
Algorithm refinement for fluctuating

hydrodynamics

Sarah A. Williams

Department of Mathematics

University of California, Davis

Davis, California, 95616, USA

John B. Bell

Center for Computational Sciences and Engineering

Lawrence Berkeley National Laboratory

Berkeley, California, 94720, USA

Alejandro L. Garcia

Department of Physics

San Jose State University

San Jose, California, 95192, USA

October 19, 2007

Abstract

This paper introduces an adaptive mesh and algorithm refinement method

for fluctuating hydrodynamics. This particle-continuum hybrid simulates the

dynamics of a compressible fluid with thermal fluctuations. The particle al-
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gorithm is direct simulation Monte Carlo (DSMC), a molecular-level scheme

based on the Boltzmann equation. The continuum algorithm is based on the

Landau-Lifshitz Navier-Stokes (LLNS) equations, which incorporate thermal

fluctuations into macroscopic hydrodynamics by using stochastic fluxes. It uses

a recently-developed solver for LLNS, based on third-order Runge-Kutta. We

present numerical tests of systems in and out of equilibrium, including time-

dependent systems, and demonstrate dynamic adaptive refinement by the com-

putation of a moving shock wave. Mean system behavior and second moment

statistics of our simulations match theoretical values and benchmarks well. We

find that particular attention should be paid to the spectrum of the flux at

the interface between the particle and continuum methods, specifically for the

non-hydrodynamic (kinetic) time scales.

1 Introduction

Adaptive mesh refinement (AMR) is often employed in computational fluid dy-

namics (CFD) simulations to improve efficiency and/or accuracy: a fine mesh is

applied in regions where high resolution is required for accuracy, and a coarser

mesh is applied elsewhere to moderate computational cost. For dynamic prob-

lems, the area that is a candidate for mesh refinement may change over time, so

methods have been developed to adaptively identify the refinement target area

at each time step (e.g., [1, 2, 3]).

However, at the smallest scales, on the order of a molecular mean free

path, continuum assumptions may not hold, so CFD approaches do not accu-

rately model the relevant physics. In such a regime, adaptive mesh and algo-

rithm refinement (AMAR) improves on AMR by introducing a more physically-

accurate particle method to replace the continuum solver on the finest mesh. An

improved simulation does not result from continued refinement of the mesh, but

rather “refinement” of the algorithm, i.e., switching from the continuum model

to a particle simulation. Introduced in [4], AMAR has proved to be a useful

paradigm for multiscale fluid modeling. In this paper, we describe AMAR for

fluctuating hydrodynamics.
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Random thermal fluctuations occur in fluids at microscopic scales (con-

sider Brownian motion), and these microscopic fluctuations can lead to macro-

scopic system effects. The correct treatment of fluctuations is especially impor-

tant for stochastic, nonlinear systems, such as those undergoing phase transi-

tions, nucleation, noise-driven instabilities, and combustive ignition. In these

and related applications, nonlinearities can exponentially amplify the influence

of the fluctuations. As an example, consider the classical Rayleigh-Taylor prob-

lem and the related Richtmyer-Meshkov instability that are prototypical prob-

lems for the study of turbulent mixing. A heavy fluid sits above a light fluid,

and spontaneous microscopic fluctuation at the interface between the fluids

leads to turbulent mixing throughout the domain. Kadau and co-workers have

recently studied the development of this turbulence at the atomic scale [5, 6].

That group’s atomistic simulations indicate that thermal fluctuations are an

important driver of the behavior of complex flows, certainly at the smallest

scales and perhaps at all scales. For example, in stochastic atomistic simula-

tions of Rayleigh-Taylor, and in laboratory experiments, spikes of the heavy

fluid that project into the light fluid can break off to form isolated droplets;

this phenomenon cannot be reproduced accurately by deterministic continuum

models. However, the physical and temporal domain on which this type of

atomistic simulation is computationally feasible is extremely limited (less than

a billion atoms per nanosecond) given current algorithms and near-term com-

putational power. Other examples in which spontaneous fluctuations play a key

role include the breakup of droplets in nano-jets [7, 8, 9], Brownian molecular

motors [10, 11, 12, 13], exothermic reactions [14, 15], such as in combustion and

explosive detonation, and reaction fronts [16]. The goal of AMAR for fluctuat-

ing hydrodynamics is to effectively enhance the computing power available for

investigations of these types of phenomena.

Hadjiconstantinou has reviewed theoretical and numerical approaches

to challenges arising from the breakdown of the Navier-Stokes description at

small-scale and (with Wijesinghe) described a variety of particle-continuum

methods for multiscale hydrodynamics [17, 18]. The work presented here is

the latest effort in a line of work that has focussed on building AMAR hy-
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brids for flows of increasing sophistication. A hybrid coupling Navier-Stokes

and DSMC was developed in [4], with several of the technical issues necessary

for implementation extended in [19]. Stochastic hybrid methods were developed

in [20] (mass diffusion), [21] (the ”train model” for momentum diffusion), and

[22] (Burgers’ equation). Other recent work on coupling particle and contin-

uum methods includes [23] (DSMC and Navier-Stokes, for aerospace applica-

tions), [24, 25] (molecular dynamics and isothermal fluctuating hydrodynamics,

for polymer simulations), and [26] (an adaptive refinement approach based on

a direct numerical solution of the Boltzmann transport equation and kinetic

continuum schemes).

The AMAR approach is characterized by several design principles. In

contrast to other algorithm refinement (AR) approaches (see, e.g. [27]), in

AMAR (as in AMR) the solution of the macroscopic model is maintained over

the entire domain. A refinement criterion is used to estimate where the im-

proved representation of the particle method is required. That region, which

can change dynamically, is then “covered” with a particle patch. In this hier-

archical representation, upon synchronization the particle solution replaces the

continuum solution in the regions covered by the molecular patches.

Given their complexity, the implementations of hybrid codes benefit

greatly from modularization (e.g., see [23]). Another fundamental tenant of the

AMAR approach to particle-continuum hybridization is that the coupling of the

two algorithms is completely encapsulated in several “hand-shaking” routines.

Taken as a unit, the particle method plus these modular routines perform exactly

the same function as any fine grid in a single-algorithm AMR method. The

encapsulated coupling routines perform the following functions: continuum data

is used to generate particles that flow into the particle region; flux across the

boundaries of the particle region is recorded and used to correct neighboring

continuum values; cell-averaged data from the particle grid replaces data on

the underlying continuum grid; continuum data is used to generate particles to

initialize new particle regions identified by the refinement criterion

Implementation details are given in the next two sections of the pa-

per. Our continuum approach for fluctuating hydrodynamics is an explicit fi-
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nite volume method for solving the Landau-Lifshitz Navier-Stokes equations

for compressible fluid flow (see Section 2.1), and, as noted above, the particle

method is direct simulation Monte Carlo (DSMC) (see Section 2.2). Hybrid cou-

pling details are discussed in Section 3. Numerical results for problems with a

static refinement region are presented in Section 4, for a variety of steady-state

and time-dependent problems with the flow restricted to one spatial dimen-

sion. (Forthcoming work will illustrate this construction extended to 2- and

3-dimensional systems.) Details of adaptive refinement are discussed in Sec-

tion 4.5, including numerical results for an adaptive refinement shock-tracking

problem. We conclude, in Section 5, with a discussion of future work.

2 Components of the Hybrid

2.1 Continuum Approach

The continuum model and solver discussed in this section was introduced in

[28], and the reader is referred to that paper for further details of the method

and measurements of its performance.

To incorporate thermal fluctuations into macroscopic hydrodynamics,

Landau and Lifshitz introduced an extended form of the Navier-Stokes equations

by adding stochastic flux terms [29]. The LLNS equations have been derived by

a variety of approaches (see [29, 30, 31, 32, 33]) and while they were originally

developed for equilibrium fluctuations validity of the LLNS equations for non-

equilibrium systems has been derived [34] and verified in molecular simulations

[35, 36, 37].

The Landau-Lifshitz Navier-Stokes (LLNS) equations may be written

as

∂U/∂t +∇ · F = ∇ ·D +∇ · S (1)

where

U =




ρ

J

E




is the vector of conserved quantities (density of mass, momentum and energy).
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The hyperbolic flux is given by

F =




ρv

ρvv + P I

(E + P )v




and the diffusive flux is given by

D =




0

τ

τ · v + κ∇T




,

where v is the fluid velocity, P is the pressure, T is the temperature, and

τ = η(∇v +∇vT − 2
3I∇ · v) is the stress tensor. Here η and κ are coefficients

of viscosity and thermal conductivity, respectively, where we have assumed the

bulk viscosity is zero.

The mass flux is microscopically exact but the other two flux compo-

nents are not; for example, at molecular scales heat may spontaneously flow

from cold to hot, in violation of the macroscopic Fourier law. To account for

such spontaneous fluctuations, the LLNS equations include a stochastic flux

S =




0

S
Q+ v · S




,

where the stochastic stress tensor S and heat flux Q have zero mean and co-

variances given by

〈Sij(r, t)Sk`(r′, t′)〉 = 2kBηT
(
δK
ikδK

j` + δK
i` δK

jk − 2
3δK

ij δK
k`

)
δ(r− r′)δ(t− t′),

〈Qi(r, t)Qj(r′, t′)〉 = 2kBκT 2δK
ij δ(r− r′)δ(t− t′),

and

〈Sij(r, t)Qk(r′, t′)〉 = 0,

where kB is Boltzmann’s constant.

For simplification, in this work we restrict our attention to flow in

one dimension. That is, we take the fluid velocity v = (u, v, w) to be three-

dimensional, but we only consider spatial derivatives in the x-direction. Then
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(1) simplifies to

∂

∂t




ρ

ρu

ρv

ρw

E




= − ∂

∂x




ρu

ρu2 + P

ρuv

ρuw

(E + P )u




+
∂

∂x




0

τ11

τ12

τ13

τ11u + τ12v + τ13w + κ∂xT




+
∂

∂x




0

s11

s12

s13

q + us11 + vs12 + ws13




(2)

where s11, s12, s13, and q are independent random variables with zero mean and

variances,

〈s11(x, t)s11(x′, t′)〉 =
8kBηT

3σ
δ(x− x′)δ(t− t′),

〈s12(x, t)s12(x′, t′)〉 =
2kBηT

σ
δ(x− x′)δ(t− t′),

〈s13(x, t)s13(x′, t′)〉 =
2kBηT

σ
δ(x− x′)δ(t− t′),

and

〈q(x, t)q(x′, t′)〉 =
2kBκT 2

σ
δ(x− x′)δ(t− t′),

with σ being the surface area of the system in the yz-plane.

For the calculations described in this paper take the fluid to be a di-

lute gas with equation of state P = ρRT (ideal gas law) and energy density

E = cvρT + 1
2ρ(u2 + v2 + w2). The transport coefficients are only functions of

temperature, specifically we take them as η = η0

√
T and κ = κ0

√
T , where the

constants η0 and κ0 are chosen to match the viscosity and thermal conductivity

of a hard sphere gas. We also have gas constant R = kB/m and cv = R
γ−1

where m is the mass of a particle and the ratio of specific heats is taken to be

γ = 5
3 , that is, a monatomic gas. Note that generalizations of fluid parameters

are straight-forward and the choice of a monatomic hard sphere gas is for con-

venience in matching parameters in the PDE with those of DSMC simulations

(see Section 2.2).
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The principal difficulty in solving Eqs.(2) arises because there is no

stochastic forcing term in the mass conservation equation. Accurately captur-

ing density fluctuations requires that the fluctuations be preserved in computing

the mass flux. Another key observation is that the representation of fluctua-

tions in computational fluid dynamics schemes is also sensitive to the time step,

with extremely small time steps leading to improved results. This suggests that

temporal accuracy also plays a significant role in capturing fluctuations. Based

on these observations, a discretization aimed specifically at capturing fluctua-

tions in the LLNS equations has been developed [28]. The method is based on

a third-order, total variation diminishing (TVD) Runge-Kutta temporal inte-

grator (RK3) [38, 39] combined with a centered discretization of hyperbolic and

diffusive fluxes.

The RK3 discretizaton can be written in the following three-stage form:

Un+1/3
j = Un

j −
∆t

∆x
(Fn

j+1/2 −Fn
j−1/2)

Un+2/3
j =

3
4
Un

j +
1
4
Un+1/3

j − 1
4

(
∆t

∆x

)
(Fn+1/3

j+1/2 −F
n+1/3
j−1/2 )

Un+1
j =

1
3
Un

j +
2
3
Un+2/3

j − 2
3

(
∆t

∆x

)
(Fn+2/3

j+1/2 −F
n+2/3
j−1/2 ),

where Fm = F(Um)−D(Um)−S̃(Um) and S̃ =
√

2S. The diffusive terms D are

discretized with standard second-order finite difference approximations. In the

approximation to the stochastic stress tensor, S̃j+1/2, the terms are computed

as

smn =
√

kB

∆tVc

(
1 + 1

3δK
mn

)
(ηj+1Tj+1 + ηjTj) <j+1/2

where Vc = σ∆x is the volume of a cell and the <’s are independent, Gaussian

distributed random values with zero mean and unit variance. Similarly, the

discretized stochastic heat flux is evaluated as

q =
√

kB

∆tVc
(κj+1(Tj+1)2 + κj(Tj)2) <j+1/2.

Combining the three stages, we can write

Un+1
j = Un

j −
∆t

∆x

(
FΣ

j+1/2 −FΣ
j−1/2

)
.

where

FΣ
j±1/2 =

1
6
Fn

j±1/2 +
1
6
Fn+1/3

j±1/2 +
2
3
Fn+2/3

j±1/2 .
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The variance in the stochastic flux at j + 1/2 is given by

〈(SΣ
j+1/2)

2〉 = 〈(1
6
(S̃n

j+1/2) +
1
6
(S̃n+1/3

j+1/2 ) +
2
3
(S̃n+2/3

j+1/2 ))2〉

=
(

1
6

)2

〈(S̃n
j+1/2)

2〉+
(

1
6

)2

〈(S̃n+1/3
j+1/2 )2〉+

(
2
3

)2

〈(S̃n+2/3
j+1/2 )2〉

Neglecting the multiplicity in the noise we obtain the desired result that 〈(SΣ)2〉 =

1
2 〈(S̃)2〉 = 〈(S)2〉, that is, taking S̃ =

√
2S corrects for the reduction of the

stochastic flux variance due to the three-stage averaging of the fluxes. However,

this treatment does not directly affect the fluctuations in density, since the com-

ponent of S in the continuity equation is zero . The density fluctuations are

controlled by the spatial discretization. To compensate for the suppression of

density fluctuations due to the temporal averaging we interpolate the momen-

tum J = ρu (and the other conserved quantities) from cell-centered values:

Jj+1/2 = α1(Jj + Jj+1)− α2(Jj−1 + Jj+2), (3)

where

α1 = (
√

7 + 1)/4 and α2 = (
√

7− 1)/4.

Then in the case in which J is statistically stationary and constant in space we

have exactly Jj+1/2 = J and 〈δJ2
j+1/2〉 = 2〈δJ2〉, as desired; the interpolation is

consistent and compensates for the variance-reducing effect of the multi-stage

Runge-Kutta algorithm.

The stochastic flux in our numerical schemes for the LLNS equations is

a multiplicative noise since we take variance to be a function of instantaneous

temperature. In [28] we tested the importance of the multiplicity of the noise

by repeating the equilibrium runs taking the temperature fixed in the stochastic

fluxes and found no difference in the results. While this might not be the case

for extreme conditions, at that point the hydrodynamic assumptions implicit in

the construction LLNS PDEs would likely also break down; this is yet another

reason for using algorithm refinement.

2.2 Particle Approach

The particle method used here is the direct simulation Monte Carlo (DSMC)

algorithm, a well-known method for computing gas dynamics at the molecular
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scale; see [40, 41] for pedagogical expositions on DSMC, [42] for a complete

reference, and [43] for a proof of the method’s equivalence to the Boltzmann

equation (in the limit that N → ∞ while ρ is constant). As in molecular dy-

namics, the state of the system in DSMC is given by the positions and velocities

of particles. In each time step, the particles are first moved as if they did not

interact with each other. After moving the particles and imposing any boundary

conditions, collisions are evaluated by a stochastic process, conserving momen-

tum and energy and selecting the post-collision angles from their kinetic theory

distributions.

While DSMC is a stochastic algorithm, the statistical variation of the

physical quantities has nothing to do with the “Monte Carlo” portion of the

method. Equilibrium fluctuations are correctly simulated by DSMC in the same

fashion as in molecular dynamics simulations, specifically, by the fact that both

algorithms produce the correct density of states for the appropriate equilibrium

ensembles. For example, for a dilute gas the velocity distribution of the par-

ticles is the Maxwell-Boltzmann distribution and the positions are uniformly

distributed. For finite particle number the DSMC method is closely related

to the Kac Master equation [44] and the Boltzmann-Langevin equation [30].

For both equilibrium and non-equilibrium problems DSMC yields the physical

spectra of spontaneous thermal fluctuations, as confirmed by excellent agree-

ment with fluctuating hydrodynamic theory [45, 36, 35] and molecular dynamics

simulations [46, 37].

In this work the simulated physical system is a dilute monatomic hard-

sphere gas. For engineering applications more realistic molecular models are

regularly used in DSMC; for such a case the construction presented here would

only be modified by adjusting the functional form of the transport coefficients

and including internal degrees of freedom in the total energy. Our simulation

geometry is a rectangular volume with periodic boundary conditions in the y

and z directions. In the x direction, Dirichlet (or “particle reservoir”) boundary

conditions are used to couple the DSMC domain to the continuum domain of

our hybrid method. These interface conditions are described in the next section.
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3 Hybrid implementation

The fundamental goal of the algorithm refinement hybrid is to represent the fluid

dynamics with the low-cost continuum model everywhere except in a localized

region where higher-fidelity particle representation is required. In this section,

we assume that a fixed refinement region is identified a priori. Additional

considerations necessary for dynamic refinement are discussed in Section 4.5.

The coupling between the particle and continuum regions uses the ana-

log of constructs used in developing hierarchical mesh refinement algorithms.

The continuum method is applied to the entire computational domain, and a

particle region, or patch, is overlaid in refinement regions. For simplicity, in this

discussion we will assume that there is a single refined patch. Generalization of

the approach to include multiple patches (e.g. [19]) is fairly straightforward.
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Figure 1: Schematic representation of the coupling mechanisms of the hybrid al-

gorithm. 1. Advance continuum solution. 2. Advance DSMC solution (2a), using

continuum data in reservoir boundaries (2b). 3. Reflux (3a) to correct continuum

solution near interface (3b).

Integration on the hierarchy is a three step process, as depicted in Fig-

ure 1. First (1), we integrate the continuum algorithm from tn to tn+1, i.e., for a

continuum step ∆t. Next (2), the particle simulation is advanced to time tn+1.

Continuum data at the edge of the particle patch provides reservoir boundary

conditions for the particle method. The implementation of reservoir boundary

conditions for DSMC is described in [4]. As in that paper, particles that enter

the particle patch have velocities drawn from the either the Maxwell-Boltzmann

distribution or the Chapman-Enskog distribution. While the Chapman-Enskog

distribution is preferred in deterministic hybrids (see [4]) we find that in the

stochastic hybrid the Maxwell-Boltzmann distribution sometimes yields bet-

ter results for the second moment statistics (see Sections 4.1 and 4.3). While

Chapman-Enskog yields slightly more accurate results for time-dependent prob-
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lems, where we focus on the mean behavior of the system (see Sections 4.4 and

4.5), one must recall that the derivation of the LLNS equations is based on the

assumption of local equilibrium (e.g., gradients do not appear in the amplitudes

of the stochastic fluxes).

When particle velocities in the reservoir cells are generated from the

Chapman-Enskog distribution, the gradients of fluid velocity and temperature

must be estimated in those cells. Furthermore, we also account for density gra-

dients and generate the particle positions in the reservoir cells accordingly (see

the Appendix). However, since the fluctuating continuum model generates steep

local gradients, even at equilibrium, we use a regional gradient estimate to rep-

resent underlying gradient trends. The regional gradient D(ξ) is implemented

as:

D(ξ)j =
1

S∆x

[
1
S

S∑

i=1

ξj+i − 1
S

S∑

i=1

ξj−(i−1)

]
, (4)

where ξ is one of the conserved quantities and S indicates the width of the

gradient stencil (we use S = 6). Because the Chapman-Enksog distribution is

derived from a perturbation expansion in dimensionless gradient we use slope-

limiting to bound the breakdown parameter (see [47] for details).

In general, DSMC uses smaller space and time increments than the

continuum method. Spatial refinement is accomplished by dividing the DSMC

patch into any number of smaller cells at the collision stage of the algorithm. For

simplicity, we assume that an integer number of time steps elapse on the particle

patch for every continuum time step. The old and new continuum states, Un
j and

Un+1
j , are retained until all the intermediate particle time steps are complete,

and the continuum data is interpolated in time to provide appropriate boundary

data at each particle method time step. An alternative version of the DSMC

algorithm allows the time steps to be event-driven[48], but here we use time

increments of fixed size.

Finally, step (3) corrects the macroscopic solution to reflect the effect of

the microscopic model as though the integration were tightly coupled. On the

region covered by the particle representation we replace the continuum solution

by the more accurate particle representation. That is, for each cell covered by
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the particle patch we set

ρn+1
j =

Njm

σ∆x

Jn+1
j =

∑
Nj

vm

σ∆x
(5)

En+1
j =

∑
Nj

1
2

(
u2 + v2 + w2

)
m

σ∆x
,

where Nj is the number of particles in cell j, m is the mass of a particle, and

σ∆x is the volume of a computational cell. In the calculation of each momentum

component, the product of the particle mass with the velocity is summed over

all particles in the cell. In the calculation of energy we sum the squares of the

three velocity components over all the particles in the cell.

Moreover, we must correct (“reflux”) the continuum solution in the cells

immediately adjacent to the particle region, to account for the gas that entered

or exited the particle patch during step (2). Specifically, suppose the leftmost

cell of the particle patch is cell j +1. The value in continuum cell j was already

updated with the continuum stochastic RK3 scheme, using the total flux, F ,

computed from the continuum values. However, this value is not consistent with

the microscopic flux given by the net number of particles moving across edge

j + 1/2. The reflux step corrects the value in cell-j so that it is consistent with

the microscopic flux at j + 1/2.

To perform the refluxing correction we monitor the number of particles,

N→j+1/2 and N←j+1/2, that move into and out of the particle region, respectively,

across the continuum/particle interface at edge j + 1/2. We then correct the

continuum solution as

U′n+1
j = Un+1

j +
∆t

∆x
(FΣ

j+1/2 −FP
j+1/2) (6)

where the prime indicates the value after the refluxing update. The net particle

flux is

FP
j+1/2 =

m

σ∆t




N→j+1/2 −N←j+1/2

∑→
i vi −

∑←
i vi

1
2

∑→
i |vi|2 − 1

2

∑←
i |vi|2




(7)

where
∑→

i and
∑←

i are sums over particles crossing the interface from left-to-

right and right-to-left, respectively.

13



This update effectively replaces the continuum flux component of the

update to Un+1
j on edge j + 1/2 by the flux of particles with their associated

momentum through the edge. An analogous refluxing step occurs in the cell

adjacent to the right-hand boundary of the particle region. Finally, note that

this synchronization procedure guarantees conservation. The technical details

of refluxing in higher dimensions (e.g., the treatment of corners) are discussed

in Garcia et al. [4].

4 Numerical results

This section presents a series of computational examples, of progressively in-

creasing sophistication, that demonstrate the accuracy and effectiveness of the

algorithm refinement hybrid. First we examine an equilibrium system, then

several non-equilibrium examples, concluding with a demonstration of adaptive

refinement.

In our testing we compare three numerical schemes: the stochastic

scheme based on three-stage Runge-Kutta for the Landau-Lifshitz Navier-Stokes

equations discussed in Section 2.1 (Stoch. PDE only), and two algorithm re-

finement hybrids as described in Section 3. The first hybrid couples DSMC and

stochastic RK3 (Stoch. Hybrid). The second hybrid is similar but without a

stochastic flux in the LLNS equations, that is, using a deterministic version of

RK3 (Deter. Hybrid). In some of the tests the results from these schemes are

compared with data from a pure DSMC calculation.

The parameters used in the various numerical tests were selected, when

possible, to be the same as in [28] to allow comparison. In that paper it was es-

tablished that the stochastic RK3 method had a linear convergence of variances

in both ∆x and ∆t and was accurate to within a few percent for the parameters

used here. Furthermore, simulation parameters were chosen to be typical for a

DSMC simulation. For example, the time step and cell size truncation errors

in DSMC dictate that an accurate simulation requires these to be a fraction of

a mean collision time and mean free path, respectively [42]. The cell volume

was selected such that the amplitude of the fluctuations was significant (with
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a standard deviation of about 10 percent of the mean) while remaining within

the range of validity of fluctuating hydrodynamics.

In principle, the continuum grid of an AMAR hybrid may have as many

hierarchical levels as necessary, and there may be many disjoint and/or linked

DSMC patches. For simplicity, here we will consider a single DSMC region

embedded within a single-level continuum grid. Furthermore, in the following

numerical examples we use equal mesh spacing, ∆x, and time step size, ∆t,

in both the continuum and particle methods. The straightforward adjustments

necessary for implementing a DSMC grid with smaller ∆x and ∆t are presented

in Section 3.

4.1 Equilibrium system: state variables

First, we consider a system in a periodic domain with zero bulk flow and uniform

mean energy and mass density. Parameters for this equilibrium system are given

in Table 1. Results from this first test problem are depicted in Figures 2–5. For

both algorithm refinement hybrids, the particle patch is fixed at the center of

the domain, covering cells 15–24, indicated in the figures by vertical dotted

black lines. For this equilibrium problem the particles in the patches used

to provide boundary reservoirs for DSMC have velocities generated from the

Maxwell-Boltzmann distribution. In each simulation the system is initialized

near the final state and allowed to relax for 5 × 106 time steps. Statistics are

then gathered over 107 time steps. Note that in these first tests we confirmed

that all three schemes conserve total density, momentum and energy; recall that

the hybrids are conservative due to the “refluxing” step. 1

First, we examine mass density; results from the various numerical

schemes are shown in Fig. 2. The first panel shows the mean of mass den-

sity at each spatial location, 〈ρi〉, and the second panel shows the variance,

〈δρ2
i 〉 = 〈(ρi − 〈ρi〉)2〉. The third panel shows the center-point correlation,

〈δρiδρj=20〉, that is, the covariance of δρi with the value at the center of the

1When the grids move dynamically this exact conservation is lost because of quantization

effects associated with initialization of a particle distribution from continuum data.
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Table 1: System parameters (in cgs units) for simulations of a dilute gas at

equilibrium in a periodic domain.

Molecular diameter (argon) 3.66× 10−8

Molecular mass (argon) 6.63× 10−23

Reference mass density 1.78× 10−3

Reference temperature 273

Specific heat (cv) 3.12× 106

Sound speed (c) 30781

Reference mean free path (λ) 6.26× 10−6

Reference mean free time (tm) 1.64× 10−10

System length 1.25× 10−4

System volume 1.96× 10−16

Number of computational cells 40

Cell length (∆x) 3.13× 10−6

Time step (∆t) 1.0× 10−12

domain (j = 20). These three quantities are estimated from samples as

〈ρi〉 =
1

Ns

Ns∑
n=1

ρn
i ,

〈δρ2
i 〉 =

(
1

Ns

Ns∑
n=1

(ρn
i )2

)
− 〈ρi〉2,

〈δρiδρ20〉 =

(
1

Ns

Ns∑
n=1

ρn
i ρn

20

)
− 〈ρi〉〈ρ20〉,

where Ns = 107 is the number of samples and i = 1, . . . , 40. Similar statistics

for x-momentum, y-momentum, and energy are displayed in Figs. 3 and 5;

the statistics for z-momentum are similar to those for y-momentum, and are

omitted here. We only consider these conserved mechanical variables because

the continuum scheme is based on them, they are easily measured in molecular

simulations, and hydrodynamic variables, such as pressure and temperature, are

directly obtained from these mechanical variables [49].

We obtain the correct mean values for all three schemes, with the con-

tinuum method exhibiting some numerical oscillations, most notably in the x-

momentum. For the most part, the correct variance values are also obtained by
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Mass Density Statistics
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Figure 2: Mean, variance, and center point correlation of mass density versus spatial

location for a system at equilibrium. Vertical dotted lines depict the boundaries of

the particle region, for both hybrids. Note that, for clarity, the correlation value at

i = j = 20 is omitted from the plot.

the two stochastic schemes. In fact, the stochastic continuum method used here

was developed in [28] with the particular goal of correctly reproducing the vari-

ances of conserved quantities. Nevertheless, some localized errors in variance

introduced by the stochastic hybrid algorithm are evident in these figures. At

the left and right boundaries of the particle patch, there is a peak error in the

variance of about 23% for mass density and 14% for energy. These discrepancies

are discussed in detail in Section 4.2.

Figs. 2–5 also illustrate the effect on fluctuations when the hybrid’s

continuum PDE scheme does not include a stochastic flux. Clearly, the variances

drop to near zero inside the deterministic continuum regions, left and right of

the particle patch. More significantly, the variances within the patch are also

damped. Even more interesting is the appearance of a large correlation of

fluctuations in the particle region of the deterministic hybrid. It is well-known
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x−Momentum Statistics
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Figure 3: Mean, variance, and center point correlation of x-momentum versus spa-

tial location for a system at equilibrium. Vertical dotted lines depict the boundaries

of the particle region, for both hybrids. Note that, for clarity, the correlation value

at i = j = 20 is omitted from the plot.

that correlations such as those appearing in the deterministic hybrid are present

when a fluid is out of thermodynamic equilibrium (see Sec. 4.3). The results

shown here for the center point correlation in the deterministic hybrid emphasize

that the absence of fluctuations in the PDE causes the particle region to be in

a non-equilibrium state; similar results were observed in [21, 22]. This result

underscores the importance of including fluctuations in the continuum model

for problems in which the correct fluctuation structure is needed in the particle

region.

4.2 Equilibrium system: fluxes

Ideally, a hybrid method should produce a seamless integration at the interface

between two algorithms. However, in Section 4.1 we saw that an error arises in

the variance of mass density and the variance of energy at algorithm refinement
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Y−Momentum Statistics

5 10 15 20 25 30 35 40
−0.04

0

0.04

〈 ρ
v 

〉

5 10 15 20 25 30 35 40
0

5

10

15

〈 δ
(ρ

 v
)2  〉 Stoch. PDE only

Deter. hybrid
Stoch. hybrid
Theory

5 10 15 20 25 30 35 40
−1

−0.5

0

〈 δ
 (

ρ 
v)

i  δ
 (

ρ 
v)

20
  〉

Figure 4: Mean, variance, and center point correlation of y-momentum versus spa-

tial location for a system at equilibrium. Vertical dotted lines depict the boundaries

of the particle region, for both hybrids. Note that, for clarity, the correlation value

at i = j = 20 is omitted from the plot.

interfaces where the particle method and continuum method interact (see Figs.

2 and 5). Furthermore, the spatial correlations, such as 〈δJiδJj〉 in Fig. 3,

exhibit some correlations within the particle region, an effect reminiscent of

what is observed in non-equilibrium systems (see Section 4.3).

Fluxes are fundamental to the coupling mechanism in AMAR: contin-

uum cells adjacent to a refinement interface are updated with particle flux (see

Eq. (6)). Therefore, to investigate these errors in the variance, in this section

we focus on statistical properties of the flux. We restrict our attention to mass

flux, since it is determined by a single factor: x-momentum in the continuum

formulation, as in Eq. (2), and number of particle crossings in the discrete

formulation, as in Eq. (7).

In [28] we demonstrated that the stochastic RK3 method and DSMC

both obtain the correct means, variances, and correlations, both spatial and
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Energy Statistics
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Figure 5: Mean, variance, and center point correlation of energy versus spatial

location for a system at equilibrium. Vertical dotted lines depict the boundaries of

the particle region, for both hybrids. Note that, for clarity, the correlation value at

i = j = 20 is omitted from the plot.

temporal, of conserved quantities at equilibrium. Nevertheless, the nature of

the fluxes differs markedly between the two methods. To illustrate this point,

we consider a pure fluctuating continuum calculation and compare it to a pure

DSMC calculation, for the same equilibrium test problem discussed in Section

4.1.

As shown in Table 2, the variance of x-momentum, 〈δJ2〉, as obtained

by the continuum method and by DSMC, are each in agreement with thermo-

dynamic theory. (Derivation of the theoretically exact variance is discussed in

[49].) Hydrodynamic theory directly relates the mass flux to the momentum,

and for the stochastic RK3 scheme the variance of mass flux is given by

〈(
δF (1)

)2
〉

= 2
(

∆t

∆x

)2 〈
δJ2

〉
= 2

(
∆t

∆x

)2
ρkBT

σ∆x
. (8)

(See also the discussion of Eq. (3).) On the other hand, kinetic theory predicts
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Table 2: Variance of x-momentum and of mass flux at equilibrium.

〈δJ2〉 Computed value Thermodynamic theory Pct. error

Stoch. PDE only 13.62 13.34 2.1%

DSMC 13.21 13.34 -1.0%

〈δF (1)2〉 Computed value Hydrodynamic theory Kinetic theory Pct. error

Stoch. PDE only 2.84× 10−12 2.72× 10−12 4.3%

DSMC 1.44× 10−10 1.46× 10−10 -1.8%

that the number of particles crossing a cell interface is Poisson distributed, with

〈N→〉 =
〈
(δN→)2

〉
=

1
2
√

π

( ρ

m

)
σ∆t

√
2kBT

m
.

(Derivation is discussed in [42], for example.) From this we have the variance

of the mass flux given by

〈(
δF (1)

)2
〉

=
m2

(σ∆x)2
〈
δ (N→ −N←)2

〉
=

2m2

(σ∆x)2
〈
(δN→)2

〉

=
mρ√
π σ

∆t

∆x2

√
2kBT

m
. (9)

Comparing eqns. (8) and (9) one finds that the hydrodynamic and kinetic theory

expressions match when the Courant number, C = c∆t/∆x, is order one yet for

the runs presented here C ≈ 10−2 (see Table 1).

From Table 2, we see that the variance of the mass flux for the con-

tinuum method is in good agreement with the hydrodynamic theory, Eq. (8),

and the corresponding DSMC result is in good agreement with kinetic theory,

Eq. (9). Yet, the two variances of mass flux differ by over two orders of mag-

nitude. To understand the nature of this discrepancy, we investigate the time

correlation of the mass flux.

To estimate the time correlation of mass flux for a timeshift of t′ we

calculate 〈δF (1)(t)δF (1)(t + t′)〉 in each of the 40 computational cells from ap-

proximately 105 data samples. The average value of each time correlation over

the 40 computational cells is displayed in Fig. 6, for stochastic RK3 and for

DSMC. Time correlation data is displayed in units of mean free collision time

(tm).

In Fig. 6 we see that the mass flux for DSMC decorrelates immediately,
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Figure 6: Time correlations of mass flux, for the particle method (DSMC) and the

PDE method.

whereas the continuum mass flux decorrelates after approximately one half of

one mean free collision time. Note that for all the simulation results presented

here, the stochastic PDE and the DSMC use the same time step, and that

time step is over two orders of magnitude smaller than tm. The origin of the

discrepancy in Table 2 is now clear. The hydrodynamic formulation is only

accurate at hydrodynamic time scales, that is, at time scales that are large

compared to tm. Further investigations (not presented here) indicate that when

the two methods are run using a significantly larger time step, the variance

and time correlations of the mass flux are in general agreement between the

two methods. However, at large time step, the truncation error for the PDE

scheme negatively effects the results for other quantities, e.g., the variance in

conserved quantities. Given that the statistical properties of the fluxes differ

between hydrodynamic scales and molecular (kinetic) scales, it is not surprising

that the variances of conserved quantities are not seamless at the interface of the
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two methods and a spatial correlation of these quantities is observed. Why the

former effect is most prominent for density and energy variances is still under

investigation. This issue is discussed further in the concluding section.
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4.3 Non-equilibrium system: temperature gradient

In the early 1980’s, a variety of statistical mechanics calculations predicted that

a fluid under a non-equilibrium constraint, such as a temperature gradient,

would exhibit long-range correlations of fluctuations [50, 51]. Due to the asym-

metry of sound waves moving parallel versus anti-parallel to the temperature

gradient, quantities that are independent at equilibrium, such as density and

momentum fluctuations, also have long-range correlations. These predictions

were qualitatively confirmed by light scattering experiments [52], yet the effects

are subtle and difficult to measure accurately in the laboratory. Molecular sim-

ulations confirm the predicted correlations of non-equilibrium fluctuations for a

fluid subjected to a temperature gradient [53, 36] and to a shear [54]; they are

also observed in simple random walk models of fluids [21]. With these predic-

tions in mind, we consider a system with a temperature gradient. Specifically,

the boundary conditions are thermal walls at 273K and 819K; the other system

parameters are as shown in Table 1. This non-equilibrium state is extreme, with

a temperature gradient of millions of degrees per centimeter, yet it is accurately

modeled by DSMC, which was originally developed to simulate strong shock

waves.

The system is initialized near the final state and is allowed to relax for

106 time steps before samples are taken at each computational cell over 108 time

steps. The measure shown here (Figures 7-9) is the spatial correlation between

mass density and momentum, specifically 〈δρiδJ20〉. A pure DSMC simulation

is used as the benchmark.

Although the stochastic RK3 method gives a good match to the DSMC

benchmark away from the correlation point, the results deteriorate near the

correlation point (Fig. 7). In the stochastic hybrid method, a particle patch is

placed around the region of difficulty and the results are significantly improved

in that region (Fig. 8). Given that theoretical results often make predictions

for the near-center point correlations (e.g., 〈δρiδJj〉 ∝ ∇T for i ≈ j), making it

the region of interest, the stochastic hybrid method outperforms the pure con-

tinuum method in this non-equilibrium test case. Finally, in Fig. 9 we consider

the hybrid that couples deterministic RK3 with DSMC. Again, DSMC is em-
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ployed in a single patch at the center of the domain. However, with fluctuations

suppressed in the remainder of the domain, the overall results suffer. Strikingly,

the results suffer not only in the continuum region, but also within the particle

region.
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Figure 7: Center point correlation of mass density and x-momentum for a system

under a steep temperature gradient.

4.4 Non-equilibrium system: strong moving shock

In this time-dependent problem, we consider a Mach 2 shock traveling through

a domain that includes a static refinement region. The objective of this example

is to test how well the hybrid performs when a strong nonlinear wave crosses the

interface between continuum and particle regions. Dirichlet boundary conditions

are used at the domain boundaries; values for the left-hand (LHS) and right-

hand (RHS) states are given in Table 3.

The mass density profile depicted by the dark line is an average profile

from an ensemble of 2000 stochastic hybrid runs. Results from an ensemble of

2000 pure stochastic PDE simulations of the traveling wave, without a particle

patch, are shown for comparison. The first panel of Fig. 10 also includes the
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Figure 8: Center point correlation of mass density and x-momentum for a system

under a steep temperature gradient. Vertical dotted lines depict the boundaries of

the particle region for the hybrid method.

mass density profile from a single stochastic hybrid simulation, illustrating the

relative magnitude of the thermal fluctuations. At time t0, before the shock

enters the particle region, the ensemble-averaged data is smooth. At time t1,

a spurious reflected wave is formed at the interface on the left-hand side of

the particle patch. This spurious acoustic wave is damped as it propagates

leftward, vanishing by time t4. Another small error effect is seen as the shock

exits the particle patch, at time t5, but it is barely discernible by time t7. In

summary, we observe a relatively local and short-lived error that indicates an

impedance mismatch between the continuum and particle regions, as shown

in Figure 10. This mismatch is likely due to the linear approximation of the

shear stress and heat flux in the Navier-Stokes equations, which is not accurate

for the steep gradients of a strong shock. More complicated expressions for

the dissipative fluxes have been derived (e.g., Burnett equations [55]) but for a

variety of reasons, such as difficulties in treating boundary conditions, they are

not in common use in computational fluid dynamics.

A well-known feature of CFD solvers is the artificial steepening of vis-

cous shock profiles; it is also well-established that DSMC predicts shock profiles
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Figure 9: Center point correlation of mass density and x-momentum for a system

under a steep temperature gradient. Vertical dotted lines depict the boundaries of

the particle region for the hybrid method.

accurately [42, 56]. At times t2 through t6, we see a steepness discrepancy be-

tween the ensemble hybrid profile and the ensemble PDE-only profile. Within

the particle patch, the DSMC algorithm correctly resolves a more shallow pro-

file. This example demonstrates the robustness and stability of the treatment

of the interface between the particle region and the continuum solver.

Finally, in this example, the Chapman-Enskog distribution was used

to initialize velocities of particles that enter the refinement region from the

continuum region. This approach was found to result in a somewhat reduced

impedance mismatch compared to the Maxwell-Boltzmann distribution.
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Table 3: System parameters (in cgs units) for simulations of a traveling shock.

Mach number 2.0

LHS RHS

Mass density 4.07× 10−3 1.78× 10−3

Velocity (x-direction) 34629 0

Temperature 567 273

Sound speed 44373 30781

Mean free path 2.74× 10−6 6.26× 10−6

Cell length (∆x) 3.13× 10−6

Time step (∆t) 1.0× 10−12
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Figure 10: Mass density profiles for a viscous shock wave traveling through a fixed

refinement region (indicated by vertical dotted lines). The time elapsed between

each panel is 300∆t; see Table 3 for system parameters.
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4.5 Adaptive refinement

The final numerical test demonstrates the adaptive refinement capability of our

hybrid algorithm. As in Section 4.4, a strong traveling shock (Mach 2) moves

through a domain with Dirichlet boundary conditions; system parameters are

given in Table 3. Here, though, the location of a particle patch is determined

dynamically by identifying cells in which the gradient of pressure exceeds a given

tolerance; the particle patch is shown in Figure 11 by vertical dotted lines.

Large scale gradients in pressure provide an effective criterion for identi-

fying the presence of a shock wave. Since the fluctuations produce steep localized

gradients nearly everywhere, a regional gradient measure, D(P ), is employed to

detect these strong gradients. This is implemented as:

D(P )j =
1

S∆x

[
1
S

S∑

i=1

Pj+i − 1
S

S∑

i=1

Pj−(i−1)

]
,

where S indicates the width of the gradient stencil (we use S = 6). For an

equilibrium system, the expected variance of D(P ) is estimated by

〈δD(P )2〉 =
2

S3∆x2

(〈δρ2〉R2T 2
0 + ρ2

0R
2〈δT 2〉) =

10
3

1
S3Nc

(
P0

∆x

)2

where ρ0, T0 and P0 are the reference mass density, temperature and pressure

for the system and Nc is the number of particles in a cell at reference conditions.

(This variance can be found using the ideal gas law and expressions derived in

[49].) Note that using a wide stencil limits the variation even when Nc is small

(and, consequently, fluctuations are large).We select cells j for refinement where

D(P )j exceeds the equilibrium value, namely zero, by three standard deviations.

The resulting particle patch is extended by a buffer of four cells on each side.

In this implementation, we re-evaluate the location of the particle patch

every 100 time steps. When the extent of the refinement region changes, some

continuum cells may be added to the DSMC patch, some DSMC cells may

become continuum cells, and some DSMC cells may remain in the refinement

patch. For continuum cells that are added to the DSMC patch, particles are

initialized from the underlying continuum data, as in the case of a static patch.

For DSMC cells that should no longer be included in the refinement patch,

particle data is averaged onto the continuum grid, as in Eqs. (5), then discarded.
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For those DSMC cells that remain in the particle patch, the particle data is

retained.
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Figure 11: Mass density profiles for a viscous shock wave, demonstrating adaptive

mesh refinement: the refinement region, indicated by vertical dotted lines, is deter-

mined dynamically at runtime. The time elapsed between each panel is 1200∆t; see

Table 3 for system parameters.

The mass density profile depicted by the dark line is an average profile

from an ensemble of 2000 stochastic hybrid runs. The first panel of Fig. 11 also

includes the mass density profile from a single stochastic hybrid simulation,

illustrating the relative magnitude of the thermal fluctuations. Results from an

ensemble of 2000 pure stochastic PDE simulations of the traveling wave, without

a particle patch, are also shown for comparison. As in Figure 10, we that a more

shallow profile is captured by the DSMC representation of the viscous shock (i.e.

by the hybrid that uses DSMC in the vicinity of the shock) versus the artificially

steep profile produced by the PDE-only system.
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5 Conclusions and Further Work

We have constructed a hybrid algorithm that couples a DSMC molecular simula-

tion with a new numerical solver for the Landau-Lifshitz Navier-Stokes equations

for fluctuating compressible flow. The algorithm allows the particle method to

be used locally to approximate the solution while modeling the system using

the mean field equations in the remainder of the domain. In tests of the method

we have demonstrated that it is necessary to include the effect of fluctuations,

represented as a stochastic flux, in the mean field equations to ensure that the

hybrid preserved key properties of the system. As expected, not representing

fluctuations in the continuum regime leads to a decay in the variance of the solu-

tion that penetrates into the particle region. Somewhat more surprising is that

the failure to include fluctuations was shown to introduce spurious correlations

of fluctuations in equilibrium simulations.

The coupling of the particle and continuum algorithms presented here is

not entirely seamless for the variance and correlations of conserved quantities.

The mismatch appears to be primarily caused by inability of the continuum

stochastic PDE to reproduce the temporal spectrum of the particle fluxes at

kinetic time scales. This is not so much a failure of the methodology as much as

a fundamental difference of between molecular and hydrodynamic scales. With

this caveat, one still finds that using a stochastic PDE in an AMAR hybrid

yields significantly better fidelity in the fluctuation variances and correlations,

making it useful for applications such as those described in the introduction.

There are several directions that we plan to pursue in future work. As

a first step, we plan to extend the methodology to two and three dimensional

hybrids. The key algorithmic steps developed here extend naturally to multi-

ple dimensions. For more general applications, an overall approach needs to be

implemented to support particle regions defined by a union of non-overlapping

patches. Another area of development is to include additional physical effects

in both the continuum and particle models. As a first step in this direction, it

is straightforward to include the capability to model different species. This pro-

vides the necessary functionality needed to study Rayleigh-Taylor instabilities
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and other mixing phenomena. A longer term goal along these lines would be

to include chemical reactions within the model to enable the study of ignition

phenomena. Finally, we note that the results presented here suggest a number

of potential improvements to the core methodology. Of particular interest in

this area would be approaches to the fluctuating continuum equations that can

accurately capture fluctuations while taking a larger time step. This would not

only improve the efficiency of the methodology, it would also enable the contin-

uum solver to take time steps at hydrodynamic time scales which should serve

to improve the quality of coupling between continnum and particle regions.
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Appendix: Random placement of particles with

a density gradient

Consider the problem of selecting a random position for a particle within a

rectangular cell. The density in the cell varies linearly with ρ0 being the density

at the center (which is also the mean density). For a cell with dimensions ∆x,

∆y, and ∆z, taking the origin at the corner of the cell we have

ρ(x, y, z) = ρ0 + ax(x−∆x/2) + ay(y −∆y/2) + az(z −∆z/2)

where ax = ∂ρ/∂x. The probability that a particle has position component x is

P (x) =

∫ ∆y

0
dy

∫ ∆z

0
dz ρ(x, y, z)

ρ0∆x∆y∆z
=

1 + γx(x/∆x− 1
2 )

∆x

where γx ≡ ∆xax/ρ0. It will be more convenient to work in the dimensionless

variable X = x/∆x. Since P (x) dx = P (X) dX,

P (X) = 1 + γx(X − 1
2
).
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By the method of inversion [41] one may generate random values from this

distribution by

X = γ−1
x

[
(γx/2− 1) +

[
(γx/2− 1)2 + 2γxR

]1/2
]
.

where R is a random value uniformly distributed in [0,1]. The reader is cau-

tioned that the above is susceptible to round-off error for γx ≈ 0 (i.e., small

gradient case). Note that in that limit,

X ≈ R
1− γx/2

from which we recover the expected result that X = R when γx = 0.

The selection of the y component of the position is complicated by the

fact that it is not independent of the x component. The conditional probability

of the y component of position is

P (y|x) =
P (x, y)
P (x)

=
1

∆y

[
1 +

∆yay/ρ0

1 + (∆xax/ρ0)(x/∆x− 1
2 )

(
y

∆y
− 1

2

)]
.

Define γy ≡ ∆yay/ρ0 and Y ≡ y/∆y, then

P (Y |X) = 1 +
γy

P (X)
(Y − 1

2
).

Fortunately, after selecting X the selection of Y is simple; Y is generated in the

same way as X but with γy/P (X) in the place of γx.

Finally, to select the z component of position the procedure is similar

with

P (Z|X, Y ) = 1 +
γz

P (X, Y )
(Z − 1

2
)

where P (X, Y ) = P (X|Y )P (Y ) = 1 + γx(X − 1
2 ) + γy(Y − 1

2 ). Again, the z

component can be generate as the x component with γz/P (X,Y ) replacing γx.
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