values above and below, φ̂k+

and φ̂k− , using divided differences:

φ(r) = φ̂k− +
φ̂k − φ̂k−

r̂k − r̂k−
(r − r̂k−)

+

φ̂k+ −φ̂k

r̂k+ −r̂k
− φ̂k−φ̂k−

r̂k−r̂k−

r̂k+ − r̂k−
(r − r̂k−)(r − r̂k),

where r̂k− , r̂k , and r̂k+ are the three radii associated with
φ̂k− , φ̂k , and φ̂k+ , respectively. Finally, constrain φ(r) to lie
within the range of φ̂k− , φ̂k , and φ̂k+ so as to not introduce
any new maxima or minima.

In Section 6.1, we show the improvement of this averaging
procedure over the Paper IV procedure.

4.2. Fill

There are four different mappings from a one-dimensional
radial array to the three-dimensional Cartesian grid; below we
describe the procedures for planar and spherical geometries
separately.

4.2.1. Planar

1. To map a cell-centered radial array onto Cartesian cell
centers, we use direct injection since the radial cell centers

362 NONAKA ET AL. Vol. 188

Figure 4. Illustrations of the fill operation for spherical geometry. (a) To fill the Cartesian cell center (fill type 1), represented by the square, from radial cell-centered
data, represented by the circles, we use quadratic interpolation from the nearest three points. (b) To fill the Cartesian cell center (fill type 2), represented by the square,
from radial edge-centered data, represented by the circles, we use linear interpolation from the nearest two points. (c) To fill a Cartesian edge (fill types 3 and 4),
represented by the squares, first fill the Cartesian cell centers, represented by the circles, then average the two neighboring cell centers.

are in alignment with the Cartesian cell centers.
2. To map an edge-centered radial array onto Cartesian cell

centers, we average the two nearest radial edge-centered
values.

3. To map a cell-centered radial array onto Cartesian edges
with normal in the radial direction, we use fourth-order
spatial interpolation. For example, in two dimensions,

φi,j+1/2 = 7
12 (φj + φj+1) − 1

12 (φj−1 + φj+2). (21)

We constrain φi,j+1/2 to lie between the interpolated values,
and lower the order of interpolation near domain bound-
aries. For the Cartesian edges transverse to the base state
direction, we use direct injection since the radial cell centers
are in alignment with these Cartesian edges.

4. To map an edge-centered radial array onto Cartesian edges,
we use direct injection on Cartesian edges normal to the
base state direction since the radial edges are in alignment
with these Cartesian edges. For the remaining Cartesian
edges, we average the two nearest radial edge-centered
values.

4.2.2. Spherical

1. To map a cell-centered radial array onto Cartesian cell
centers, we use quadratic interpolation from the nearest
three radial cell centers (see Figure 4(a)). This is a departure
from Paper IV, in which we used piecewise constant
interpolation.

2. To map an edge-centered radial array onto Cartesian cell
centers, we use linear interpolation from the nearest two
points (see Figure 4(b)).

3. To map a cell-centered radial array onto Cartesian edges,
we first map the radial array onto Cartesian cell centers (see
(1)), then average the two neighboring centers to obtain the
Cartesian edge values (see Figure 4(c)).

4. To map an edge-centered radial array onto Cartesian edges,
we first map the radial array onto Cartesian cell centers (see
(2)), then average the two neighboring centers to obtain the
Cartesian edge values (see Figure 4(c)).

5. ADAPTIVE MESH REFINEMENT

Our approach to AMR uses a nested hierarchy of logically
rectangular grids with successively finer grids at higher levels.
This is based on the strategy introduced for gas dynamics
by Berger & Colella (1989), extended to the incompressible
Navier–Stokes equations by Almgren et al. (1998), and extended

to low Mach number reacting flows by Pember et al. (1998) and
Day & Bell (2000). We refer the reader to these works for
more details. The key difference between our method and these
earlier methods stems from the presence of a one-dimensional
base state whose time evolution is coupled to that of the full
solution. To the best of our knowledge, there are no existing
AMR algorithms for astrophysics or any other field, for flows
with a time-dependent base state coupled to the full solution.
For simplicity, we present a version of the algorithm with no
subcycling in time, i.e., the solution at all levels is advanced
with the same time step.

We first summarize our AMR approach without the base state,
and then discuss how the base state is incorporated in both the
planar and spherical cases.

5.1. Creating and Managing the Grid Hierarchy

At each time step the state data are defined on a nested
hierarchy of grids, ranging from the base level (� = 1),
which covers the entire computational domain, to the finest
level (� = �max). At each level there is a union of non-
intersecting rectangular grids with the same spatial resolution.
For simplicity, we require that the cells composing the grids be
square (Δx = Δy = Δz), and that the refinement ratio between
levels be 2. The grids in the interior of the computational domain
are required to be properly nested, i.e., the union of grids at level
� + 1 is completely contained in the union of grids at level �.
Additionally, in the interior, we require that each grid at level
�+ 1 be a distance of at least two level � cells from the boundary
between level � and level � − 1 grids; this allows us to always
fill “ghost cells” at level � + 1 from the level � data (or the
physical boundary conditions, if appropriate). We initialize the
grid hierarchy and regrid following the procedure outlined in
Bell et al. (1994). A user-specified error estimation routine is
used to tag cells where more resolution is desired. The tagged
cells are grouped into rectangular patches following Berger &
Rigoutsos (1991), and subsequently refined to create new grids
at next level. Refinement continues until the maximum level is
reached.

During Step 0,3 grids at all levels are filled directly from the
initial data. As the simulation progresses, we periodically check
our refinement criteria and regrid as necessary. This regridding
takes places during Step 12, before computing the next time step.
Newly created grids are filled by using data from previous grids

3 The “Step” notation is used in describing the full details of the algorithm in
Appendix A.4.

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 363

at the same refinement level (if available) or by interpolating
from underlying coarser grids.

5.2. Communication Between Levels

Since we use the same time step to advance the solution
at all levels, much of the complication associated with syn-
chronization of data between levels in a subcycling algorithm
(see Almgren et al. 1998) is eliminated. The MAC projections
in Steps 3 and 7 enforce that ŨADV, and ŨADV, respectively,
on any coarse edge underlying fine edges are the average of
the values on the fine edges. Similarly, the nodal projection in
Step 12 enforces that at any coarse node underlying a fine node,
the value of φ on the coarse node is identical to the value on
the fine node above it. The additional communication of data
between levels occurs as follows.

1. Before any explicit operation at level � > 1, data in ghost
cells at that level are filled by interpolating from level �−1,
or imposing physical boundary conditions, as appropriate.

2. Edge-based fluxes at level � < �max that underlie edges at
level � + 1 are defined to be the average of the fluxes on
level � + 1 at that edge. This enforces conservation.

3. After any update to the solution, data at finer levels are
conservatively averaged onto the underlying coarse grid
cells, starting at the finest level.

5.3. AMR with a Time-dependent Base State

Our specific treatment of AMR is guided by our initial
scientific applications, including Type I X-ray bursts and the
convective phase of SNe Ia, as well as numerical concerns,
most notably the presence of the one-dimensional base state.
Our treatment of the base state in an AMR framework differs
for planar versus spherical problems.

For planar problems, our approach is to define a radial base
state array with variable mesh spacing. A general localized fine
Cartesian grid would require either a base state that exists at
multiple resolutions at a particular height, or an interpolation
algorithm to obtain the base state value at a particular height if
Δr �= Δx. Both of these methods pose problems, as they generate
oscillations in perturbational quantities (such as ρ ′, (ρh)′ and the
S − S term on the right-hand side of the divergence constraint)
since the lateral average routine is only defined when the base
state is aligned with the Cartesian grid across the width of the
domain. Any attempt at interpolation will cause oscillations in
the perturbational quantities directly related to the interpolation
error. We have found that such oscillations can be detrimental to
the results. With these issues in mind, we choose to only allow
fine grids to exist that span the width of the domain. This way,
the base state exists as a single seamless entity with multiple
resolutions depending on height (see Figure 5). We will take
advantage of this type of grid structure in our studies of Type I
X-ray bursts.

Next, we define ghost cell values for the finer base state levels,
and fill these values by interpolating coarser data. This makes the
algorithm directly compatible with the one-dimensional time-
centered edge state calculation used in Advect Base Density4

and Advect Base Enthalpy. In particular, the slopes can be used
with a consistent stencil at each level, that is not dependent on
the data from any other level once the ghost cells are set.

4 The boldface notation refers to numerical modules we have described in
Appendix A.3.

Figure 5. Left: for multi-level problems in planar geometry, we force a direct
alignment between the radial array cell centers and the Cartesian grid cell
centers by allowing the radial base state spacing to change with space and
time. Right: for multi-level problems in spherical geometry, since there is no
direct alignment between the radial array cell centers and the Cartesian grid cell
centers, we choose to fix the radial base state spacing across levels.

Finally, whenever we regrid the Cartesian grid data, we regrid
the base state to match the grid structure of the Cartesian grid.
Then, we set ρ0 = ρ and compute p0 using Enforce HSE. To
compute ψ and w0 on the new base state array, we use piecewise
linear interpolation of the coarser data to fill any new fine radial
cells/edges.

For spherical geometry, we first note that even in the single-
level case the radial base state is not aligned with the Cartesian
grid. Therefore, we use a base state with a fixed Δr for all levels
(see Figure 5). As in the single-level algorithm, we choose
Δr = Δx/5, but here, Δx corresponds to resolution of the
Cartesian grid at the finest level.

Our next consideration is defining the radial average. First,
we first create an itemized list associated with each level of
refinement using only Cartesian cells that are not covered by
cells at a finer level. At this point one option would be to
merge the lists and proceed as in the single-level algorithm;
this was tested and found to be problematic. Instead, we choose
the list from a chosen particular level and define the average
using quadratic interpolation with only this list, as in the single-
level case. To decide which list to use, we first examine the
three points that would be used by quadratic interpolation at
each level. The guiding principle is to avoid using interpolation
points with low hit counts. Thus, at each level we find the
minimum hit count of the three points; the level which has
the largest minimum hit count is the level whose list we use
for interpolation. We note that this multi-level average works
particularly well when the center of the star is fully refined. This
is the case since near the center of the star, there are relatively
few Cartesian cells that contribute to each radial bin, so by
fully refining the center of the star, we ensure that the multi-
level averaging procedure retains the accuracy of a single-level
spherical average near the center. For our studies of SNe Ia, we
will take advantage of this fact by always refining the center
of the star, which is our region of interest (see Figure 12 in
Section 6.6, as an example). In Section 6.1, we present numerical
tests of the new multi-level averaging procedure for spherical
geometry.

For both planar and spherical problems, after regridding the
Cartesian grid, we make the state thermodynamically consistent
by computing T = T (ρ, h,Xk) (for planar problems) or T =
T (ρ, p0, Xk) (for spherical problems). Then, we recompute Γ1
and β0 as described in Steps 10 and 11.

364 NONAKA ET AL. Vol. 188

5.4. Parallel Implementation

We parallelize the algorithm by distributing the grids on each
level across processors. Each grid carries a perimeter of ghost
cells that are filled from neighboring grids at the same level or
interpolated from coarser grids as needed. This allows the data
on each grid to be updated independently of the other grids.
A typical grid is large enough (e.g., 323 cells) that for explicit
operations the cost of computation within each grid greatly
exceeds the cost of communication between grids. The linear
solves necessary for the MAC projection and approximation
nodal projection have higher communication costs, but we still
obtain good parallel efficiency for the overall algorithm. A
scaling study for MAESTRO can be found in Almgren et al. (2007).

Since the one-dimensional base state arrays are so much
smaller than the three-dimensional arrays holding the full solu-
tion, each processor owns a copy of the entire one-dimensional
base state arrays. Operations such as averaging to define base
state quantities require a collection operation among grids, fol-
lowed by a distribution of the average state to each processor.

6. TEST PROBLEMS

We have developed a suite of test problems in order to test
various aspects of our code.

1. In Section 6.1, we show that our new mapping procedure
from Section 4 is much more accurate than the mapping
procedure from Paper IV.

2. In Section 6.2, we show that we are able to properly capture
the expansion of the base state in a three-dimensional full-
star simulation due to heating at the center of the star.

3. In Section 6.3, we show that our multi-level algorithm is
second-order accurate in space and time by tracking a hot
bubble rising in a white-dwarf environment.

4. In Section 6.4, we show that an adaptive algorithm in
three-dimensional planar geometry can properly track a hot
bubble rising in a white-dwarf environment.

5. In Section 6.5, we demonstrate that a multi-level, two-
dimensional planar simulation will properly capture the
expansion of the base state due to a heating layer, and also
that a multi-level simulation is able to capture the same
fine-scale structure as a single-level simulation at the same
effective resolution over a short time.

6. In Section 6.6, we demonstrate that a full-star simulation
with AMR can be used to study the dynamics of convection
in white dwarfs.

For test problems Sections 6.2–6.6, we compute flows in
which the density spans at least four orders of magnitude. The
large drop in density in the upper atmosphere results in high ve-
locities due to conservation of momentum. This region should
not affect the dynamics below the surface in the convecting re-
gions of the star. However, because the time step in the low
Mach number code is limited by the highest velocity in the
computational domain, the efficiency gains of the low Mach
number algorithm are reduced if those velocities persist. We
employ a sponging technique to damp such velocities. Damp-
ing techniques are commonly used in modeling atmospheric
convection (see, for example, Durran 1990). In Paper IV, for
full-star convection, we explored the effects of sponging the ve-
locity beginning at two different heights to demonstrate that the
dynamics in the upper atmosphere do not affect the convecting
regions of the star.

Full details for the sponge implementation can be found in
Papers III and IV, but in summary, we add a forcing term
to the velocity update before the final projection. We use the
parameters rsp, rmd, and κ to describe the sponge. The sponge
forcing turns on at radius rsp and reaches half of its peak strength
at radius rmd. We can control the strength of the forcing with the
parameter, κ . For full-star problems, we also use an outer sponge
which prevents the velocities near the domain boundaries from
becoming too large.

For all of these tests, we use a publicly available, general
stellar equation of state (Fryxell et al. 2000; Timmes & Swesty
2000), with contributions from ions, radiation, and degenerate/
relativistic electrons.

6.1. Mapping

To test the new spherical fill and lateral average routines
from Section 4, we first create a unit cube with 3843 resolution
and no refinement. We create a radial array with Δr = Δx/5,
and initialize the radial array cell centers with the Gaussian
profile φexact(r) = e−10r2

. We map φexact to Cartesian cell centers
with the fill operation, then compute the lateral average of this
Cartesian field, Avg(φ). We repeat this process by choosing the
grid with two levels of refinement used in the full-star simulation
test in Section 6.6, shown in Figure 12.

Figure 6 (left) shows the relative error between φexact and
Avg(φ) for the new mapping procedures and the mapping
procedures from Paper IV for the single-level test. The new
mapping procedure greatly decreases the relative error. Figure 6
(right) is a zoom-in of the relative error for the new mapping.
For the single-level grid, the relative error is O(10−8) for
r ∈ [0, 0.036] and is O(10−13) for r ∈ [0.036, 0.7]. For the test
with two levels of refinement, the relative error is O(10−8) for
r ∈ [0, 0.7], which is still a vast improvement when compared
to the Paper IV mapping applied to a single-level simulation.

6.2. Spherical Base State

To test the base state expansion for spherical geometry, we
perform a series of tests similar to those in Paper II which
tested the base state expansion in planar problems. We run
the same test using three codes—a one-dimensional version
of the compressible code, CASTRO (Almgren et al. 2010), in
spherical coordinates; a one-dimensional version of MAESTRO
in spherical coordinates, and a full three-dimensional spherical
star in MAESTRO.

Our initial model is generated by specifying a core density
(2.6 × 109 g cm−3), temperature (6 × 108 K), and a uniform
composition (X(12C) = 0.3, X(16O) = 0.7) and integrating the
equation of hydrostatic equilibrium outward while constraining
the specific entropy, s, to be constant. In discrete form, we solve

p0,j+1 = p0,j + 1
2 Δr(ρ0,j + ρ0,j+1)gj+1/2. (22)

s0,j+1 = s0,j . (23)

We begin with a guess of ρ0,j+1 and T0,j+1 and use the equation
of state and Newton–Raphson iterations to find the values that
satisfy our system. Since this is a spherical, self-gravitating star,
the gravitation acceleration, gj+1/2, is updated each iteration
based on the current value of the density. Once the temperature
falls below 107 K, we keep the temperature constant, and
continue determining the density via hydrostatic equilibrium.
This uniquely determines the initial model.

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 365

-3.0 x 10-4

-2.0 x 10-4

-1.0 x 10-4

0.0 x 100

1.0 x 10-4

2.0 x 10-4

3.0 x 10-4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(φ
e
xa

ct
 -

 A
vg

(φ
))

 / φ
e
xa

ct

radius

new average, single-level
old average, single-level

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

|(
φ e

xa
ct

 -
 A

vg
(φ

))
 / φ

e
xa

ct
|

radius

new average, single-level
new average, multi-level

Figure 6. Left: relative error between φexact and Avg(φ) from averaging a mapped Gaussian profile centered on a unit cube with 3843 resolution and no refinement for
the current mapping (solid line) and the mapping from Paper IV (dashed line). The new mapping procedure greatly decreases the relative error. Right: a zoom-in of
the relative error for the new mapping. The red markers correspond to the test with no refinement. The relative error is O(10−8) for r ∈ [0, 0.036] and is O(10−13)
for r ∈ [0.036, 0.7]. The green dots show the relative error for a test with two levels of refinement using the grid structure shown in Figure 12. The relative error is
O(10−8) for r ∈ [0, 0.7], which is still a vast improvement when compared to the Paper IV mapping applied to a single-level simulation.

For the one-dimensional simulations, we map the inner 5 ×
108 cm of the model onto a one-dimensional array with 1280
elements with Δr = 3.90625 × 105 cm. For the full-star three-
dimensional simulation, we map the model onto a 5 × 108 cm3

domain with 2563 Cartesian grid cells with Δx = 5Δr =
19.53125×105 cm. For the one- and three-dimensionalMAESTRO
calculations, we use cutoff densities (see Appendix A.5) of
ρcutoff = 105 g cm−3 and ρanelastic = 106 g cm−3, corresponding
to radii of approximately 1.8 × 108 cm and 1.9 × 108 cm, so
the star easily fits within the computational domain for each
problem. For the full-star three-dimensional simulation, we
use an inner sponge with rsp equal to the radius where ρ0 =
107 g cm−3, rmd equal to the radius where ρ0 = 3×106 g cm−3,
and κ = 10 s−1. We use the same outer sponge as in Paper IV.
All boundary conditions are outflow, except for the center of the
one-dimensional simulations, which uses a symmetry boundary
condition. We run each simulation using a CFL number of 0.5.

We heat the center of the star for 0.5 s and look at the
solution at 2.0 s (after the compressible solution has had
time to re-equilibrate). We use Hext = H0e

−(r/107 cm)2
, with

H0 = 1016 erg g−1 s−1 chosen to be much larger than the
nuclear energy generation rate during the convective phase of
SN Ia, in order to see a measurable effect over a few seconds. A
comparison of ρ0, p0, and T at t = 0 and t = 2 s for each code
is shown in Figure 7. There is excellent agreement between each
of the simulations.

6.3. Convergence Test

In Paper III, we demonstrated that our single-level algorithm
is second order in space and time by tracking a hot bubble rising
in a white-dwarf environment using two-dimensional planar
geometry. Here, we perform the same test to show that our
algorithm, with a level of refinement, is second order in space
and time.

We choose a domain size of 7.2×107 cm by 2.88×108 cm and
generate a high resolution initial model with Δr = 7.03125×104

cm (which is equal to Δx for our highest resolution, “exact”
solution) using the method described in Appendix C with rbase =
0. For each of the remaining, lower resolution simulations for
this test, we generate an initial model using Δr equal to the
effective Δx of each simulation by linearly interpolating values
from the high resolution model. Next, we add a temperature
perturbation of the form

Tij = T0,j + 0.3

[
1 + tanh

(
2 − dij

σ

)]
, (24)

where σ = 2.5×106 cm and dij is the physical distance between
the cell center corresponding to cell (i, j) and the location
(3.6×107 cm, 3.2×107 cm). Then, we call the equation of state
to compute a consistent ρ, h = ρ, h(p0, T ,Xk) everywhere. We
use the reaction network described in Section 4.2 in Paper III.
We use cutoff densities of ρcutoff = ρanelastic = 3 × 106 g cm−3,
and a sponge with rsp equal to the radius where ρ0 = 10ρcutoff ,
rmd equal to the radius where ρ0 = ρcutoff , and κ = 10 s−1. We
specify periodic boundary conditions on the side walls, outflow
at the top, and a solid wall at the bottom of the domain.

Since we do not have an exact analytical solution, we consider
a single-level simulation run with 1024 × 4096 cells and Δt =
3.125×10−3 s to be the exact solution. We perform three single-
level simulations using resolutions of 64 × 256, 128 × 512, and
256×1024 grid cells using fixed time steps of Δt = 0.05 s, 0.025
s, and 0.0125 s, respectively. We also perform two simulations
with a single level of refinement with effective resolutions of
128 × 512 and 256 × 1024 grid cells with fixed time steps of
Δt = 0.025 s and 0.0125 s, respectively. These fixed time steps
correspond to a CFL of 0.9. We refine all cells in the range
r ∈ [1.8 × 107, 5.4 × 107] cm, so effectively we have refined
1/8th of the domain, making sure the hot spot is contained within
the refined region. We run each simulation to t = 1 s. For this
test, whenever we call Enforce HSE to compute p0 from ρ0, we
use r = 1.8 × 107 cm as the starting point for integration rather
than the location of the cutoff density to ensure that numerical

366 NONAKA ET AL. Vol. 188

0.0 x 100

5.0 x 108

1.0 x 109

1.5 x 109

2.0 x 109

2.5 x 109

3.0 x 109

0.0 x 100 1.0 x 108 2.0 x 108

ρ 0
 (

g
/c

m
3
)

radius (cm)

t=0

2.4 x 109

2.5 x 109

2.6 x 109

0.0 x 100 7.5 x 106 1.5 x 107

ρ 0
 (

g
/c

m
3
)

radius (cm)

t=0
t=2, 1D MAESTRO

t=2, 1D CASTRO
t=2, 3D MAESTRO

0.0 x 100

4.0 x 1026

8.0 x 1026

1.2 x 1027

1.6 x 1027

2.0 x 1027

0.0 x 100 1.0 x 108 2.0 x 108

p
0
 (

d
yn

e
/c

m
2
)

radius (cm)

t=0

1.6 x 1027

1.7 x 1027

0.0 x 100 7.5 x 106 1.5 x 107

p
0
 (

d
yn

e
/c

m
2
)

radius (cm)

t=0
t=2, 1D MAESTRO

t=2, 1D CASTRO
t=2, 3D MAESTRO

0.0 x 100

1.0 x 108

2.0 x 108

3.0 x 108

4.0 x 108

5.0 x 108

6.0 x 108

0.0 x 100 1.0 x 108 2.0 x 108

te
m

p
e

ra
tu

re
 (

K
)

radius (cm)

t=0

5.0 x 108

6.0 x 108

7.0 x 108

8.0 x 108

9.0 x 108

0.0 x 100 1.5 x 107 3.0 x 107

te
m

p
e

ra
tu

re
 (

K
)

radius (cm)

t=0
t=2, 1D MAESTRO

t=2, 1D CASTRO
t=2, 3D MAESTRO

Figure 7. Plots of ρ0 (top), p0 (middle), and T (bottom) vs. radius for a white-dwarf star subject to heating. The initial profiles are on the left. Close-up views of the
initial profiles and final solutions are on the right. We use three test codes: a one-dimensional version of MAESTRO in spherical coordinates, a one-dimensional version
of the compressible code, CASTRO, in spherical coordinates, and a full-star three-dimensional version of MAESTRO.

errors due to integrating the equation of hydrostatic equilibrium
across simulations with different resolutions are minimized.

In order to compute the L1 error norm for each simulation,
we average the data from the exact solution onto a grid with
corresponding resolution. We measure the L1 error norm in the
physical space corresponding to the refined region using

L1 = 1

ncell

∑
i,j

|φij − φij,exact|, (25)

where ncell is the number of cells we sum over. This form of the
L1 error norm gives us the average error per cell. We compute

the convergence rate, p, between a coarser and finer simulation
using

p = log2

(
L1,coarser

L1,finer

)
. (26)

Tables 1 and 2 show the L1 error norms and convergence rates
for the single-level and multi-level solutions, respectively. The
convergence rates correspond to the two columns on either side
of the reported value. We note second-order convergence in each
variable. Additionally, the magnitude of the L1 error norms for
the multi-level simulations is comparable to the correspond-
ing resolution error norms for the single-level simulations. This

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 367

Table 1
L1 Error Norms and Convergence Rates for the Single-level Simulations

Variable 64 × 256 Error Rate, p 128 × 512 Error Rate, p 256 × 1024 Error

ρ 2.23 × 104 2.02 5.51 × 103 2.30 1.12 × 103

u 1.40 × 104 2.02 3.44 × 103 2.13 7.90 × 102

v 1.82 × 104 2.03 4.45 × 103 2.24 9.40 × 102

h 3.14 × 1013 1.97 8.03 × 1012 2.09 1.89 × 1012

X(24Mg) 5.06 × 10−9 2.14 1.15 × 10−9 2.01 2.86 × 10−10

T 1.38 × 106 1.94 3.59 × 105 2.04 8.72 × 104

Table 2
L1 Error Norms and Convergence Rates for the Multi-level Simulations

Variable 128 × 512 Error Rate, p 256 × 1024 Error

ρ 5.83 × 103 2.25 1.23 × 103

u 4.30 × 103 2.09 1.01 × 103

v 4.99 × 103 2.20 1.09 × 103

h 8.20 × 1012 2.08 1.94 × 1012

X(24Mg) 1.15 × 10−9 2.01 2.86 × 10−10

T 3.66 × 105 2.04 8.03 × 104

means that the multi-level simulations are accurately capturing
the finer-scale features, as compared to the single-level simula-
tions, i.e., the presence of coarse grid data and/or coarse-fine
interfaces is not harming the solution in the refined region.

6.4. Adaptive Bubble Rise

To test the ability for an adaptive, three-dimensional planar
simulation to track a localized feature, we examine a hot bubble
rising in a white-dwarf environment. The problem setup is
exactly the same as in Section 6.3, except that we now compute
in three dimensions and allow the grid structure to change with
time. We choose a domain size of 7.2 × 107 cm by 7.2 × 107

cm 2.88 × 108 cm and for each simulation, we generate an
initial model with Δr = 5.625 × 105 cm (which is equal to
the effective Δx for both of the simulations in this test) using
the method described in Appendix C with rbase = 0. We add
a temperature perturbation of the form given in Equation (24),
but in three dimensions with the hot spot centered at location
(3.6×107 cm, 3.6×107 cm, 3.2×107 cm). We will show that the
adaptive simulation captures the same dynamics as the single-
level simulation in a more computationally efficient manner.

We compute a single-level simulation with 128 × 128 × 512
grid cells, and an adaptive simulation with two levels of
refinement at the same effective resolution. For each cell, if
the T − T > 3 × 107 K, we tag all cells at that height to ensure
they are computed at the finest refinement level. We run each
simulation to t = 2.5 s using a CFL number of 0.9.

Figure 8 shows the initial profile of T − T and the initial
grid structure of the multi-level run. The single-level simulation
has 8,388,608 grid cells and takes approximately 32 s per
time step. The adaptive simulation initially has 131,072 grid
cells at the coarsest level, 114,688 cells at the first level of
refinement, and 688,128 cells at the finest level of refinement
(the number of grid cells at the finer levels changes slightly with
time as the grid structure changes to track the bubble) and takes
approximately 12 s per time step, for a factor of 2.7 speedup.
Both computations were performed using 32 processors on the
Franklin XT4 machine at NERSC. Figure 9 shows a series of
planar slices of the simulations at 0.5 s intervals in order to
show that the adaptive simulation captures the same dynamics

Figure 8. Profile of T − T for a hot bubble in a white dwarf environment.
The black and red lines represent grids of increasing refinement. The vertical
distance shown is from z = 0 to 9.2 × 107 cm.

as the single-level simulation. The vertical distance shown is
from z = 0 to 9.2 × 107 cm.

6.5. Forced Convection

To test the expansion of the base state in a multi-level,
two-dimensional planar simulation, we simulate a white-dwarf
environment with an external heating layer. We also show that
the multi-level simulation captures the same fine-scale structure
as a single-level simulation at the same effective resolution for a
short time. We performed a similar test in Paper III, but without
refinement.

We choose a domain size of 2.5×108 cm by 4×108 cm and for
each simulation, we generate an initial model with Δr equal to
the effective Δx for that simulation using the method described
in Appendix C with rbase = 5 × 107 cm. The low entropy layer
beneath our model atmosphere prevents the convective flow
from reaching our lower boundary.

We apply an external heating layer of the form

Hext,ij = H0e
(rj −rlayer)2

[
1 +

3∑
m=1

bm sin

(
kmπxi

Lx

+ Ψm

)]
(27)

with rlayer = 1.25 × 108 cm, H0 = 2.5 × 1016 erg g−1

s−1, Lx = 2.5 × 108 cm, and rj and xi being the radial and
horizontal physical coordinates of cell (i, j). The perturbation
parameters are b = (0.00625, 0.01875, 0.0125), k = (2, 6, 8),
and Ψ = (0, π/3, π/5). We disable reactions for this test, since
the heating layer was chosen to expand the base state over a
very short time period, rather than accurately model reactions.

We use cutoff densities of ρcutoff = ρanelastic = 3×106 g cm−3

and a sponge with rsp equal to the radius where ρ0 =
108 g cm−3, rmd equal to the radius where ρ0 = ρcutoff , and

368 NONAKA ET AL. Vol. 188

Figure 9. Time-lapse cross section of Figure 8 at t = 0, 0.5, 1.0, 1.5, 2.0, and 2.5 s for a single-level simulation (above) an adaptive simulation with two levels of
refinement at the same effective resolution (below).

κ = 100 s−1. We specify periodic boundary conditions on the
side walls, outflow at the top, and a solid wall at the bottom of
the domain.

In this test, we use a CFL number of 0.9. We perform two
single-level simulations using 80 × 128 and 320 × 512 cells,
and a simulation with two levels of refinement and an effective
resolution of 320×512 cells. For the multi-level simulation, we
fix the refined grids, ensuring that r ∈ [9.375 × 107, 1.5626 ×
108] cm (which contains the external heating layer) is at the
finest level of refinement. We run each simulation to t = 30 s.

Figure 10 shows ρ0, p0, and T after 30 s of convection for the
single-level fine grid simulation and the multi-level simulation.
There is an excellent agreement between these two simulations,
except in the temperature profiles at the top of the domain.
However, this corresponds to a region with density below the
cutoff densities where the temperature is extremely sensitive to
small density perturbations, and furthermore, is not fully refined
in this test, so this is an acceptable difference. Both simulations
were performed using four processors; the single-level fine grid
run required approximately 1.9 s per time step and the multi-
level run required approximately 0.6 s per time step, for a factor
of 3 speedup.

Figure 11 shows the temperature profile after 3 and 4 s for
each of the three simulations. The vertical distance shown is
from z = 5 × 107 cm to 2.2 × 108 cm. At t = 3 s, the multi-
level simulation is able to capture the finer-scale structure visible
in the single-level fine grid simulation, which is not captured in
the single-level coarse grid simulation. At t = 4 s, a finer-scale
structure is still visible in the multi-level simulation, but the
solution begins to drift from the single-level fine grid simulation,
which is expected since we are deliberately refining only a part
of the convective region.

6.6. Full-star AMR

We now compute three-dimensional, full-star calculations
of convection in a white dwarf. This problem models the
convection and energetics of a white dwarf that is a few hours
from reaching ignition. We performed similar simulations using
an earlier version of the algorithm in Paper IV.

We begin with the one-dimensional white-dwarf model de-
scribed in Section 2.4 in Paper IV. We map this one-dimensional
model into the center of a computational domain of 5 × 108 cm
on a side. The first simulation is a single-level simulation with
3843 cells. The second simulation is adaptive with two levels

1.0 x 106

1.0 x 107

1.0 x 108

1.0 x 109

1.0 x 1010

0.0 x 100 1.0 x 108 2.0 x 108 3.0 x 108 4.0 x 108

ρ 0
 (

g
/c

m
3
)

radius (cm)

t=0
t=30s, single level

t=30s, 3 levels

1.0 x 1023

1.0 x 1024

1.0 x 1025

1.0 x 1026

1.0 x 1027

1.0 x 1028

0.0 x 100 1.0 x 108 2.0 x 108 3.0 x 108 4.0 x 108

p
0
 (

d
yn

e
/c

m
2
)

radius (cm)

t=0
t=30s, single level

t=30s, 3 levels

1.0 x 106

1.0 x 107

1.0 x 108

1.0 x 109

1.0 x 1010

0.0 x 100 1.0 x 108 2.0 x 108 3.0 x 108 4.0 x 108

te
m

p
e
ra

tu
re

 (
K

)

radius (cm)

t=0
t=30s, single level

t=30s, 3 levels

Figure 10. Comparison between ρ0 (top), p0 (middle), and T (bottom) at t = 0,
and t = 30 s in a white dwarf environment with a heating layer for the single-
level fine grid and multi-level simulations. The multi-level simulation captures
the same expansion of the base state as the single-level simulation.

of refinement and an effective resolution of 3843 cells. We use
the reaction network strategy from Chamulak et al. (2008) to
compute the energetics from the carbon burning. This modified
network differs from the one used in Paper IV in the ash compo-
sition (we now burn to an ash with A = 18 and Z = 8.8) and the

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 369

Figure 11. Temperature plots at t = 3 s (above) and t = 4 s (below) of a white dwarf environment with a heating layer. The single-level coarse grid solution is on
the left, the multi-level solution is in the center, and the single-level fine grid solution as on the right. The colored boxes indicate the grid structure at each level of
refinement. The vertical distance shown is from z = 5 × 107 cm to 2.2 × 108 cm. At t = 3 s, the multi-level simulation is able to capture the finer-scale structure
visible in the single-level fine grid simulation, which is not captured as well in the single-level coarse grid simulation. At t = 4 s, a finer-scale structure is still visible
in the multi-level simulation, but the solution begins to drift from the single-level fine grid simulation, which is expected since we are deliberately refining only a part
of the convective region.

energy release (we use a quadratic fit to the q-values tabulated on
page 164 of Chamulak et al. 2008). Finally, instead of destroy-
ing two carbon nuclei for each reaction, we use the M12 value
of 2.93 described in that paper. We initialize the simulation with
a velocity perturbation described exactly as in Section 2.4 in
Paper IV. We use the same cutoff densities, sponge parameters,
and boundary conditions as in Section 6.2.

Figure 12 shows the initial grid structure of the adaptive
simulation. Based on our work in Paper IV, we choose to
fully refine all cells where ρ > 108 g cm−3, since at early
times, the dynamics of the star are driven by the reactions and
convection in this inner region. We wish to examine whether the
adaptive simulation can give the same result as the single-level
simulation, and the computational efficiency of each simulation.

We use a CFL number of 0.7 and compute to t = 900 s.
We choose two diagnostics used in Paper IV to compare the
simulations. Peak temperature is a useful diagnostic since the
reaction rates are extremely sensitive to temperature, and thus
peak temperature serves as a good guide for observing the
progression toward ignition. Peak radial velocity is another
useful diagnostic as it is a simple measure of the strength of the
convection within the star. Since the solution of our equation is
highly nonlinear, and the reaction rates scale with temperature
as ∼ T 23 (Woosley et al. 2004), we expect that errors from the
coarse grid will perturb the solution at the finest level, eventually
causing significant differences in the exact flow field. However,
as shown in Paper IV, when we run our simulation to the point
of ignition, we require upward of hundreds of thousands of time
steps. Therefore, in the comparison diagnostics in this test, it is
sufficient to compare the overall qualitative solution. An exact
quantitative comparison is impossible over long times.

Figure 13 shows the evolution of the peak temperature and
peak radial velocity over the first 900 s for both simulations.
The adaptive simulation gives the same qualitative result as
the single-level simulation. As mentioned before, the curves
do not match up more closely because the equations are highly
nonlinear, and slight differences in the solution caused by solver
tolerance and discretization error change details of the results,
but not the overall qualitative results. The single-level simulation
has 56,623,760 grid cells and takes approximately 36 s per time

Figure 12. Initial grid structure for a full white dwarf star simulation with two
levels of refinement. The colored boxes indicated the grid structure at each
level of refinement, each grid containing up to 323 cells. The finest grids have
effective resolution of 3843. The shaded sphere indicates where the density is
105 g cm−3 or greater. In this simulation, we have chosen to include all points
where ρ > 105 g cm−3 at the first level of refinement and all points where
ρ > 108 g cm−3 at the second level of refinement. There are 216 black grids at
the coarse level, 125 red grids at the next level, and 212 blue grids at the finest
level.

step. The adaptive simulation initially has 884,736 grid cells at
the coarsest level, 3,511,808 cells at the first level of refinement,
and 4,282,048 cells at the finest level of refinement (the number
of grid cells at the finer levels changes slightly with time) and
takes approximately 18 s per time step, for a factor of 2 speedup.
Also note that the overall memory requirements are significantly
less for the adaptive simulation, as can be seen by the reduced
total cell count. Each simulation was run using the Franklin XT4
machine at NERSC with 216 processors.

We note that in the future, when we perform longer cal-
culations up to the point of ignition, we may have to refine

370 NONAKA ET AL. Vol. 188

 6e+08

 6.02e+08

 6.04e+08

 6.06e+08

 6.08e+08

 6.1e+08

 6.12e+08

 6.14e+08

 0 100 200 300 400 500 600 700 800 900
T

p
e

a
k

(K
)

time (s)

Single Level
2 Levels of Refinement

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 100 200 300 400 500 600 700 800 900

p
e

a
k

ra
d

ia
l v

e
lo

ci
ty

 (
cm

/s
)

time (s)

Single Level
2 Levels of Refinement

Figure 13. Peak temperature (top) and peak radial velocity (bottom) as a function of time for a single-level and adaptive simulation, each with an effective 3843

resolution.

a greater portion of the star in order to properly capture the
overall dynamics as the convective region expands. In a forth-
coming paper, we plan on performing higher resolution stud-
ies, where AMR will save us both time and computational
resources.

7. CONCLUSIONS AND FUTURE WORK

We have developed a low Mach number hydrodynamics algo-
rithm suitable for full-star flows and local atmospheric regions
with a time-evolving base state within an AMR framework. In
forthcoming papers, we will use MAESTRO to further our sci-
entific investigation of the convective phase of SNe Ia. Our
previous simulations in Paper IV were at modest resolution and
assumed a constant base state. We are now performing simula-
tions at higher effective resolutions with the use of AMR along
with a time-varying base state. As part of this study, we are
examining the tagging conditions necessary to model a full star
up to the point of ignition. We are also studying Type I X-ray
bursts (Strohmayer & Bildsten 2006; Lin et al. 2006), which are

believed to be caused by the thermonuclear explosive burning
of hydrogen and/or helium gas accreted into a thin shell on the
surface of neutron stars. We pose this problem in planar geom-
etry, model a small patch of the star, and refine near the base of
the accreted layer.

We thank Frank Timmes for making his equation of state
routines publicly available, and for useful discussions regard-
ing thermodynamics. The work at LBNL was supported by the
SciDAC Program of the DOE Office of Mathematics, Infor-
mation, and Computational Sciences under the U.S. Depart-
ment of Energy under contract No. DE-AC02-05CH11231. The
work at Stony Brook was supported by a DOE/Office of Nu-
clear Physics Outstanding Junior Investigator award, grant no.
DE-FG02-06ER41448, to Stony Brook. This research used re-
sources of the National Energy Research Scientific Computing
Center (NERSC), which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

APPENDIX A

TIME ADVANCEMENT ALGORITHM

A.1. Single-level Algorithm Changes From Papers III and IV

The single-level algorithm has gone through numerous changes since Papers III and IV. The current single-level algorithm is presented
in Sections A.2–A.5; we summarize here the changes since Papers III and IV:

1. We have extended the base state evolution to spherical problems by defining Advect Base Density Spherical (Section A.3.2),
Advect Base Enthalpy Spherical (Section A.3.4), and Compute w0 Spherical (Section A.3.5). We have also defined spherical
discretizations for ψ and ηρ (Steps 4C, 4F, 8C, and 8F in Section A.4).

2. For spherical problems, we have improved the accuracy of the mapping of data between the one-dimensional radial array and
the three-dimensional Cartesian grid (Section 4).

3. We have upgraded our unsplit piecewise-linear Godunov method for time-centered edge state prediction for the base state and
Cartesian grid data to use the unsplit piecewise-parabolic method (PPM; Colella & Woodward 1984) with full corner coupling
in three dimensions (Miller & Colella 2002; Saltzman 1994). We shall refer to this procedure as “computing the time-centered
edge states” (Section A.3.2, Section A.3.4, and Steps 3, 4, 7, 8, and 11 in Section A.4).

4. As introduced in Paper IV, we update T after the call to React State (Section A.3.1).

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 371

Figure 14. Flowchart of the algorithm. The thermodynamic state variables, base state variables, and local velocity are indicated in each step. Red text indicates that
quantity was updated during that step. The predictor–corrector steps are outlined by the dotted box. The blue text indicates state variables that are the same in Step 6
as they are in Step 2, i.e., they are unchanged by the predictor steps.

5. Rather than evolve p0 using an evolution equation, we simply update p0 using the hydrostatic equilibrium equation (Section A.3.3).
These two methods are analytically equivalent, but in our experience, the numerical drift associated with evolving p0 using an
evolution equation causes the entire solution to drift from thermodynamic equilibrium over time.

6. As explained in Section 2, in the advection step, we predict (ρh)′ to edges instead of T (Steps 4Hi and 8Hi in Section A.4). Thus,
a base state enthalpy, (ρh)0 is required in order to construct the enthalpy fluxes for the conservative update. Unlike ρ0, we do not
need to carry the complete evolution of (ρh)0. In practice, we set (ρh)0 equal to the lateral average of the full state enthalpy after
the first call to React State, i.e., (ρh)n0 = (ρh)(1). We then advect (ρh)0 without reactions or heating to mirror the treatment of
(ρh) in the advection step (Steps 4G and 8G in Section A.4).

7. In the advection step, rather than simultaneously updating each of the base state quantities, followed by an update of all the full
state quantities, we have interwoven these updates in order to obtain better accuracy. In order: we advect ρ0, advect ρ, correct
ρ0, advance p0, advect (ρh)0, and advect (ρh) (Steps 4 and 8 in Section A.4). This enables us to use a time-centered ψ rather
than a time-lagged ψ for the enthalpy update.

8. Rather than compute ∇ · ηρ and use it to adjust ρ0 to account for convecting overturning, as was done in Correct Base in Paper
III, we simply use the lateral average operator to enforce ρ0 = ρ, which is simpler and analytically equivalent (Steps 4D and 8D
in Section A.4). We use the improved averaging procedure described in Section 4.1, which greatly improves the accuracy of this
mapping for spherical problems.

9. We have moved the first reaction step (formerly Step 3 in Section A.4) to occur before Steps 1 and 2 in Section A.4. This is a
non-functional change; it was only made so that Steps 2–5 mirror Steps 6–9 in the overall predictor–corrector scheme.

10. For planar problems, we evolve the enthalpy for the sole purpose of updating the temperature, which is subsequently fed into

372 NONAKA ET AL. Vol. 188

Figure 15. Flowchart for Steps 4 and 8. The thermodynamic state variables and base state variables are indicated in each step. Red text indicates that quantity was
updated during that step. Note, for Step 4, the updated quantities should also have a superscript, e.g., Step 8I defines T (2) while Step 4I defines T (2),.

the reaction network and used in computing thermodynamic derivatives. For spherical problems, as described in Paper IV, we
instead define T from ρ, p0, and Xk. This completely decouples the enthalpy from the rest of the solution. Our experience has
shown that, with spherical geometry, the discretization errors are minimized by using the hydrostatic, radial base state pressure
to define temperature. We still evolve the enthalpy, but we use it as a diagnostic to examine to what extent our numerical method
keeps the solution in thermodynamic equilibrium.

A.2. Gravity

For planar problems, we treat gravity as constant in space and time. For spherical problems, gravity is computed directly from ρ0 in
the following manner. First, we define the enclosed mass at radial edges and cell centers:

mencl,j−1/2 =
j∑

k=1

4

3
π
(
r3
k−1/2 − r3

k−3/2

)
ρ0,k−1; mencl,j = mencl,j−1/2 +

4

3
π
(
r3
j − r3

j−1/2

)
ρ0,j . (A1)

In practice, we compute (r3
k−1/2 − r3

k−3/2) as Δr(r2
k−1/2 + rk−1/2rk−3/2 + r2

k−3/2), in order to minimize roundoff error at large radii and
use a similar formula for the radial difference term in the equation for mencl,j . Next, we define the gravity at both radial edges and
cell centers:

gj−1/2 = Gmencl,j−1/2

r2
j−1/2

; gj = Gmencl,j

r2
j

. (A2)

We indicate which base state density is used to compute gravity by using a shorthand notation with superscripts on g, e.g., gn ≡ g(ρn
0).

A.3. Main Algorithm Notation

We make use of the following shorthand notations in outlining the algorithm:

A.3.1. Reactions

React State [ρ in, (ρh)in, Xin
k , T in, (ρHext)in, pin

0] → [ρout, (ρh)out, Xout
k , T out, (ρω̇k)out, (ρHnuc)out] evolves the species and enthalpy

due to reactions through Δt/2 according to

dXk

dt
= ω̇k(ρ,Xk, T); dT

dt
= 1

cp

(
−
∑

k

ξkω̇k + Hnuc

)
. (A3)

Full details of the solution procedure can be found in Paper III. We then define

(ρω̇k)out = ρout
(
Xout

k − Xin
k

)
Δt/2

, (A4)

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 373

(ρh)out = (ρh)in +
Δt

2
(ρHnuc)out +

Δt

2
(ρHext)

in, (A5)

where the enthalpy update includes external heat sources (ρHext)in. As introduced in Paper IV, we update the temperature using
T out = T (ρout, hout, Xout

k) for planar geometry or T out = T (ρout, pin
0 , Xout

k) for spherical geometry. Note that the density remains
unchanged within React State, i.e., ρout = ρ in.

A.3.2. ρ0 Advection

Advect Base Density [ρ in
0 , win

0] → [ρout
0 , ρ

out,n+1/2
0] is the process by which we update the base state density through Δt in time. We

keep the time-centered edge states, ρ
out,n+1/2
0 , since they are used later in discretization of ηρ for planar problems.

Planar. We discretize Equation (14) to compute the new base state density,

ρout
0,j = ρ in

0,j − Δt

Δr

[(
ρ

out,n+1/2
0 win

0

)
j+1/2 − (

ρ
out,n+1/2
0 win

0

)
j−1/2

]
. (A6)

We compute the time-centered edge states, ρ
out,n+1/2
0 , by discretizing an expanded form of Equation (14):

∂ρ0

∂t
+ w0

∂ρ0

∂r
= −ρ0

∂w0

∂r
, (A7)

where the right-hand side is used as the force term.
Spherical. The base state density update now includes the area factors in the divergences:

ρout
0,j = ρ in

0,j − 1

r2
j

Δt

Δr

[(
r2ρ

out,n+1/2
0 win

0

)
j+1/2 − (

r2ρ
out,n+1/2
0 win

0

)
j−1/2

]
. (A8)

In order to compute the time-centered edge states, an additional geometric term is added to the forcing, due to the spherical
discretization of (14):

∂ρ0

∂t
+ w0

∂ρ0

∂r
= −ρ0

∂w0

∂r
− 2ρ0w0

r
. (A9)

A.3.3. p0 Update

Enforce HSE [pin
0 , ρ in

0] → [pout
0] has replaced Advect Base Pressure from Paper III as the process by which we update the base state

pressure. Rather than discretizing the evolution equation for p0, we enforce hydrostatic equilibrium directly, which is numerically
simpler and analytically equivalent. We first set pout

0,j=0 = pin
0,j=0 and then update pout

0 using

pout
0,j+1 = pout

0,j + Δrgj+1/2

(
ρ in

0,j+1 + ρ in
0,j

)
2

, (A10)

where g = g(ρ in
0). As soon as ρ in

0,j < ρcutoff , we set pout
0,j+1 = pout

0,j for all remaining values of j. Then we compare pout
0,jmax

with pin
0,jmax

and offset every element in pout
0 so that pout

0,jmax
= pin

0,jmax
. We are effectively using the location where the ρ in

0 drops below ρcutoff as the
starting point for integration.

A.3.4. (ρh)0 Advection

Advect Base Enthalpy [(ρh)in
0 , win

0 , ψ in] → [(ρh)out
0] is the process by which we update the base state enthalpy through Δt in time

Planar. We discretize Equation (15), neglecting reaction source terms, to compute the new base state enthalpy,

(ρh)out
0,j = (ρh)in

0,j − Δt

Δr

{[
(ρh)n+1/2

0 win
0

]
j+1/2 − [

(ρh)n+1/2
0 win

0

]
j−1/2

}
+ Δtψ in

j . (A11)

We compute the time-centered edge states, (ρh)n+1/2
0 , by discretizing an expanded form of Equation (15):

∂(ρh)0

∂t
+ w0

∂(ρh)0

∂r
= −(ρh)0

∂w0

∂r
+ ψ. (A12)

Spherical. The base state enthalpy update now includes the area factors in the divergences:

(ρh)out
0,j = (ρh)in

0,j − 1

r2
j

Δt

Δr

{[
r2(ρh)n+1/2

0 win
0

]
j+1/2 − [

r2(ρh)n+1/2
0 win

0

]
j−1/2

}
+ Δtψ in,n+1/2. (A13)

In order to compute the time-centered edge states, an additional geometric term is added to the forcing, due to the spherical
discretization of (15):

374 NONAKA ET AL. Vol. 188

∂(ρh)0

∂t
+ w0

∂(ρh)0

∂r
= −(ρh)0

∂w0

∂r
− 2(ρh)0w0

r
+ ψ. (A14)

A.3.5. Computing w0

Here we describe the process by which we compute w0. The arguments are different for planar and spherical geometries.

Compute w0 Planar[S
in
, Γ1

in
, pin

0 , ψ in] → [wout
0]:

In Paper III, we showed that ψ = ηρg for planar geometries, and derived an alternate expression for Equation (11). We compute w0
using Equation (35) in Paper III using the following discretization:

wout
0,j+1/2 − wout

0,j−1/2

Δr
=
(

S
in − 1

Γ1
in
pin

0

ψ in

)
j

, (A15)

with w0,−1/2 = 0.
Compute w0 Spherical [S

in
, Γ1

in
, ρ in

0 , pin
0 , ηin

ρ] → [wout
0]:

We begin with Equation (11) written in spherical coordinates:

1

r2

∂

∂r

(
r2β0w0

) = β0

(
S − 1

Γ1p0

∂p0

∂t

)
. (A16)

We expand the spatial derivative and recall from Paper I that

1

Γ1p0

∂p0

∂r
= 1

β0

∂β0

∂r
, (A17)

giving
1

r2

∂

∂r
(r2w0) = S − 1

Γ1p0

(
∂p0

∂t
+ w0

∂p0

∂r

)
︸ ︷︷ ︸

ψ

. (A18)

We solve this equation for w0 as described in Appendix B.

A.4. Main Algorithm Description

We now describe the main algorithm, making frequent use of the shorthand developed above. In summary, in the predictor step
(Steps 2–5) we use an estimate of the expansion term, S, to compute a preliminary solution at the new time level, denoted with
an “n + 1, ” superscript. In the corrector step (Steps 6–9), we use the results from the predictor step to compute a more accurate
expansion term, and compute the final solution at the new time level, denoted with an “n + 1” superscript. We use Strang splitting to
achieve second-order accuracy in time. See Figure 14 for a flow chart of the algorithm, including the notation used as we advance the
solution by Δt. Figure 15 is a flow chart of the advection steps (Steps 4 and 8), which includes the notation we use as we advect the
solution through a time interval of Δt .
The discussion that follows mirrors closely that in Paper III, but has been updated to reflect all the changes throughout the algorithm.
The advance of the state through a single time step appears as follows:

Step 0. Initialization
This step remains unchanged from Paper III. The initialization step only occurs at the beginning of the simulation. The initial

values for U0, ρ0, (ρh)0, X0
k , T

0, ρ0
0 , p0

0, and Γ0
1 are specified from the problem-dependent initial conditions. The initial time

step, Δt0, is computed as in Paper III. Finally, initial values for w
−1/2
0 , η

−1/2
ρ , ψ−1/2, π−1/2, S0, and S1 come from a preliminary

pass through the algorithm.

Step 1. React the full state through the first time interval of Δt/2.

Call React State[ρn, (ρh)n,Xn
k , T

n, (ρHext)n, pn
0] → [ρ(1), (ρh)(1), X

(1)
k , T (1), (ρω̇k)(1), (ρHnuc)(1)].

Step 2. Compute the provisional time-centered expansion, Sn+1/2,, provisional base state velocity, w
n+1/2,

0 , and provisional base
state velocity forcing.

A. Compute Sn+1/2,. We compute an estimate for the time-centered expansion term in the velocity divergence constraint
(Equation (12)). For the first time step (n = 0), we set

Sn+1/2, = S0 + S1

2
, (A19)

where S1 is found during initialization. For other time steps (n �= 0), following Bell et al. (2004), we extrapolate to the
half-time using S at the previous and current time levels

Sn+1/2, = Sn +
Δtn

2

Sn − Sn−1

Δtn−1
. (A20)

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 375

Next, compute
Sn+1/2, = Avg(Sn+1/2,). (A21)

B. Compute w
n+1/2,

0 .
For planar geometry, call
Compute w0 Planar[Sn+1/2,, Γn

1, p
n
0 , ψn−1/2] → [wn+1/2,

0].
For spherical geometry, call
Compute w0 Spherical[Sn+1/2,, Γn

1, ρ
n
0 , pn

0 , η
n−1/2
ρ] → [wn+1/2,

0].

C. Compute the provisional base state velocity forcing. Rearrange Equation (9),

− 1

ρ0

∂π0

∂r
= ∂w0

∂t
+ w0

∂w0

∂r
, (A22)

with the following discretization:(
1

ρ0

∂π0

∂r

)n,

= −w
n+1/2,

0 − w
n−1/2
0

(Δtn + Δtn−1)/2
− w

n,
0

(
∂w0

∂r

)n,

, (A23)

where w
n,
0 and (∂w0/∂r)n, are defined as

w
n,
0 = Δtnw

n−1/2
0 + Δtn−1w

n+1/2,

0

Δtn + Δtn−1
, (A24)

(
∂w0

∂r

)n,

= 1

Δtn + Δtn−1

[
Δtn

(
∂w0

∂r

)n−1/2

+ Δtn−1

(
∂w0

∂r

)n+1/2,
]

. (A25)

If n = 0, we use Δt−1 = Δt0.

Step 3. Construct the provisional time-centered advective velocity on edges, ŨADV,.
Using Equation (10), we compute time-centered edge velocities, ŨADV,†,, using U = Ũn + w

n+1/2,

0 . The † superscript refers
to the fact that the predicted velocity field does not satisfy the divergence constraint. We then construct ŨADV, from ŨADV,†,

using a MAC projection, as described in detail in Appendix B of Paper III. We note that ŨADV, satisfies the discrete version of

(ŨADV, · er) = 0 as well as
∇ · (βn

0 ŨADV,
) = βn

0

(
Sn+1/2, − Sn+1/2,

)
, (A26)

βn
0 = β0

(
ρn

0 , pn
0 , Γn

1

)
, (A27)

where β0 is computed as described in Appendix C of Paper III.

Step. 4. Advect the base state and full state through a time interval of Δt.

A. Update ρ0, saving the time-centered density at radial edges by calling
Advect Base Density

[
ρn

0 , w
n+1/2,

0

] → [
ρ

(2a),
0 , ρ

n+1/2,,pred
0

]
.

B. Update (ρXk) using a discretized version of Equation (1) omitting the reaction terms, which were already accounted for in
React State. The update consists of two steps:

i. Compute the time-centered species edge states, (ρXk)n+1/2,,pred, for the conservative update of (ρXk)(1). We use
Equations (17) and (13) to predict ρ

′(1) = ρ(1) − ρn
0 and X

(1)
k = (ρXk)(1)/ρ(1) to time-centered edges using

U = ŨADV, + w
n+1/2,

0 er , yielding ρ
′n+1/2,,pred and X

n+1/2,,pred
k . We convert the perturbational density full state

density using

ρn+1/2,,pred = ρ
′n+1/2,,pred +

ρn
0 + ρ

(2a),
0

2
, (A28)

where the base state density terms are mapped to Cartesian edges. Then,
(ρXk)n+1/2,,pred = (ρn+1/2,,predX

n+1/2,,pred
k).

ii. Evolve (ρXk)(1) → (ρXk)(2), using

(ρXk)(2), = (ρXk)(1) − Δt
{∇ · [(ŨADV, + w

n+1/2,

0 er

)
(ρXk)n+1/2,,pred

]}
, (A29)

ρ(2), =
∑

k

(ρXk)(2),, X
(2),
k = (ρXk)(2),/ρ(2),. (A30)

376 NONAKA ET AL. Vol. 188

C. Define a radial edge-centered η
n+1/2,
ρ .

For planar geometry, since ηρ = ρ ′(U · er) = ρ(U · er) − ρ0(U · er) = ρ(U · er) − ρ0w0,

ηn+1/2,
ρ = Avg

∑
k

[(
ŨADV, · er + w

n+1/2,

0

)
(ρXk)n+1/2,,pred

]− w
n+1/2,

0 ρ
n+1/2,,pred
0 . (A31)

For spherical geometry, first construct η
cart,n+1/2,
ρ = [ρ ′(U · er)]n+1/2, on Cartesian cell centers using

ηcart,n+1/2,
ρ =

[(
ρ(1) + ρ(2),

2

)
−
(

ρn
0 + ρ

(2a),
0

2

)]
· (ŨADV, · er + w

n+1/2,

0

)
. (A32)

Then,
ηn+1/2,

ρ = Avg
(
ηcart,n+1/2,

ρ

)
. (A33)

This gives a radial cell-centered η
n+1/2,
ρ . To get η

n+1/2,
ρ at radial edges, average the two neighboring radial cell-centered

values.

D. Correct ρ0 by setting ρ
n+1,
0 = Avg(ρ(2),).

E. Update p0 by calling Enforce HSE[pn
0 , ρ

n+1,
0] → [pn+1,

0].

F. Compute ψn+1/2,.
For planar geometry,

ψ
n+1/2,

j = 1
2

(
η

n+1/2,

ρ,j−1/2 + η
n+1/2,

ρ,j+1/2

)
g. (A34)

For spherical geometry, first compute

Γ(1)
1 = Avg

[
Γ1
(
ρ(1), pn

0 , X
(1)
k

)]
, (A35)

Γ(2),
1 = Avg

[
Γ1
(
ρ(2),, p

n+1,
0 , X

(2),
k

)]
. (A36)

Then, define ψn+1/2, using Equation (A18)

ψ
n+1/2,

j =
(

Γ(1)
1 + Γ(2),

1

2

)
j

(
pn

0 + p
n+1,
0

2

)
j

{
S

n+1/2,

j − 1

r2
j

[(
r2w

n+1/2,

0

)
j+1/2 − (

r2w
n+1/2,

0

)
j−1/2

]}
. (A37)

G. Update (ρh)0. First, compute (ρh)n0 = Avg[(ρh)(1)]. Then, call
Advect Base Enthalpy [(ρh)n0, w

n+1/2,

0 , ψn+1/2,] → [(ρh)n+1,
0].

H. Update the enthalpy using a discretized version of Equation (3), again omitting the reaction and heating terms since we
already accounted for them in React State. This equation takes the form

∂(ρh)

∂t
= −∇ · (Uρh) + ψ + (Ũ · er)

∂p0

∂r
. (A38)

For spherical geometry, we solve the analytically equivalent form

∂(ρh)

∂t
= −∇ · (Uρh) + ψ + ∇ · (Ũp0) − p0∇ · Ũ, (A39)

which experience has shown to minimize the drift from thermodynamic equilibrium. The update consists of two steps:

i. Compute the time-centered enthalpy edge state, (ρh)n+1/2,,pred, for the conservative update of (ρh)(1). We use
Equation (18) to predict (ρh)′ = (ρh)(1) − (ρh)n0 to time-centered edges, using U = ŨADV, + w

n+1/2,

0 er , yielding
(ρh)

′n+1/2,,pred. We convert the perturbational enthalpy to a full state enthalpy using

(ρh)n+1/2,,pred = (ρh)
′n+1/2,,pred +

(ρh)n0 + (ρh)n+1,
0

2
. (A40)

For planar geometry, we map (ρh)0 directly to Cartesian edges. In spherical geometry, our experience has shown that
a slightly different approach leads to reduced discretization errors. We first map h0 ≡ (ρh)0/ρ0 and ρ0 to Cartesian
edges separately, and then multiply these terms to get (ρh)0.

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 377

ii. Evolve (ρh)(1) → (ρh)(2),.
For planar geometry,

(ρh)(2), = (ρh)(1) − Δt
{∇ · [(ŨADV, + w

n+1/2,

0 er

)
(ρh)n+1/2,,pred

]}
+ Δt

(
ŨADV, · er

) (∂p0

∂r

)n

+ Δtψn+1/2,.

(A41)

For spherical geometry,

(ρh)(2), = (ρh)(1) − Δt
{∇ · [(ŨADV, + w

n+1/2,

0 er

)
(ρh)n+1/2,,pred

]}
+ Δt

{∇ · (ŨADV,pn
0

)− pn
0∇ · ŨADV,

}
+ Δtψn+1/2,. (A42)

Then, for each Cartesian cell where ρ(2), < ρcutoff , we recompute enthalpy using

(ρh)(2), = ρ(2),h
(
ρ(2),, p

n+1,
0 , X

(2),
k

)
. (A43)

I. Update the temperature using the equation of state: T (2), = T (ρ(2),, h(2),, X
(2),
k) (planar geometry) or T (2), =

T (ρ(2),, p
n+1,
0 , X

(2),
k) (spherical geometry).

Step 5. React the full state through a second time interval of Δt/2.

Call React State
[
ρ(2),, (ρh)(2),, X

(2),
k , T (2),, (ρHext)(2),, p

n+1,
0

] → [
ρn+1,, (ρh)n+1,, X

n+1,
k , T n+1,, (ρω̇k)(2),, (ρHnuc)(2),

]
.

Step 6. Compute the time-centered expansion, Sn+1/2,, base state velocity, w
n+1/2
0 , and base state velocity forcing.

A. Compute Sn+1/2,. First, compute Sn+1, with

Sn+1, = −σ
∑

k

ξk(ω̇k)(2), +
1

ρn+1,pρ

∑
k

pXk
(ω̇k)(2), + σH (2),

nuc + σH
(2),
ext , (A44)

where (ω̇k)(2), = (ρω̇k)(2),/ρ(2), and the thermodynamic quantities are defined using ρn+1,, X
n+1,
k , and T n+1, as inputs

to the equation of state. Then, define

Sn+1/2, = Avg(Sn+1/2,), Sn+1/2. = Sn + Sn+1,

2
. (A45)

B. Compute w
n+1/2
0 . First, define

Γn+1/2,

1 = Γn
1 + Γn+1,

1

2
, ρ

n+1/2,

0 = ρn
0 + ρ

n+1,
0

2
, p

n+1/2,

0 = pn
0 + p

n+1,
0

2
, (A46)

with
Γn+1,

1 = Avg
[
Γ1
(
ρn+1,, p

n+1,
0 , X

n+1,
k

)]
. (A47)

For planar geometry, call

Compute w0 Planar
[
Sn+1/2,, Γn+1/2,

1 , p
n+1/2,

0 , ψn+1/2,
] → [

w
n+1/2
0

]
.

For spherical geometry, call

Compute w0 Spherical
[
Sn+1/2,, Γn+1/2,

1 , ρ
n+1/2,

0 , p
n+1/2,

0 , η
n+1/2,
ρ

] → [
w

n+1/2
0

]
.

C. Compute the base state velocity forcing. Rearrange Equation (A22),(
1

ρ0

∂π0

∂r

)n

= − w
n+1/2
0 − w

n−1/2
0

1/2(Δtn + Δtn−1)
− wn

0

(
∂w0

∂r

)n

, (A48)

where wn
0 and (∂w0/∂r)n are defined as

wn
0 = Δtnw

n−1/2
0 + Δtn−1w

n+1/2
0

Δtn + Δtn−1
, (A49)

(
∂w0

∂r

)n

= 1

Δtn + Δtn−1

[
Δtn

(
∂w0

∂r

)n−1/2

+ Δtn−1

(
∂w0

∂r

)n+1/2
]

. (A50)

If n = 0, we use Δt−1 = Δt0.

378 NONAKA ET AL. Vol. 188

Step 7. Construct the time-centered advective velocity on edges, ŨADV.
The procedure to construct ŨADV,† is identical to the procedure for computing ŨADV,†, in Step 3, but uses the updated values

w
n+1/2
0 and πn

0 rather than w
n+1/2,

0 and π
n,
0 . We note that ŨADV satisfies the discrete version of (ŨADV · er) = 0 as well as

∇ ·
(
β

n+1/2,

0 ŨADV
)

= β
n+1/2,

0

(
Sn+1/2, − Sn+1/2,

)
, (A51)

β
n+1/2,

0 = βn
0 + β

n+1,
0

2
; β

n+1,
0 = β0

(
ρ

n+1,
0 , p

n+1,
0 , Γn+1,

1

)
. (A52)

Step 8. Advect the base state and full state through a time interval of Δt.

A. Update ρ0, saving the time-centered density at radial edges by calling
Advect Base Density

[
ρn

0 , w
n+1/2
0

] → [
ρ

(2a)
0 , ρ

n+1/2,pred
0

]
.

B. Update (ρXk). This step is identical to Step 4B except we use the updated values w
n+1/2
0 , ŨADV, and ρ

(2a)
0 rather than

w
n+1/2,

0 , ŨADV,, and ρ
(2a),
0 . In particular,

i. Compute the time-centered species edge states, (ρXk)n+1/2,pred, for the conservative update of (ρXk)(1). We use
equations (17) and (13) to predict ρ

′(1) = ρ(1) − ρn
0 and X

(1)
k = (ρXk)(1)/ρ(1) to time-centered edges with

U = ŨADV + w
n+1/2
0 er , yielding ρ

′n+1/2,pred and X
n+1/2,pred
k . We convert the perturbational density to a full state

density using

ρn+1/2,pred = ρ
′n+1/2,pred +

ρn
0 + ρ

(2a)
0

2
. (A53)

Then, (ρXk)n+1/2,pred = (ρn+1/2,predX
n+1/2,pred
k).

ii. Evolve (ρXk)(1) → (ρXk)(2) using

(ρXk)(2) = (ρXk)(1) − Δt
{
∇ ·

[(
ŨADV + w

n+1/2
0 er

)
(ρXk)n+1/2,pred

]}
, (A54)

ρ(2) =
∑

k

(ρXk)(2), X
(2)
k = (ρXk)(2)/ρ(2). (A55)

C. Define a radial edge-centered η
n+1/2
ρ .

For planar geometry,

ηn+1/2
ρ = Avg

∑
k

[(
ŨADV · er + w

n+1/2
0

)
(ρXk)n+1/2,pred

]
− w

n+1/2
0 ρ

n+1/2,pred
0 . (A56)

For spherical geometry, first construct η
cart,n+1/2
ρ = [ρ ′(U · er)]n+1/2 on Cartesian cell centers using

ηcart,n+1/2
ρ =

[(
ρ(1) + ρ(2)

2

)
−
(

ρn
0 + ρ

(2a)
0

2

)](
ŨADV · er + w

n+1/2
0

)
. (A57)

Then,
ηn+1/2

ρ = Avg
(
ηcart,n+1/2

ρ

)
. (A58)

This gives a radial cell-centered η
n+1/2
ρ . To get η

n+1/2
ρ at radial edges, average the two neighboring cell-centered values.

D. Correct ρ0 by setting ρn+1
0 = Avg(ρ(2)).

E. Update p0 by calling Enforce HSE
[
pn

0 , ρn+1
0

] → [
pn+1

0

]
.

F. Compute ψn+1/2.
For planar geometry,

ψ
n+1/2
j = 1

2

(
η

n+1/2
ρ,j−1/2 + η

n+1/2
ρ,j+1/2

)
g. (A59)

For spherical geometry, first compute

Γ(2)
1 = Avg

[
Γ1
(
ρ(2), pn+1

0 , X
(2)
k

)]
. (A60)

Then, define ψn+1/2 using Equation (A18):

ψ
n+1/2
j =

(
Γ(1)

1 + Γ(2)
1

2

)
j

(
pn

0 + pn+1
0

2

)
j

{
S

n+1/2
j − 1

r2
j

[(
r2w

n+1/2
0

)
j+1/2 − (

r2w
n+1/2
0

)
j−1/2

]}
. (A61)

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 379

G. Update (ρh)0 by calling Advect Base Enthalpy
[
(ρh)n0, w

n+1/2
0 , ψn+1/2

] → [
(ρh)n+1

0

]
.

H. Update the enthalpy. This step is identical to Step 4H except we use the updated values w
n+1/2
0 , ŨADV, ρn+1

0 , (ρh)n+1
0 , p

n+1/2
0 ,

and ψn+1/2 rather than
w

n+1/2,

0 , ŨADV,, ρ
n+1,
0 , (ρh)n+1,

0 , pn
0 , and ψn+1/2,. In particular,

i. Compute the time-centered enthalpy edge state, (ρh)n+1/2,pred, for the conservative update of (ρh)(1). We use
Equation (18) to predict (ρh)′ = (ρh)(1) − (ρh)n0 to time-centered edges with U = ŨADV + w

n+1/2
0 er , yielding

(ρh)
′n+1/2,pred. We convert the perturbational enthalpy to a full state enthalpy using

(ρh)n+1/2,pred = (ρh)
′n+1/2,pred +

(ρh)n0 + (ρh)n+1
0

2
. (A62)

ii. Evolve (ρh)(1) → (ρh)(2).
For planar geometry,

(ρh)(2) = (ρh)(1) − Δt
{∇ · [(ŨADV + w

n+1/2
0 er

)
(ρh)n+1/2,pred

]}
+ Δt

(
ŨADV · er

) (∂p0

∂r

)n+1/2

+ Δtψn+1/2.

(A63)

For spherical geometry,

(ρh)(2) = (ρh)(1) − Δt
{∇ · [(ŨADV + w

n+1/2
0 er

)
(ρh)n+1/2,pred

]}
+ Δt

[∇ · (ŨADVp
n+1/2
0

)− p
n+1/2
0 ∇ · ŨADV

]
+ Δtψn+1/2, (A64)

where p
n+1/2
0 is defined as p

n+1/2
0 = (pn

0 + pn+1
0)/2.

Then, for each Cartesian cell where ρ(2) < ρcutoff , we recompute enthalpy using

(ρh)(2) = ρ(2)h
(
ρ(2), pn+1

0 , X
(2)
k

)
. (A65)

I. Update the temperature using the equation of state: T (2) = T (ρ(2), h(2), X
(2)
k) (planar geometry) or T (2) = T (ρ(2), pn+1

0 , X
(2)
k)

(spherical geometry).

Step 9. React the full state through a second time interval of Δt/2.

Call React State[ρ(2), (ρh)(2), X
(2)
k , T (2), (ρHext)(2), pn+1

0] → [ρn+1, (ρh)n+1, Xn+1
k , T n+1, (ρω̇k)(2), (ρHnuc)(2)].

Step 10. Define the new time expansion, Sn+1, and Γn+1
1 .

A. Define

Sn+1 = −σ
∑

k

ξk(ω̇k)(2) + σH (2)
nuc +

1

ρn+1pρ

∑
k

pXk
(ω̇k)(2) + σH

(2)
ext , (A66)

where (ω̇k)(2) = (ρω̇k)(2)/ρ(2) and the thermodynamic quantities are defined using ρn+1, Xn+1
k , and T n+1 as inputs to the

equation of state. Then, compute
Sn+1 = Avg(Sn+1). (A67)

B. Define
Γn+1

1 = Avg
[
Γ1
(
ρn+1, pn+1

0 , Xn+1
k

)]
. (A68)

Step 11. Update the velocity.
First, we compute the time-centered edge velocities, Ũn+1/2,pred. Then, we define

ρn+1/2 = ρn + ρn+1

2
, ρ

n+1/2
0 = ρn

0 + ρn+1
0

2
. (A69)

We update the velocity field Ũn to Ũn+1,† by discretizing Equation (10) as

Ũn+1,† = Ũn − Δt
[(

ŨADV + w
n+1/2
0 er

) · ∇Ũn+1/2,pred
]− Δt

(
ŨADV · er

) (∂w0

∂r

)n+1/2

er

+ Δt

[
− 1

ρn+1/2
Gπn−1/2 +

(
1

ρ0

∂π0

∂r

)n

er −
(
ρn+1/2 − ρ

n+1/2
0

)
ρn+1/2

gn+1/2er

]
, (A70)

380 NONAKA ET AL. Vol. 188

where G approximates a cell-centered gradient from nodal data. Again, the † superscript refers to the fact that the updated
velocity does not satisfy the divergence constraint.
Finally, we use an approximate nodal projection to define Ũn+1 from Ũn+1,†, such that Ũn+1 approximately satisfies

∇ · (βn+1/2
0 Ũn+1

) = β
n+1/2
0

(
Sn+1 − Sn+1

)
, (A71)

where β
n+1/2
0 is defined as

β
n+1/2
0 = βn

0 + βn+1
0

2
; βn+1

0 = β
(
ρn+1

0 , pn+1
0 , Γn+1

1 , gn+1). (A72)

As part of the projection we also define the new-time perturbational pressure, πn+1/2. This projection necessarily differs from
the MAC projection used in Step 3 and Step 7 because the velocities in those steps are defined on edges and Ũn+1 is defined at
cell centers, requiring different divergence and gradient operators. Details of the approximate projection are given in Paper III.

Step 12. Compute a new Δt.
Compute Δt for the next time step with the procedure described in Section 3.4 of Paper III using w0 as computed in Step 6 and
Ũn+1 as computed in Step 11.

This completes one step of the algorithm.
Figure 14 is a flow chart summarizing the 12 step algorithm, including the notation used as we advance the solution by Δt. Figure 15

is a flow chart of the advection steps (Steps 4 and 8), which includes the notation we use as we advect the solution through a time
interval of Δt .

A.5. Numerical Cutoffs

As discussed in Paper IV, in order to prevent the velocity from becoming too large in low density regions far from the center of the
star, we impose a cutoff at a moderately small density, ρcutoff , and hold the density at this constant value outside of the star. The cutoff
affects the evolution in the following ways:

1. After advancing enthalpy in the advection step (Steps 4Hii and 8Hii in Section A.4), we recompute the enthalpy using the
equation of state if ρ � ρcutoff .

2. When computing gravity (Section A.2) we only add ρ0 to mencl if ρ0 > ρcutoff in order to prevent an unphysical amount of mass
from contributing to the calculation.

3. When computing p0 in Enforce HSE (Section A.3.3), we hold p0 constant once ρ0 � ρcutoff .
4. In React State (Section A.3.1), we set ω̇k = 0 and ρHnuc = 0 if ρ � ρcutoff .
5. When computing ψ (Steps 4F and 8F in Section A.4), we set ψ = 0 if ρ0 � ρcutoff .
6. When we compute the velocity forcing in Steps 3, 7, 11, and 12, we set the buoyancy term (the term proportional to ρ − ρ0) to

zero if ρ < 5ρcutoff .

Additionally, we use an anelastic cutoff density, ρanelastic, in the computation of β0 (Steps 3, 7, and 11 in Section A.4). When
ρ0,j � ρanelastic, we set β0,j = (ρ0,j /ρ0,j−1)β0,j−1.

APPENDIX B

COMPUTING w0 FOR SPHERICAL PROBLEMS

Recall that we want to solve
1

r2

∂

∂r
(r2w0) = S − 1

Γ1p0

(
∂p0

∂t
+ w0

∂p0

∂r

)
︸ ︷︷ ︸

ψ

. (B1)

for the base state velocity, w0. We first decompose w0 by setting w0 = w0 + δw0, where the w0 term is the contribution to w0 due to
the expansion term:

1

r2

∂

∂r
(r2w0) = S

in
. (B2)

Then we can write an equation for the remaining term, δw0:

1

r2

∂

∂r
(r2δw0) = − 1

Γ1p0

[
∂p0

∂t
+ (w0 + δw0)

∂p0

∂r

]
. (B3)

Multiplying Equation (B3) through by Γ1p0, taking another derivative with respect to r, and switching the order of temporal and
spatial derivatives, we obtain

∂

∂r

[
Γ1p0

r2

∂

∂r
(r2δw0)

]
= − ∂

∂t

∂p0

∂r
− ∂

∂r

[
(w0 + δw0)

∂p0

∂r

]
. (B4)

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 381

To solve for δw0 we will need to substitute for the derivatives of p0. To do so we start with the hydrostatic equilibrium equation,

∂p0

∂r
= −ρ0g; g = Gmencl

r2
, (B5)

where mencl(r) is the mass enclosed at radius r and G is the gravitational constant. Using this, we can then write Equation (B4) as

∂

∂r

[
Γ1p0

r2

∂

∂r
(r2δw0)

]
= ∂

∂t
(ρ0g) +

∂

∂r
(w0ρ0g)

= g

[
∂ρ0

∂t
+

∂

∂r
(w0ρ0)

]
+ ρ0

(
∂g

∂t
+ w0

∂g

∂r

)
. (B6)

The mass enclosed inside any radius, r, is mencl(r) = 4π
∫ r

0 ρ0(s)s2ds, or alternately, ∂mencl/∂r = 4πr2ρ0. The Lagrangian derivative
of the enclosed mass is then

D0mencl

Dt
= ∂mencl

∂t
+ w0

∂mencl

∂r

= 4π

(
∂

∂t

∫ r

0
ρ0(s)s2ds + w0r

2ρ0

)
= 4π

(∫ r

0

∂ρ0

∂t
s2ds + w0r

2ρ0

)
= 4π

{
−
∫ r

0

[
1

s2

∂(s2ρ0w0)

∂s
+

1

s2

∂(s2ηρ)

∂s

]
s2ds + w0r

2ρ0

}
= 4π

(−s2ρ0w0

∣∣r
0 − s2ηρ

∣∣r
0 + w0r

2ρ0

)
= −4πr2ηρ, (B7)

where we used the spherical form of Equation (29) in Paper III,

∂ρ0

∂t
+

1

r2

∂(r2ρ0w0)

∂r
+

1

r2

∂(r2ηρ)

∂r
= 0, (B8)

to eliminate ∂ρ0/∂t . We note that in the absence of any mixing, ηρ = 0, and D0mencl/Dt = 0. Equation (B7) allows us to write the
Lagrangian change in the gravitational acceleration as

D0g

Dt
= ∂g

∂t
+ w0

∂g

∂r
= D0

Dt

(
Gmencl

r2

)
= Gmencl

D0

Dt

(
1

r2

)
+

G

r2

D0mencl

Dt

= − 2w0Gmencl

r3
− 4πGηρ = −2w0g

r
− 4πGηρ. (B9)

Putting it all together, Equation (B6) becomes

∂

∂r

[
Γ1p0

r2

∂

∂r
(r2δw0)

]
= g

[
∂ρ0

∂t
+

∂

∂r
(w0ρ0)

]
+ ρ0

(−2w0g

r
− 4πGηρ

)
. (B10)

Finally, we can use Equation (B8) to write Equation (B10) as

∂

∂r

[
Γ1p0

r2

∂

∂r
(r2δw0)

]
= g

[
− 1

r2

∂

∂r
(r2w0ρ0) − 1

r2

∂

∂r
(r2ηρ) +

∂

∂r
(w0ρ0)

]
+ ρ0

(−2w0g

r
− 4πGηρ

)
= − g

r2

∂(r2ηρ)

∂r
− 4(w0 + δw0)ρ0g

r
− 4πGρ0ηρ. (B11)

We discretize this elliptic equation in the radial dimension as

1

Δr

⎧⎨⎩
[

Γ1p0

r2

∂(r2δw0)

∂r

]
j

−
[

Γ1p0

r2

∂(r2δw0)

∂r

]
j−1

⎫⎬⎭ +

[
4(r2δw0)ρ0g

r3

]
j−1/2

= − gj−1/2

r2
j−1/2Δr

[
(r2ηρ)j − (r2ηρ)j−1

]
−
(

4w0ρ0g

r

)
j−1/2

− (
4πGρ0ηρ

)
j−1/2 , (B12)

where we choose to solve for (r2δw0) rather than δw0 so that we can easily enforce ∂(r2δw0)/∂r = 0 at the upper boundary. Then,
using hydrostatic equilibrium, we expand this to

382 NONAKA ET AL. Vol. 188

1

Δr

⎧⎨⎩
(

Γ1p0

r2

)
j

[
(r2δw0)j+1/2 − (r2δw0)j−1/2

]
Δr

−
(

Γ1p0

r2

)
j−1

[
(r2δw0)j−1/2 − (r2δw0)j−3/2

]
Δr

⎫⎬⎭
−
(

4

r3
j−1/2

p0,j − p0,j−1

Δr

)
(r2δw0)j−1/2 =

(
4

r3
j−1/2

p0,j − p0,j−1

Δr

)
(r2w0)j−1/2

− gj−1/2

r2
j−1/2Δr

[
(r2ηρ)j − (r2ηρ)j−1

]− (4πGρ0ηρ)j−1/2. (B13)

If we write this in matrix form, so that

Aj (r2δw0)j−3/2 + Bj (r2δw0)j−1/2 + Cj (r2δw0)j+1/2 = Fj , (B14)

then

Aj = 1

Δr2

(
Γ1

in
pin

0

r2

)
j−1

, (B15)

Bj = − 1

Δr2

⎡⎣(Γ1
in
pin

0

r2

)
j

+

(
Γ1

in
pin

0

r2

)
j−1

⎤⎦−
(

4

r3
j−1/2

pin
0,j − pin

0,j−1

Δr

)
, (B16)

Cj = 1

Δr2

(
Γ1

in
pin

0

r2

)
j

, (B17)

Fj =
(

4

r3
j−1/2

pin
0,j − pin

0,j−1

Δr

)
(r2w0)j−1/2 − gin

j−1/2

r2
j−1/2Δr

[(
r2ηin

ρ

)
j
− (

r2ηin
ρ

)
j−1

]
− (

4πGρ in
0 ηin

ρ

)
j−1/2

. (B18)

We define the lower boundary condition, δw0 = 0 at r = 0, which corresponds to j = 0, by setting

A0 = C0 = F0 = 0; B0 = 1. (B19)

We also specify ∂(r2δw0)/∂r = 0 at the upper boundary, which corresponds to the location where ρ0 falls below ρcutoff , by setting

AN = −1; BN = 1; CN = FN = 0. (B20)

Finally, wout
0 = w0 + δw0. Once ρ0 falls below ρcutoff , we hold r2wout

0 constant.

APPENDIX C

TEST PROBLEM INITIAL MODEL

We use the same general initial model for the convergence test (Section 6.3), adaptive bubble rise test (Section 6.4) and forced
convection test (Section 6.5). We define a base temperature, Tbase = 6 × 108 K, and density, ρbase = 2.6 × 109 g cm−3, at some
height rbase above the bottom of the domain (rbase varies in each problem, and can be equal to zero). This defines a base entropy,
sbase = s(ρbase, Tbase). The gravitational acceleration, g = −1.5 × 1010cms−2, is constant. The composition is uniform everywhere
with X(12C) = 0.3 and X(16O) = 0.7. For r > rbase, we integrate the equation of hydrostatic equilibrium along with the constraint
that entropy is constant:

p0,j+1 = p0,j + 1
2 Δr(ρ0,j + ρ0,j+1)g. (C1)

s0,j+1 = sbase (C2)

upward from rbase. We define a temperature cutoff, Tcutoff = 107 K, and when T0,j+1 < Tcutoff , we replace Equation (C2) with
T0,j+1 = Tcutoff . If we choose rbase > 0, then we must also define the model for 0 < r < rbase. In this case, we define a desired linear
entropy profile with a discontinuous jump from sbase as

swant = 1

3
sbase +

r − rbase

rbase

sbase

12
. (C3)

No. 2, 2010 MAESTRO: LOW MACH NUMBER ASTROPHYSICS 383

This entropy profile creates a convectively stable layer below the atmosphere to prevent any motions generated from heating above
from interfering with the lower boundary. The initial model for this region is then computed by integrating

p0,j = p0,j+1 − 1
2 Δr(ρ0,j + ρ0,j+1)g, (C4)

s0,j = swant(rj), (C5)

downward from r = rbase.

REFERENCES

Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., & Welcome, M. 1998, J.
Comput. Phys., 142, 1

Almgren, A. S., Bell, J. B., Nonaka, A., & Zingale, M. 2008, ApJ, 684, 449
Almgren, A. S., Bell, J. B., Rendleman, C. A., & Zingale, M. 2006a, ApJ, 637,

922
Almgren, A. S., Bell, J. B., Rendleman, C. A., & Zingale, M. 2006b, ApJ, 649,

927
Almgren, A. S., Bell, J. B., & Zingale, M. 2007, J. Phys. Conf. Ser., 78, 2085
Almgren, A. S., et al. 2010, ApJS, in press
Bell, J. B., Berger, M. J., Saltzman, J. S., & Welcome, M. 1994, SIAM J. Sci.

Stat. Comput., 15, 127
Bell, J. B., Day, M. S., Rendleman, C. A., Woosley, S. E., & Zingale, M. A.

2004, J. Comput. Phys., 195, 677
Berger, M. J., & Colella, P. 1989, J. Comput. Phys., 82, 64
Berger, M. J., & Rigoutsos, J. 1991, IEEE Trans. Syst. Man Cybern., 21, 1278
Chamulak, D. A., Brown, E. F., Timmes, F. X., & Dupczak, K. 2008, ApJ, 677,

160

Colella, P., & Woodward, P. R. 1984, J. Comput. Phys., 54, 174
Day, M. S., & Bell, J. B. 2000, Combust. Theor. Model., 4, 535
Durran, D. 1990, Meteorol. Monogr., 23, 59
Fryxell, B., et al. 2000, ApJS, 131, 273
Glasner, S. A., Livne, E., & Truran, J. W. 2007, ApJ, 665, 1321
Höflich, P., & Stein, J. 2002, ApJ, 568, 779
Kuhlen, M., Woosley, S. E., & Glatzmaier, G. A. 2006, ApJ, 640, 407
Lin, D. J., Bayliss, A., & Taam, R. E. 2006, ApJ, 653, 545
Meakin, C. A., & Arnett, D. 2007, ApJ, 665, 690
Miller, G. H., & Colella, P. 2002, J. Comput. Phys., 183, 26
Pember, R. B., Howell, L. H., Bell, J. B., Colella, P., Crutchfield, W. Y., Fiveland,

W. A., & Jessee, J. P. 1998, Combust. Sci. Technol., 140, 123
Saltzman, J. 1994, J. Comput. Phys., 115, 153
Strohmayer, T., & Bildsten, L. 2006, in Compact Stellar X-Ray Sources, ed. W.

H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 113
Timmes, F. X., & Swesty, F. D. 2000, ApJS, 126, 501
Woosley, S. E., Wunsch, S., & Kuhlen, M. 2004, ApJ, 607, 921
Zingale, M., Almgren, A. S., Bell, J. B., Nonaka, A., & Woosley, S. E. 2009, ApJ,

704, 196

http://dx.doi.org/10.1006/jcph.1998.5890
http://dx.doi.org/10.1006/jcph.1998.5890
http://adsabs.harvard.edu/abs/1998JCoPh.142....1A
http://adsabs.harvard.edu/abs/1998JCoPh.142....1A
http://dx.doi.org/10.1086/590321
http://adsabs.harvard.edu/abs/2008ApJ...684..449A
http://adsabs.harvard.edu/abs/2008ApJ...684..449A
http://dx.doi.org/10.1086/498426
http://adsabs.harvard.edu/abs/2006ApJ...637..922A
http://adsabs.harvard.edu/abs/2006ApJ...637..922A
http://dx.doi.org/10.1086/507089
http://adsabs.harvard.edu/abs/2006ApJ...649..927A
http://adsabs.harvard.edu/abs/2006ApJ...649..927A
http://dx.doi.org/10.1088/1742-6596/78/1/012085
http://adsabs.harvard.edu/abs/2007JPhCS..78A2085A
http://adsabs.harvard.edu/abs/2007JPhCS..78A2085A
http://dx.doi.org/10.1137/0915008
http://dx.doi.org/10.1137/0915008
http://dx.doi.org/10.1016/j.jcp.2003.10.035
http://adsabs.harvard.edu/abs/2004JCoPh.195..677B
http://adsabs.harvard.edu/abs/2004JCoPh.195..677B
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://adsabs.harvard.edu/abs/1989JCoPh..82...64B
http://adsabs.harvard.edu/abs/1989JCoPh..82...64B
http://dx.doi.org/10.1109/21.120081
http://dx.doi.org/10.1086/528944
http://adsabs.harvard.edu/abs/2008ApJ...677..160C
http://adsabs.harvard.edu/abs/2008ApJ...677..160C
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://adsabs.harvard.edu/abs/1984JCoPh..54..174C
http://adsabs.harvard.edu/abs/1984JCoPh..54..174C
http://dx.doi.org/10.1088/1364-7830/4/4/309
http://adsabs.harvard.edu/abs/2000CTM.....4..535D
http://adsabs.harvard.edu/abs/2000CTM.....4..535D
http://dx.doi.org/10.1086/317361
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://dx.doi.org/10.1086/519234
http://adsabs.harvard.edu/abs/2007ApJ...665.1321G
http://adsabs.harvard.edu/abs/2007ApJ...665.1321G
http://dx.doi.org/10.1086/338981
http://adsabs.harvard.edu/abs/2002ApJ...568..779H
http://adsabs.harvard.edu/abs/2002ApJ...568..779H
http://dx.doi.org/10.1086/500105
http://adsabs.harvard.edu/abs/2006ApJ...640..407K
http://adsabs.harvard.edu/abs/2006ApJ...640..407K
http://dx.doi.org/10.1086/508863
http://adsabs.harvard.edu/abs/2006ApJ...653..545L
http://adsabs.harvard.edu/abs/2006ApJ...653..545L
http://dx.doi.org/10.1086/519372
http://adsabs.harvard.edu/abs/2007ApJ...665..690M
http://adsabs.harvard.edu/abs/2007ApJ...665..690M
http://dx.doi.org/10.1006/jcph.2002.7158
http://adsabs.harvard.edu/abs/2002JCoPh.183...26M
http://adsabs.harvard.edu/abs/2002JCoPh.183...26M
http://dx.doi.org/10.1080/00102209808915770
http://dx.doi.org/10.1006/jcph.1994.1184
http://adsabs.harvard.edu/abs/1994JCoPh.115..153S
http://adsabs.harvard.edu/abs/1994JCoPh.115..153S
http://adsabs.harvard.edu/abs/2006csxs.book..113S
http://dx.doi.org/10.1086/313304
http://adsabs.harvard.edu/abs/2000ApJS..126..501T
http://adsabs.harvard.edu/abs/2000ApJS..126..501T
http://dx.doi.org/10.1086/383530
http://adsabs.harvard.edu/abs/2004ApJ...607..921W
http://adsabs.harvard.edu/abs/2004ApJ...607..921W
http://dx.doi.org/10.1088/0004-637X/704/1/196
http://adsabs.harvard.edu/abs/2009ApJ...704..196Z
http://adsabs.harvard.edu/abs/2009ApJ...704..196Z

	1. INTRODUCTION
	2. GOVERNING EQUATIONS
	3. OVERVIEW OF NUMERICAL METHODOLOGY
	4. MAPPING
	4.1. Lateral Average
	4.2. Fill

	5. ADAPTIVE MESH REFINEMENT
	5.1. Creating and Managing the Grid Hierarchy
	5.2. Communication Between Levels
	5.3. AMR with a Time-dependent Base State
	5.4. Parallel Implementation

	6. TEST PROBLEMS
	6.1. Mapping
	6.2. Spherical Base State
	6.3. Convergence Test
	6.4. Adaptive Bubble Rise
	6.5. Forced Convection
	6.6. Full-star AMR

	7. CONCLUSIONS AND FUTURE WORK
	APPENDIX A. TIME ADVANCEMENT ALGORITHM
	A.1. Single-level Algorithm Changes From Papers III and IV
	A.2. Gravity
	A.3. Main Algorithm Notation
	A.4. Main Algorithm Description
	A.5. Numerical Cutoffs

	APPENDIX B. COMPUTING w 0 FOR SPHERICAL PROBLEMS
	APPENDIX C. TEST PROBLEM INITIAL MODEL
	REFERENCES

