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Abstract. We develop numerical schemes for solving the isothermal compressible and incom-
pressible equations of fluctuating hydrodynamics on a grid with staggered momenta. We develop
a second-order accurate spatial discretization of the diffusive, advective, and stochastic fluxes that
satisfies a discrete fluctuation-dissipation balance and construct temporal discretizations that are at
least second-order accurate in time deterministically and in a weak sense. Specifically, the methods
reproduce the correct equilibrium covariances of the fluctuating fields to the third (compressible) and
second (incompressible) orders in the time step, as we verify numerically. We apply our techniques
to model recent experimental measurements of giant fluctuations in diffusively mixing fluids in a
microgravity environment [A. Vailati et al., Nat. Comm., 2 (2011), 290]. Numerical results for the
static spectrum of nonequilibrium concentration fluctuations are in excellent agreement between the
compressible and incompressible simulations and in good agreement with experimental results for all
measured wavenumbers.
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1. Introduction. At a molecular scale, fluids are not deterministic; the state
of the fluid is constantly changing and stochastic, even at thermodynamic equilib-
rium. Stochastic effects are important for flows in new microfluidic, nanofluidic, and
microelectromechanical devices [1]; novel materials such as nanofluids [2]; biological
systems such as lipid membranes [3]; Brownian molecular motors [4]; nanopores [5]; as
well as processes where the effect of fluctuations is amplified by strong nonequilibrium
effects, such as combustion of lean flames, capillary dynamics [6, 7], hydrodynamic in-
stabilities [8, 9, 10], and others. Because they span the whole range of scales from the
microscopic to the macroscopic [11, 12], fluctuations need to be consistently included
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1370 BALBOA USABIAGA ET AL.

in all levels of description [13]. Thermal fluctuations are included in the fluctuat-
ing Navier–Stokes (NS) equations and related continuum Langevin models [14, 15]
through stochastic forcing terms, as first proposed by Landau and Lifshitz [16]. Nu-
merically solving the continuum equations of fluctuating hydrodynamics [17] is diffi-
cult because of the presence of nontrivial dynamics at all scales and the existence of
a nontrivial invariant measure (equilibrium distribution).

Several numerical approaches for fluctuating hydrodynamics have been proposed.
The earliest work by Garcia et al. [18] developed a simple scheme for the stochastic
heat equation and the linearized one-dimensional fluctuating NS equations. Ladd and
others have included stress fluctuations in (isothermal) lattice Boltzmann methods
for some time [19]. Moseler and Landman [8] included the stochastic stress tensor of
Landau and Lifshitz in the lubrication equations and obtained good agreement with
their molecular dynamics simulation in modeling the breakup of nanojets. Sharma
and Patankar [20] developed a fluid-structure coupling between a fluctuating incom-
pressible solver and suspended Brownian particles. Coveney, De Fabritiis, Delgado-
Buscalioni, and co-workers have also used the fluctuating isothermal NS equations in
a hybrid scheme, coupling a continuum fluctuating solver to a molecular dynamics
simulation of a liquid [21, 22, 23]. Atzberger, Kramer, and Peskin have developed a
version of the immersed boundary method that includes fluctuations [24, 25]. Voul-
garakis and Chu [26] developed a staggered scheme for the isothermal compressible
equations as part of a multiscale method for biological applications, and a similar
staggered scheme was also described in [27].

Some of us have recently developed techniques for analyzing the weak accuracy
of finite-volume methods for solving the types of stochastic PDEs that appear in
fluctuating hydrodynamics [28]. The analysis emphasizes the necessity to maintain
fluctuation-dissipation balance in spatio-temporal discretizations [28], thus reproduc-
ing the Gibbs–Boltzmann distribution dictated by equilibrium statistical mechanics.
Based on previous work by Bell, Garcia, and Williams [29, 30], a collocated spatial
discretization for the compressible equations of fluctuating hydrodynamics has been
developed and combined with a stochastic third-order Runge–Kutta (RK3) temporal
integrator [28]. The collocated spatial discretization has been used to construct a
strictly conservative particle-continuum hybrid method [13] and to study the contri-
bution of advection by thermal velocities to diffusive transport [31].

A staggered spatial discretization is advantageous for incompressible flows be-
cause it leads to a robust idempotent discrete projection operator [32, 33]. Stag-
gered schemes have previously been developed for isothermal compressible [26] and
incompressible flow [20], without, however, carefully assessing discrete fluctuation-
dissipation balance. Here we present and test an explicit compressible and a semi-
implicit incompressible scheme for fluctuating hydrodynamics on uniform staggered
grids. Both methods use closely related spatial discretizations but very different tem-
poral discretizations. In the spatial discretization, we ensure an accurate spectrum
of the steady-state fluctuations by combining a locally conservative finite-volume for-
mulation, a nondissipative (skew-symmetric) advection discretization, and discretely
dual divergence and gradient operators. For compressible flow, we employ an explicit
RK3 scheme [28] since the time step is limited by the speed of sound and the dissipa-
tive terms can be treated explicitly. For incompressible flow, we use a semi-implicit
unsplit method first proposed in [34], which allows us to take large time steps that
underresolve the fast momentum diffusion at grid scales but still obtain the correct
steady-state covariances of fluctuations.

Thermal fluctuations in nonequilibrium systems in which a constant (tempera-
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STAGGERED SCHEMES FOR FLUCTUATING HYDRODYNAMICS 1371

Fig. 1. Snapshots of concentration showing the development of a rough diffusive interface
between two miscible fluids in zero gravity. We show three points in time (top to bottom), starting
from an initially perfectly flat interface (phase separated system). These figures were obtained using
the incompressible code described in section 4.1.

ture, concentration, velocity) gradient is imposed externally exhibit remarkable be-
havior compared to equilibrium systems. Most notably, external gradients can lead
to enhancement of thermal fluctuations and to long-range correlations between fluc-
tuations [17, 35, 36, 37, 38]. This phenomenon can be illustrated by considering
concentration fluctuations in an isothermal mixture of two miscible fluids in the pres-
ence of a strong concentration gradient ∇c, as in the early stages of diffusive mixing
between initially separated fluid components. As illustrated in Figure 1, the inter-
face between the fluids, instead of remaining flat, develops large-scale roughness that
reaches a pronounced maximum until gravity or boundary effects intervene. These
giant fluctuations [39, 40, 41] during free diffusive mixing have been observed us-
ing light scattering and shadowgraphy techniques [12, 42, 43, 44, 45], finding good
but imperfect agreement between the predictions of a simplified fluctuating hydro-
dynamic theory and experiments. Recent experiments have taken advantage of the
enhancement of the nonequilibrium fluctuations in a microgravity environment aboard
the FOTON M3 spaceship [12, 44] and have demonstrated the appearance of fractal
diffusive fronts like those illustrated in Figure 1. In the absence of gravity, the den-
sity mismatch between the two fluids does not change the qualitative nature of the
nonequilibrium fluctuations, and in this work we focus on mixtures of dynamically
identical fluids.

Before discussing spatio-temporal discretizations, we review the continuum for-
mulation of the equations of fluctuating hydrodynamics and their crucial properties
in section 2. In particular, we discuss the steady-state covariances of the fluctuating
fields for systems in thermal equilibrium as well as fluid mixtures with an imposed
concentration gradient. In section 3.1 we focus on the temporal discretization in the
spirit of the method of lines. For the compressible equations, we employ a previ-
ously developed explicit three-stage Runge–Kutta scheme that is third-order weakly
accurate [28]. For the incompressible equations, we employ a second-order accurate
predictor-corrector approach, each stage of which is a semi-implicit (Crank–Nicolson)
discretization of the unsteady Stokes equations, solved effectively using a projection
method as a preconditioner [34]. In section 3.2.5 we describe a conservative staggered
spatial discretization of the diffusive, stochastic, and advective fluxes. We maintain
discrete fluctuation-dissipation balance [28, 46] by ensuring duality between the dis-
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1372 BALBOA USABIAGA ET AL.

crete divergence and gradient operators and by using a skew-adjoint discretization
of advection. We verify the weak order of accuracy for both the compressible and
incompressible algorithms in section 4. In section 5 we model the nonequilibrium
concentration fluctuations in a fluid mixture under an applied temperature gradient
and compare the numerical results to recent experimental measurements [12, 44].

1.1. Deterministic hydrodynamic equations. Motivated by the microgavity
experiments studying giant fluctuations [12, 44], we consider an ideal solution of
a macromolecule with molecular mass M in a solvent. At the macroscopic level,
the hydrodynamics of such a mixture can be modeled with an extended set of NS
equations for the mass density ρ = ρ1+ρ2, where ρ1 is the mass density of the solute,
v is the center-of-mass velocity, c = ρ1/ρ is the mass concentration, and T is the
temperature [17, 30]. In many situations of interest the temperature T (r, t) ≡ T (r)
can be taken as fixed [17, 39, 45] since temperature fluctuations do not couple to other
variables. The fixed-temperature compressible NS equations for an ideal mixture of
two miscible fluids are

Dtρ =− ρ (∇ · v) ,(1)

ρ (Dtv) =−∇P +∇ · [η∇v + ζ (∇ · v) I]+ fv,(2)

ρ (Dtc) =∇ · [ρχ (∇c+ c (1− c)ST∇T )] + fc,(3)

supplemented with appropriate boundary conditions. Here Dt� = ∂t�+ v ·∇ (�) is
the advective derivative, ∇v = (∇v+∇vT )− 2 (∇ ·v) I/3 is the symmetrized strain
rate, P (ρ, c;T ) is the pressure as given by the equation of state, and fv and fc are
external forcing (source) terms. The shear viscosity η, bulk viscosity ζ, mass diffusion
coefficient χ, and Soret coefficient ST can, in general, depend on the state. We make
several physically motivated approximations, including neglecting barodiffusion, as
we describe and justify next.

We will assume that the two species in the mixture are almost identical, meaning
that none of the fluid properties is affected by concentration. In this sense the macro-
molecules are assumed to be simple (passive) tracer particles. This is a reasonable
approximation for small concentrations c� 1 since the presence of small amounts of
macromolecules causes small changes in the properties of the solution. In the giant
fluctuation experiments in microgravity conditions the concentration is at most a few
percent [12, 44], justifying the assumption that the equation of state is independent
of concentration, P (ρ, c;T ) = P (ρ;T ). This approximation also allows us to neglect
barodiffusion since the barodiffusion coefficient is a thermodynamic rather than a
transport coefficient and vanishes for such an equation of state.

Because the temperature varies by only a few percent across the sample in the
giant fluctuation experiments modeled in section 5, we take the system to be isother-
mal, and thus the temperature T = T0 is constant. However, we retain the crucial
Soret term by taking ST∇T to be a specified constant. Note that the Soret term
is a transport coefficient unlike the barodiffusion coefficient and can be positive or
negative.

For liquids, the equation of state is usually very stiff, which means that the
(isothermal) sound speed c2T = ∂P/∂ρ is very large. Density is therefore nearly
constant, and an incompressible approximation will be appropriate as a means to avoid
the stiffness. An alternative, employed, for example, in the lattice Boltzmann method,
is to keep the simpler compressible equations (and thus avoid elliptic constraints) but
to make the speed of sound much smaller than the actual speed of sound but still large
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STAGGERED SCHEMES FOR FLUCTUATING HYDRODYNAMICS 1373

enough that density variations are negligible. This is the sense in which we will use
the compressible equations (1)–(3), although we emphasize that there are situations
in which it is actually important to solve these equations with the proper equation of
state [26, 47].

Under the assumption that density variations are small, it is not important what
precise dependence of the transport coefficients and equation of state on the density
is used. We will therefore assume that P = P (ρ) = P0 + (ρ − ρ0) c

2
T , where cT is a

spatially constant isothermal speed of sound. The value of cT can be a parameter
that lets us tune the compressibility or the physical speed of sound. Furthermore, we
will assume that the viscosity and Soret coefficient are constants independent of the
density and that the product ρχ = ρ0χ0 is constant. Recalling that in the experiments
c � 1 so that c (1 − c) ≈ c, all of these approximations allow us to write the viscous
term in the momentum equation in the “Laplacian” form

(4) ∇ · [η∇v + ζ (∇ · v) I]→ η∇2v +
(
ζ +

η

3

)
∇ (∇ · v) .

Similarly, the diffusive term in the concentration equation can be written as

(5) ∇ · [ρχ (∇c+ c (1− c)ST∇T )]→ ρ
[
χ∇2c+∇ · (cvs)

]
,

where the spatially constant velocity difference between the two species is denoted
with vs = χST∇T .

With all of these simplifications, the equations we actually solve numerically are

Dtρ =− ρ (∇ · v) ,(6)

ρ (Dtv) =− c2T∇ρ+ η∇2v +
(
ζ +

η

3

)
∇ (∇ · v) + fv,(7)

ρ (Dtc) =ρ
[
χ∇2c+∇ · (cvs)

]
+ fc,(8)

where all model parameters are constants.
We note that none of the simplifying approximations we make above is necessary

in principle. At the same time, not making such approximations requires knowing a
number of physical properties of the fluids, for example, the concentration dependence
of the Soret coefficient ST . Such information is difficult to obtain experimentally, and
in any case, the known dependence is very weak and we believe it will not affect
the results we present to within measurement or statistical error bars. Furthermore,
accounting for the concentration dependence of the equation of state in the incom-
pressible limit requires using variable-density low Mach number equations [48, 49]
instead of the incompressible equations since, in general, ∇ · v �= 0 [50]. Extension
of our algorithms to these variable-density variable-coefficient low Mach equations is
possible but nontrivial and will be considered in future work.

2. Fluctuating hydrodynamics. At mesoscopic scales the hydrodynamic be-
havior of fluids can be described with continuum stochastic PDEs of Langevin type
[14, 15], as proposed by Landau and Lifshitz [16] and later justified by formal coarse-
graining procedures [51]. Such equations can formally be justified as a central limit
theorem for the Gaussian behavior of the thermal fluctuations around the mean, at
least in certain simpler systems [52, 53]. What emerges is that the (mesoscopic) ther-
mal fluctuations can be described by the very same hydrodynamic equations describ-
ing the macroscopic behavior, linearized around the mean solution, and with added
stochastic forcing terms that ensure a fluctuation-dissipation balance principle [54].
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Solving these linearized equations numerically requires first solving the deterministic
equations for the mean and then solving the fluctuating equations linearized around
the mean. The linearization typically contains many more terms than the nonlinear
deterministic terms due to the chain rule. Such a two-step process is much more
cumbersome than solving the nonlinear equations. Furthermore, a linearization has
no hope of capturing any possible nonlinear feedback of the fluctuations on the mean
flow, which is known to have physical significance [31].

Therefore, we follow an alternative approach in which the stochastic forcing terms
are directly added to the nonlinear equations (6)–(8), but with an amplitude propor-
tional to a parameter ε that controls how far from linearity the equations are. In fluc-
tuating hydrodynamics, to ensure mass and momentum conservation, the stochastic
terms are the divergence of a stochastic flux,

(9) fv = ε
1
2∇ ·Σ and fc = ε

1
2∇ ·Ψ,

where the capital Greek letters denote stochastic fluxes that are modeled as white-
noise Gaussian random fields. A detailed discussion of why there are no diffusive and
stochastic fluxes in the density equation is given in [55]. For the linearized equations,
we can fix ε = 1, and the covariances of Σ and Ψ can be derived from the fluctuation-
dissipation balance principle, as explained well in the book [17]. The covariance of
the stochastic stress tensor Σ is not a positive definite matrix, so there are many
choices for how to express the stochastic stress, especially if additional bulk viscosity
is included [56]. We have based our implementation on a formulation that requires
the fewest possible random numbers [51, 57],

Σ = Σs +Σp =
√
2ηkBT W̃v +

(√
ζkBT

3
−
√
2ηkBT

3

)
Tr
(
W̃v

)
I,(10)

Ψ =
√
2χρM c(1− c)Wc,(11)

where W̃v = (Wv +WT
v )/
√
2 is a symmetric Gaussian random tensor field, and the√

2 in the denominator accounts for the reduction in variance due to the averaging.
Here Wv and Wc are mutually uncorrelated white-noise random Gaussian tensor
and vector fields with uncorrelated components〈

W(v)
ij (r, t)W(v)

kl (r′, t′)
〉
= (δikδjl) δ(t− t′)δ(r − r′),(12) 〈

W(c)
i (r, t)W(c)

j (r′, t′)
〉
= (δij) δ(t− t′)δ(r − r′).(13)

Similar covariance expressions apply in the Fourier domain as well if position r (time t)

is replaced by wavevector k (wavefrequency ω) and 〈WαWβ〉 is replaced by 〈ŴαŴ�
β〉,

where the star denotes a complex conjugate (more generally, we denote an adjoint of
a matrix or linear operator with a star). We recall that we take the temperature T
to be spatially constant.

It is important to emphasize here that the nonlinear fluctuating NS equations,
with the white-noise stochastic forcing terms (9), are ill-defined because the solution
should be a distribution rather than a function and the nonlinear terms cannot be
interpreted in the sense of distributions. The nonlinear equations can be interpreted
using a small-scale regularization (smoothing) of the stochastic forcing, along with a
suitable renormalization of the transport coefficients [11, 58]. Such a regularization
is naturally provided by the discretization or coarse-graining [57] length scale. As
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long as there are sufficiently many molecules per hydrodynamic cell, the fluctuations
will be small and the behavior of the nonlinear equations will closely follow that of
the linearized equations of fluctuating hydrodynamics, which can be given a precise
meaning [59]. This can be checked by reducing ε to the point where the observed
spatio-temporal correlations of the fluctuations begin to scale linearly with ε, indicat-
ing that nonlinear effects are negligible. In all of the simulations reported here, we
have used ε = 1 but have checked that using a very small ε and then rescaling the co-
variance of the fluctuations by ε−1 gives indistinguishable results to within statistical
errors.

Note that for the linearized equations the noise is additive since the covariance of
the stochastic forcing terms is to be evaluated at the mean around which the linear-
ization is performed. That is, in the linearized equations (ε→ 0) one should read (11)
as Ψ =

√
2χρM c̄(1 − c̄)Wc, where c̄ is the solution of the deterministic equations.

Therefore, there is no Itô–Stratonovich difficulty in interpreting the stochastic terms,
and we use the (ambiguous) “Langevin” notation that is standard in the physics lit-
erature, instead of the differential notation more common in the literature on SDEs.

It is important to observe that even when linearized, (6)–(8) is a very challenging
system of multiscale equations. Even a single stochastic advection-diffusion equation
such as (7) is inherently multiscale because thermal fluctuations span the whole range
of spatio-temporal scales from the microscopic to the macroscopic; specifically, all
modes of the spatial discretization have a nontrivial stochastic dynamics that must
be reproduced by the numerical method. Including the density equation (6) in the
system of equations leads to fast sound wave modes that make the compressible equa-
tions stiff even in the deterministic setting. Finally, in most applications of interest
the concentration diffusion is much slower than the momentum diffusion, leading to
additional stiffness and multiscale nature of the equations, as we discuss further in
section 5.

2.1. Incompressible equations. If density variations are negligible, ρ = ρ0 =
const, we obtain the incompressible approximation to the hydrodynamic equations
(6)–(8) [17],

∂tv =−∇π −∇ · (vvT
)
+ ν∇2v + ρ−1fv(14)

=P [−v ·∇v + ν∇2v + ρ−1fv

]
,

∂tc =−∇ · [c (v − vs)] + χ∇2c+ ρ−1fc,(15)

where ν = η/ρ, and v · ∇c = ∇ · (cv) and v · ∇v = ∇ · (vvT
)
because of the

incompressibility constraint ∇ · v = 0. Here P is the orthogonal projection onto the
space of divergence-free velocity fields, P = I − G (DG)−1 D in real space, where
D� ≡ ∇ · � denotes the divergence operator and G ≡ ∇ the gradient operator.
With periodic boundaries we can express all operators in Fourier space and P̂ =
I − k−2(kk�), where k is the wavenumber.

Fluctuations can be included in the incompressible equations via the stochastic
forcing terms

ρ−1fv = ρ−1ε
1
2∇ ·Σs = ∇ ·

(√
2ενρ−1kBT W̃v

)
,

ρ−1fc = ρ−1ε
1
2∇ ·Ψ = ∇ ·

[√
2εχρ−1M c(1− c)Wc

]
.

Note that it is not necessary to include the stochastic pressure fluctuations Σp in
(10) in the incompressible velocity equation (14) since the projection eliminates any
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nonzero trace component of the stress tensor. In our formulation, we use a strictly
symmetric stochastic stress tensor Σs in the incompressible equations. This is based
on physical arguments about local angular momentum conservation [60, 61]. At the
same time, the only thing that matters in the Fokker–Planck description is the co-
variance of the stochastic forcing in the velocity equation PDΣs. This covariance is
determined from the fluctuation dissipation balance principle,

(16)
〈
(PDΣs) (PDΣs)

�〉 = PD 〈ΣsΣ
�
s〉DP = PLP ,

where L is the vector Laplacian operator. Because P and D have nontrivial null
spaces, (16) does not uniquely determine the covariance of the stochastic stress. In
fact, it can easily be shown by going to the Fourier domain that one can have a non-
symmetric component to the stochastic stress without violating (16). We believe that
the stress tensor should be symmetric since we do not include an additional equa-
tion for the intrinsic spin (angular momentum) density. This is appropriate for fluids
composed of “point” particles; however, recent molecular dynamics simulations have
shown that for molecular liquids there can be nontrivial coupling between the linear
and spin momentum densities [61]. While spin density has been included in the fluc-
tuating hydrodynamics equations [60] at the theoretical level, we are not aware of any
numerical simulations of such equations and do not consider an angular momentum
equation in this work.

2.2. Steady-state covariances. The means and spatio-temporal covariances of
the fluctuating fields fully characterize the Gaussian solution of the linearized equa-
tions [28]. Of particular importance is the steady-state covariance of the fluctuating
fields, which can be obtained for periodic systems by linearizing the equations in the
fluctuations and using a spatial Fourier transform to decouple the different modes
(wavevectors k). This steady-state covariance in Fourier space is usually referred to
as a static structure factor in the physical literature and represents the covariance
matrix of the Fourier spectra of a typical snapshot of the fluctuating fields. Note that
it is in principle possible to calculate the covariance of the fluctuations in nonperiodic
domains as well [62]; however, these tedious calculations offer little additional physical
insight over the simple results presented below. We will present numerical algorithms
that can solve the fluctuating equations with nonperiodic boundary conditions; how-
ever, periodic conditions will be used to test the accuracy of the spatio-temporal
discretization by comparing to the simple theory.

At thermodynamic equilibrium, the fluctuations of the different hydrodynamic
variables are uncorrelated and white in space, that is, the equilibrium variance is
independent of the wavevector k [28], in agreement with equilibrium statistical me-
chanics [16, 63]. Consider first the fluctuating isothermal compressible NS equations
(6)–(8) linearized around a uniform steady state, (ρ,v, c) = (ρ0+δρ, v0+δv, c0+δc),
T = T0. Because of Galilean invariance, the advective terms v0 ·∇ (�) due to the
presence of a background flow do not affect the equilibrium covariances (structure
factors), which are found to be [17, 28]

Sρ,ρ =
〈(

δ̂ρ
)(

δ̂ρ
)�〉

= ρ0kBT0/c
2
T ,

Sv,v =
〈
(δ̂v)(δ̂v)�

〉
= ρ−1

0 kBT0 I,

Sc,c =
〈(

δ̂c
)(

δ̂c
)�〉

= Mρ−1
0 c0(1− c0).(17)
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At equilibrium, there are no cross-correlations between the different variables, for

example, Sc,v = 〈(δ̂c)(δ̂v)�〉 = 0. The equilibrium variance of the spatial average of a
given variable over a cell of volume ΔV can be obtained by dividing the corresponding
structure factor by ΔV ; for example, the variance of the concentration is

〈
(δρ)2
〉
=

ρ0kBT0/
(
c2TΔV
)
. In the incompressible limit, cT → ∞, the density fluctuations

vanish and ρ ≈ ρ0.
Out of thermodynamic equilibrium, there may appear long-range correlations

between the different hydrodynamic variables [17]. As a prototypical example of such
nonequilibrium fluctuations, we focus on the incompressible equations (14)–(15) in the
presence of an imposed concentration gradient ∇c̄. The spatial nonuniformity of the
mean concentration when there is a gradient breaks the translational symmetry, and
the Fourier transform no longer diagonalizes the equations. We focus our analysis
and test our numerical schemes on a periodic approximation in which we linearize
around a uniform background state (v, c) = (δv, c0 + δc), as suggested and justified
in the physics literature on long-range nonequilibrium correlations [17, 38, 39, 45]. In
such a periodic approximation we cannot have a gradient in the steady-state average
concentration c0, but we can mimic the effect of the advective term v · ∇c0 with
an additional term v · (∇c̄) in the concentration equation. This is justified if the
concentration gradient is weak and leads to the linearized equations in a periodic
domain

∂t (δv) = P
[
ν∇2 (δv) +∇ ·

(√
2νρ−1

0 kBT0 Wv

)]
,

∂t (δc) = − (∇c̄) · (δv) + χ∇2 (δc) +∇ ·
[√

2χρ−1
0 M c0(1− c0)Wc

]
.(18)

In the Fourier domain (18) is a collection of SDEs, one system of linear additive-noise
equations per wavevector k, written in differential notation as

d
(
δ̂v
)
= −ν k2

(
δ̂v
)
dt+ i

√
2νρ−1

0 kBT0 P̂k ·
(
dB(k)

v

)
,

d
(
δ̂c
)
= − (∇c̄) ·

(
δ̂v
)
dt− χk2

(
δ̂c
)
dt+ i

√
2χρ−1

0 M c0(1 − c0)k ·
(
dB(k)

c

)
,(19)

where we used that P̂(δ̂v) = δ̂v. Here Bv(t) is a tensor, and Bc(t) is a vector, whose
components are independent Wiener processes. Note that the velocity equation is not
affected by the concentration gradient. Given the model equations (19), the explicit
solution for the matrix of static structure factors (covariance matrix)

S =

[
Sv,v S�

c,v

Sc,v Sc,c

]
can be obtained as the solution of a linear system resulting from the stationarity
condition dS = 0. For a derivation, see equation (30) in [28] or equation (3.10) in [64]
and also (41); below we simply quote the results of these straightforward calculations.

2.2.1. Incompressible velocity fluctuations. By considering the stationarity
condition dSv,v = 0 it can easily be seen that the equilibrium covariance of the
velocities is proportional to the projection operator,

(20) Sv,v = ρ−1
0 kBT0 P̂ = ρ−1

0 kBT0

[
I − k−2(kk�)

]
,
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independent of the concentration gradient. In particular, the amplitude of the velocity
fluctuations at each wavenumber is constant and reduced by one in comparison to the
compressible equations,

(21) TraceSv,v =
〈
(δ̂v)�(δ̂v)

〉
= (d− 1) ρ−1

0 kBT0,

where d is the spatial dimension. This is a reflection of the fact that one degree of
freedom (i.e., one kBT/2) is subtracted from the kinetic energy due to the incompress-
ibility constraint, which eliminates the sound mode. In Appendix B we generalize (20)
to nonperiodic systems, to obtain

(22)
〈
(δv) (δv)�

〉
= ρ−1

0 kBT0

(
ΔV −1P) .

An alternative way of expressing the result (22) is that all divergence-free modes
have the same spectral power at equilibrium. That is, if the fluctuating velocities are
expressed in any orthonormal basis for the space of velocities that satisfy ∇ · v =
0, at equilibrium the resulting random coefficients should be uncorrelated and have
unit variance. This will be useful in section 4.1 for examining the weak accuracy
of the spatio-temporal discretizations of the incompressible equations. For periodic
boundary conditions, such an orthonormal basis is simple to construct in the Fourier
domain and a Fourier transform can be used project the velocity field onto this basis.
In particular, for all wavevectors the projection of the velocity fluctuations onto the
longitudinal mode

(23) v̂(1) = k−1 [kx, ky, kz ] ,

where k =
(
k2x + k2y + k2z

)1/2
, should be identically zero:

v̂1 = v̂(1) · (δ̂v) = kx
k
δ̂vx +

ky
k
δ̂vy +

kz
k
δ̂vz = k−1

(
k · δ̂v
)
= 0.

A basis for the incompressible periodic velocity fields can be constructed from the two
vortical modes

v̂(2) =
(
k2x + k2y

)−1/2
[−ky, kx, 0] ,(24)

v̂(3) = k−1
(
k2x + k2y

)−1/2 [
kxkz, kykz , −

(
k2x + k2y

)]
,(25)

and the projection of the fluctuating velocities onto these modes has the equilibrium
covariance

(26) 〈v̂2v̂�2〉 = 〈v̂3v̂�3〉 = ρ−1
0 kBT0, while 〈v̂2v̂�3〉 = 0.

In two dimensions only v̂(1) and v̂(2) are present, and kv̂(2) is the z component of
the vorticity and spans the subspace of divergence-free velocities. The fact that the
(d− 1) vortical modes have equal power leads to the velocity variance (21).

2.2.2. Nonequilibrium fluctuations. When a macroscopic concentration gra-
dient is present, the velocity fluctuations affect the concentration via the linearized
advective term (∇c̄) · v. Solving (19) shows an enhancement of the concentration
fluctuations [65] proportional to the square of the applied gradient,

(27) Sc,c = Mρ−1
0 c0(1− c0) +

kBT

ρχ(ν + χ)k4
(
sin2 θ
)
(∇c̄)2 ,
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where θ is the angle between k and ∇c̄, sin2 θ = k2⊥/k
2. Furthermore, there appear

long-range correlations between the concentration fluctuations and the fluctuations
of velocity parallel to the concentration gradient, proportional to the applied gradient
[11, 65]:

(28) Sc,v‖ =
〈
(δ̂c)(δ̂v

�

‖)
〉
= − kBT

ρ(ν + χ)k2
(
sin2 θ
) ∇c̄.

The power-law divergence for small k indicates long-range correlations between δc
and δv and is the cause of the giant fluctuation phenomenon studied in section 5.

3. Spatio-temporal discretization. Designing temporal discretizations for
fluid dynamics is challenging even without including thermal fluctuations. When
there is no stochastic forcing, our schemes revert to standard second-order discre-
tizations and can be analyzed with existing numerical analysis techniques. Here
we tackle the additional goal of constructing discretizations that, in a weak sense,
accurately reproduce the statistics of the continuum fluctuations for the linearized
equations. Note that achieving second-order weak accuracy is much simpler for linear
additive-noise equations since in the linear case the solution is fully characterized by
the means and the correlation functions (time-dependent covariances). In fact, one
can use any method that is second-order in time in the deterministic setting and also
reproduces the correct static (equal-time) covariance to second order, as explained
in more detail in [28]. The deterministic order of accuracy can be analyzed using
standard techniques, and the accuracy of the static covariances can be analyzed using
the techniques described in [28]. We emphasize that the temporal integrators are
only higher-order accurate in a weak sense for the linearized equations of fluctuating
hydrodynamics [28, 46].

Thermal fluctuations are added to a deterministic scheme as an additional forcing
term that represents the temporal average of a stochastic forcing term over the time
interval Δt and over the spatial cells of volume ΔV [28]. Because W is white in space
and time, the averaging adds an additional prefactor of (ΔV Δt)−1/2 in front of the
stochastic forcing. In the actual numerical schemes, a “realization” of a white-noise
field W is represented by a collection W of normally distributed random numbers
with mean zero and covariance given by (13) or (12), with the identification

W ←→ (ΔV Δt)
−1/2

W .

Specifically, the stochastic fluxes (10) are discretized as

(29) Σs =

√
2ηkBT

ΔV Δt
W̃ v and Ψ =

√
2χρM c(1 − c)

ΔV Δt
W c.

A realization of W is sampled using a pseudorandom number stream. The tem-
poral discretization of the stochastic forcing corresponds to the choice of how many
realizations of W are generated per time step and how each realization is associated
with specific points in time inside a time step (e.g., the beginning, midpoint, or end-
point of a time step). The spatial discretization corresponds to the choice of how
many normal variates to generate per spatial cell and how to associate them with
elements of the spatial discretization (e.g., cell centers, nodes, faces, or edges). Once
these choices are made, it is simple to add the stochastic forcing to an existing deter-
ministic algorithm or code, while still accounting for the fact that white noise is not
like a classical smooth forcing and cannot be evaluated pointwise.
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3.1. Temporal discretization. As a first step in designing a spatio-temporal
discretization for the compressible and incompressible equations of fluctuating hydro-
dynamics, we focus on the temporal discretization. We assume that the time step
is fixed at Δt. The time step index is denoted with a superscript; for example, cn

denotes concentration at time nΔt, and W n denotes a realization of W generated at
time step n.

In the next section, we will describe our staggered spatial discretization of the
crucial differential operators, denoted here rather generically with a letter symbol in
order to distinguish them from the corresponding continuum operators. Specifically,
let G be the gradient (scalar→vector) operator, D the divergence (vector→scalar)
operator, and L = DG the Laplacian (scalar→scalar) operator. When the divergence
operator acts on a tensor field F such as a stress tensor σ, it is understood to act
componentwise on the x, y, and z components of the tensor. Similarly, the gradient
and Laplacian operators act componentwise on a vector. An important property of
the discrete operators that we require to hold is that the divergence operator is the
negative adjoint of the gradient, D = −G�. This ensures that the scheme satisfies a
discrete version of the continuous property∫

Ω

w [∇ · v] dr = −
∫
Ω

v ·∇w dr if v · n∂Ω = 0 or v is periodic

for any scalar field w(r).
We define the weak order of accuracy of a temporal discretization in terms of the

mismatch between the steady-state covariance of the continuum and the discrete for-
mulations. With periodic boundary conditions this would be the mismatch between
the Fourier spectrum of a typical snapshot of the true solution and the steady-state
discrete spectrum of the numerical solution [28]. This mismatch is typically of the
form O(Δtk) for some integer k ≥ 1, implying that for sufficiently small time steps
the discrete formulation reproduces the steady-state covariance of the continuum for-
mulation. Note that for the linearized equations a certain order of deterministic
temporal accuracy, combined with equal or higher order of accuracy of the steady-
state covariances, implies the same order of accuracy for all temporal correlations. A
theoretical analysis of the weak accuracy of the temporal discretizations used in this
work can be performed using the tools described in [28] with some straightforward
extensions [46]; here we simply state the main results and verify the order of weak
accuracy numerically.

3.1.1. Compressible equations. With Q = (ρ,v, c) denoting the fluctuating
field, the fluctuating compressible NS equations (6)–(8) can be written as a general
stochastic conservation law,

(30) ∂tQ = −D [F (Q; t)−Z(Q̄,W )
]
,

where D is the divergence operator (acting componentwise on each flux), F (Q; t) is
the deterministic flux, and Z = [0, Σ, Ψ] is the discretization of the stochastic flux
(29). We recall that the stochastic forcing amplitude is written as multiplicative in
the state; however, in the linearized limit of weak fluctuations the strength of the
stochastic forcing depends only on the mean state, which is well-approximated by the
instantaneous state, Q̄(t) ≈ Q(t). Following [29], we base our temporal discretization
of (30) on the (optimal) three-stage low-storage strong stability preserving [66] (orig-
inally called total variation diminishing [67]) Runge–Kutta (RK3) scheme of Gottlieb
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and Shu, ensuring stability in the inviscid limit without requiring slope-limiting. The
stochastic terms are discretized using two random fluxes per time step, as proposed
in [28]. This discretization achieves third-order weak accuracy [46] for linear additive-
noise equations, while requiring only the generation of two Gaussian random fields
per time step.

For each stage of our third-order Runge–Kutta scheme, a conservative increment
is calculated as

ΔQ(Q,W ; t) = −ΔtDF (Q; t) + ΔtDZ(Q,W ).

Each time step of the RK3 algorithm is composed of three stages, the first one esti-
mating Q at time t = (n + 1)Δt, the second at t = (n + 1

2 )Δt, and the final stage
obtaining a third-order accurate estimate at t = (n + 1)Δt. Each stage consists of
an Euler–Maruyama step followed by a weighted averaging with the value from the
previous stage,

Q̃
n+1

= Qn +ΔQ (Qn,W n
1 ; nΔt) ,

Q̃
n+ 1

2 =
3

4
Qn +

1

4

[
Q̃

n+1
+ΔQ
(
Q̃

n+1
,W n

2 ; (n+ 1)Δt
)]

,

Qn+1 =
1

3
Qn +

2

3

[
Q̃

n+ 1
2 +ΔQ

(
Q̃

n+ 1
2 ,Wn

3 ; (n+
1

2
)Δt

)]
,(31)

where the stochastic fluxes between different stages are related to each other via

W n
1 = W n

A + w1W
n
B,

W n
2 = W n

A + w2W
n
B,

W n
3 = W n

A + w3W
n
B,(32)

and W n
A and W n

B are two independent realizations of W that are generated indepen-
dently at each RK3 step. In this work we used the weights derived in [28] based on a
linearized analysis, w1 = −√3, w2 =

√
3, and w3 = 0. More recent analysis based on

the work in [68] shows that second-order weak accuracy is achieved for additive-noise
nonlinear SDEs using the weights [46]

w1 =

(
2
√
2∓√3)
5

, w2 =

(−4√2∓ 3
√
3
)

5
, w3 =

(√
2± 2

√
3
)

10
.

For the types of problems studied here, nonlinearities play a minimal role and either
choice of the weights is appropriate.

3.1.2. Incompressible equations. The spatially discretized equations (14)–
(15) can be written in the form

∂tv +Gπ = Av(v, c) + νLv + ρ−1fv,

∂tc = Ac(v, c) + χLc+ ρ−1fc,

Dv = 0,

where A(v, c) represent the nondiffusive deterministic terms, such as the advective
and Soret forcing terms, as well as any additional terms arising from gravity or other
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effects. Fluctuations are accounted for via the stochastic forcing terms

ρ−1fv

(
W̃ v

)
= D

[√
2ενρ−1kBT

ΔV Δt
W̃ v

]
,

ρ−1fc (c,W c) = D

[√
2εχρ−1M c(1− c)

ΔV Δt
W c

]
.

We base our temporal discretization on the second-order semi-implicit determin-
istic scheme of Griffith [34], a predictor-corrector method in which the predictor step
combines the Crank–Nicolson method for the diffusive terms with the Euler method
for the remaining terms

ṽn+1 − vn

Δt
+Gπ̃n+ 1

2 = Av(v
n, cn) + νL

(
ṽn+1 + vn

2

)
+ ρ−1fv

(
W̃

n

v

)
,

c̃n+1 − cn

Δt
= Ac(v

n, cn) + χL

(
c̃n+1 + cn

2

)
+ ρ−1fc (c

n,W n
c ) ,

Dṽn+1 = 0.(33)

The corrector stage combines Crank–Nicolson for the diffusive terms with an explicit
second-order approximation for the remaining deterministic terms

vn+1 − vn

Δt
+Gπn+ 1

2 = A
n+ 1

2
v + νL

(
vn+1 + vn

2

)
+ ρ−1f

n+ 1
2

v ,

cn+1 − cn

Δt
= A

n+ 1
2

c + χL

(
cn+1 + cn

2

)
+ ρ−1f

n+ 1
2

c ,

Dvn+1 = 0.(34)

Unlike a fractional-step scheme that splits the velocity and pressure updates [69,
70], this approach simultaneously solves for the velocity and pressure and avoids the
need to determine appropriate “intermediate” boundary conditions. Importantly, no
spurious boundary modes [71, 72] arise due to the implicit velocity treatment even
in the presence of physical boundaries, which is especially important for fluctuating
hydrodynamics since all of the modes are stochastically forced [46].

The concentration equation in (34) (and similarly in (33)) is a linear system for
cn+1 that appears in standard semi-implicit discretizations of diffusion and is solved
using a standard multigrid method. The velocity equation in (34) (and similarly in
(33)) is a much harder “saddle-point” system of linear equations to be solved for

the variables vn+1 and πn+ 1
2 . This time-dependent Stokes problem is solved using a

Krylov iterative solver as described in detail in [34]. The ill-conditioning of the Stokes
system is mitigated by using a projection method (an inhomogeneous Helmholtz solve
for velocity followed by a Poisson solve for the pressure) as a preconditioner. With
periodic boundary conditions, solving the Stokes system is equivalent to a projection
method, that is, to an unconstrained step for the velocities followed by an application
of the projection operator. If physical boundaries are present, then the projection
method is only an approximate solver for the incompressible Stokes equations; how-
ever, the “splitting error” incurred by the approximations inherent in the projection
method is corrected by the Krylov solver.
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The nonlinear terms are approximated in the corrector stage using an explicit
trapezoidal rule,

(35) A
n+ 1

2
v =

1

2

[
Av(v

n, cn) +Av(ṽ
n+1, c̃n+1)

]
,

which is the (optimal) two-stage strong stability preserving Runge–Kutta method [66]
and is thus generally preferable for hyperbolic conservation laws. For the stochastic
forcing terms, we employ a temporal discretization that uses one random flux per
time step,

f
n+ 1

2
v = fv

(
W̃

n

v

)
and f

n+ 1
2

c = fc

(
c̃n+

1
2 , W n

c

)
,

where c̃n+
1
2 =
(
cn+ c̃n+1

)
/2, but we again emphasize that the dependence of f

n+ 1
2

c on

the instantaneous state c̃n+
1
2 is not important in the weak-noise (linearized) setting.

It can be shown that this temporal discretization is second-order weakly accurate for
additive-noise nonlinear SDEs [46]. More importantly, the Crank–Nicolson method
balances the numerical dissipation with the stochastic forcing identically in the lin-
ear setting. This important property allows our time stepping to underresolve the
fast dynamics of the small-wavelength fluctuations while still maintaining the correct
spectrum for the fluctuations at all scales. While this surprising fact has already been
verified (in a simplified setting) in the appendix of [28] and also in [73], we give a
different derivation in Appendix A. A more detailed analysis will be presented in a
forthcoming paper [46].

The linearized equations (18) have additional structure that enables us to simplify
the predictor algorithm. First, the momentum equation is independent of the con-
centration equation(s), Av(v, c) = 0, and the corrector step of the velocity equation
is redundant since it simply repeats the predictor step, ṽn+1 = vn+1. Therefore, we
need only do one Stokes solve per time step. Furthermore, only velocity enters the
linearized concentration equation, Ac(v, c) = Ãv, and therefore

A
n+ 1

2
c = Ãṽn+ 1

2 = Ã

(
vn + vn+1

)
2

= Ãvn+ 1
2

can be calculated without performing a predictor step for the concentration. This
variation of the time stepping is twice as efficient and can be thought of as a split
algorithm in which we first do a Crank–Nicolson step for the velocity equation,

(36)
vn+1 − vn

Δt
+Gπn+ 1

2 = νL

(
vn+1 + vn

2

)
+ ρ−1fv

(
W̃

n

v

)
,

and then a Crank–Nicolson step for the concentration equation using the midpoint
velocity to calculate advective fluxes:

(37)
cn+1 − cn

Δt
= Ã

(
vn+1 + vn

2

)
+ χL

(
cn+1 + cn

2

)
+ ρ−1fc (c

n,Wn
c ) .

Because of the special structure of the equations, the split algorithm is equivalent to
the traditional Crank–Nicolson method applied to the coupled velocity-concentration
system, in which both advection and diffusion are treated semi-implicitly. This ob-
servation, together with the derivation in Appendix A, shows that the split scheme
gives the correct steady-state covariances for any time step size Δt, although it does
not reproduce the correct dynamics for large Δt. This property will prove very useful
for the simulations of giant fluctuations reported in section 5.
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3.2. Spatial discretization. We now consider spatial discretization of the equa-
tions of fluctuating hydrodynamics on a regular Cartesian grid, focusing on two di-
mensions for notational simplicity. The spatial discretization is to be interpreted in
the finite-volume sense; that is, the value of a fluctuating field at the center of a spatial
cell of volume ΔV represents the average value of the fluctuating field over the cell.
We explicitly enforce strict local conservation by using a conservative discretization
of the divergence. Specifically, the change of the average value inside a cell can always
be expressed as a sum of fluxes through each of the faces of the cell, even if we do not
explicitly write it in that form.

Consider at first a simplified form of the stochastic advection-diffusion equation
for a scalar concentration field

(38) ∂tc = ∇ ·
[
−cv + χ∇c+

√
2χWc

]
,

where v(r, t) is a given advection velocity. We note that for incompressible flow, we
can split the stochastic stress tensor W v into a vector W x corresponding to the flux
for vx and a vector W y corresponding to vy. We can then view the velocity equation
as a constrained pair of stochastic advection-diffusion equations of the form (38), one
equation for vx and another for vy. We will discuss the generalization to compressible
flow in section 3.2.5.

The spatial discretization described in this section is to be combined with a suit-
able stable temporal discretization; specifically, the temporal discretization that we
employ was described in section 3.1. We consider here the limit of small time steps,
Δt → 0, corresponding formally to a semidiscrete “method of lines” spatial discre-
tization of the form

(39)
dc

dt
= D
[
(−Uc+ χGc) +

√
2χ/ (ΔV Δt)W c

]
,

where c = {ci,j} is a finite-volume representation of the random field c(r, t). Here, D
is a conservative discrete divergence, G is a discrete gradient, U ≡ U (v) denotes a
discretization of advection by the spatially discrete velocity field v, and W c denotes
a vector of normal variates with specified covariance CW = 〈W cW

�
c〉.

3.2.1. Discrete fluctuation-dissipation balance. We judge the weak accu-
racy of the spatial discretization by comparing the steady-state covariance of the
spatially discrete fields to the theoretical covariance of the continuum fields in the
limit Δt → 0 [28]. Ignoring for a moment constraints such as incompressibility, at
thermodynamic equilibrium the variance of the discrete fields should be inversely
proportional to ΔV and values in distinct cells should be uncorrelated:

(40) Cc = 〈cc�〉 = Sc,c

(
ΔV −1I

)
.

For periodic systems, this means that the spectral power of each discrete Fourier mode
should be equal to the continuum structure factor, Sc,c = 1 for the model equation
(38) (see also (17)), independent of the wavenumber.

A spatial discretization that gives the correct equilibrium discrete covariance is
said to satisfy the discrete fluctuation-dissipation balance (DFDB) condition [28, 46].
The condition guarantees that for sufficiently small time steps the statistics of the
discrete fluctuations are consistent with the continuum formulation. For larger time
steps, the difference between the discrete and continuum covariances will depend on
the order of weak accuracy of the temporal discretization [74]. A simple way to obtain
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STAGGERED SCHEMES FOR FLUCTUATING HYDRODYNAMICS 1385

the DFDB condition is from the time stationarity of the covariance. For the model
equation (38), we obtain the linear system of equations for the matrix Cc,

(41)
dCc

dt
= D (−U + χG)Cc +Cc [D (−U + χG)]

�
+ 2χΔV −1DCWD� = 0,

whose solution we would like to be given by (40), specifically, Cc = ΔV −1I. Consid-
ering first the case of no advection, U = 0, we obtain the DFDB condition

(42) DG+ (DG)� = −2DCWD�.

Consider first the case of periodic boundary conditions. A straightforward way
to ensure the condition (42) is to take the components of the random flux W c to
be uncorrelated normal variates with mean zero and unit variance, CW = I, and to
also choose the discrete divergence and gradient operators to be negative adjoints of
each other, G = −D�, just as the continuum operators are [25, 28, 64] (see (43)).
Alternative approaches and the advantages of the above “random flux” approach are
discussed in [64]. As we will demonstrate numerically in section 4, the staggered
discretization of the dissipative and stochastic terms described below satisfies the
DFDB condition for both compressible flow and incompressible flow.

In the continuum equation (38), the advective term does not affect the fluctuation-
dissipation balance at equilibrium; advection simply transports fluctuations without
dissipating or amplifying them. This follows from the skew-adjoint property
(43)∫
Ω

w [∇ · (cv)] dr = −
∫
Ω

c [∇ · (wv)] dr if ∇ ·v = 0 and v ·n∂Ω = 0 or v is periodic,

which holds for any scalar field w(r). In particular, choosing w ≡ c shows that
for an advection equation ∂tc = −∇ · (cv) the “energy”

∫
c2 dr/2 is a conserved

quantity. To ensure that the DFDB condition (41) is satisfied, the matrix DUCc,
or, more precisely, the discrete advection operator S = DU , should be skew-adjoint,
S� = −S. Specifically, denoting with c · w =

∑
i,j ci,jwi,j the discrete dot product,

we require that for all w

(44) w · [(DU) c] = −c · [(DU)w]

if the advection velocities are discretely divergence free, (DU)1 = 0, where 1 denotes
a vector of all ones. Note that this last condition, S1 = 0, ensures the desirable
property that the advection is constant-preserving; that is, advection by the random
velocities does not affect a constant concentration field.

For incompressible flow, the additional constraint on the velocity Dv = 0 needs
to be taken into account when considering DFDB. In agreement with (22), we require
that the equilibrium covariance of the discrete velocities be

(45) 〈vv�〉 = ρ−1
0 kBT0

(
ΔV −1

P
)
,

where P is the discrete projection operator

P = I −G (DG)
−1

D = I −D� (DD�)
−1

D.

With periodic boundary conditions, (45) implies that the discrete structure factor for

velocity is Sv,v = ρ−1
0 kBT0 P̂. In particular, the variance of the velocity in each cell is
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1386 BALBOA USABIAGA ET AL.

in agreement with the continuum result since Tr P̂ = Tr P̂ = d−1. More generally, for
nonperiodic or nonuniform systems, we require that for sufficiently small time steps
all discretely incompressible velocity modes have equal amplitude at equilibrium [46].
In Appendix B we generalize the DFDB condition (42) to the incompressible (con-
strained) velocity equation and show that there are no additional conditions required
from the discrete operators other than the duality condition on the divergence and
gradient operators, G = −D�.

3.2.2. Staggered grid. A cell-centered discretization that is of the form (39)
and satisfies the DFDB condition was developed for compressible flow in [28]. Extend-
ing this scheme to incompressible flow is, however, nontrivial. In particular, imposing
a strict discrete divergence-free condition on collocated velocities has proven to be dif-
ficult and is often enforced only approximately [75], which is inconsistent with (45),
as we explain in Appendix B. An alternative is to use a staggered grid or “MAC”
discretization, as first employed in projection algorithms for incompressible flow [76].
In this discretization, scalars are discretized at cell centers, i.e., placed at points (i, j),
while vectors (notably velocities) are discretized on faces of the grid, placing the x
component at points (i + 1/2, j) and the y component at (i, j + 1/2). Such a stag-
gered discretization is used for the fluxes in [28], the main difference here being that
velocities are also staggered.

In the staggered discretization, the divergence operator maps from vectors to
scalars in a locally conservative manner:

∇ · v → (Dv)i,j = Δx−1
(
v
(x)

i+ 1
2 ,j
− v

(x)

i− 1
2 ,j

)
+Δy−1

(
v
(y)

i,j+ 1
2

− v
(y)

i,j− 1
2

)
.

The discrete gradient maps from scalars to vectors, for example, for the x component:

(∇c)x → (Gc)
(x)

i+ 1
2 ,j

= Δx−1 (ci+1,j − ci,j) .

It is not hard to show that, with periodic boundary conditions, G = −D�, as desired.
The resulting Laplacian L = DG is the usual 5-point Laplacian,

∇2c→ (Lc)i,j =
[
Δx−2 (ci−1,j − 2ci,j + ci+1,j) + Δy−2 (ci,j−1 − 2ci,j + ci,j+1)

]
,

which is negative definite except for the expected trivial translational zero modes.
The velocities vx and vy can be handled analogously. For example, vx is represented
on its own finite-volume grid, shifted from the concentration (scalar) grid by one half

cell along the x axis. The divergence D(x), gradient G(x), and Laplacian L(x) are the
same MAC operators as for concentration but shifted to the x-velocity grid.

For the compressible equations, there is an additional dissipative term in (4) that
involves ∇ (∇ ·v). This term is discretized as written, GDv, which can alternatively
be expressed in conservative form. When viscosity is spatially dependent, the term ∇·(
η∇v
)
should be discretized by calculating a viscous flux on each face of the staggered

grids, interpolating viscosity as needed and using the obvious second-order centered
differences for each of the terms ∂xvx, ∂xvy, ∂yvy, and ∂yvx. For a collocated velocity
grid, the mixed derivatives ∂xvy and ∂yvx, and the corresponding stochastic forcing
terms, do not have an obvious face-centered discretization and require a separate
treatment [28]. The staggered grid avoids these difficulties.

3.2.3. Stochastic fluxes. The stochastic flux W c, like other vectors, is repre-
sented on the faces of the grid; that is, W c is a vector of independent and identically
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distributed numbers, one number for each face of the grid. To calculate the state-
dependent factor

√
c(1− c) that appears in (29) on the faces of the grid, concentration

is interpolated from the cell centers to the faces of the grid. At present, lacking any
theoretical analysis, we use a simple arithmetic average (47) for this purpose.

The stochastic momentum flux W v is represented on the faces of the shifted
velocity grids, which for a uniform grid corresponds to the cell centers (i, j) and the
nodes (i + 1

2 , j +
1
2 ) of the grid [20]. Two random numbers need to be generated for

each cell center, W
(x)
i,j and W

(y)
i,j , corresponding to the diagonal of the stochastic stress

tensor. Two additional random numbers need to be generated for each node of the

grid,W
(x)

i+ 1
2 ,j+

1
2

andW
(y)

i+ 1
2 ,j+

1
2

, corresponding to the off-diagonal components. In three

dimensions, the three diagonal components of the stochastic stress are represented at
the cell centers, while the six off-diagonal components are represented at the edges of

the grid, two random numbers per edge, for example, W
(x)

i+ 1
2 ,j+

1
2 ,k

and W
(y)

i+ 1
2 ,j+

1
2 ,k

.

For the incompressible equations, one can simply generate the different compo-
nents of W v as uncorrelated normal variates with mean zero and unit variance and
obtain the correct equilibrium covariances. Alternatively, each realization of the sto-
chastic stress can be made strictly symmetric and traceless as for compressible flow,
as specified in (10). Because of the symmetry, in practice for each node or edge of
the grid we generate only a single unit normal variate representing the two diagonally
symmetric components. For each cell center, we represent the diagonal components by
generating d independent normal random numbers of variance 2 and then subtract-
ing their average from each number. Note that for collocated velocities a different
approach is required because the diagonal and diagonally symmetric components of
the stress tensor are not discretized on the same grid [28].

3.2.4. Advection. We now consider skew-adjoint discretizations of the advec-
tion operator S = DU on a staggered grid. This problem has been considered in
a more general context for the purpose of constructing stable methods for turbulent
flow in [77, 78]; here we focus on a simple second-order centered discretization. The
importance of the skew-adjoint condition in turbulent flow simulation is that it leads
to strict discrete energy conservation for inviscid flow, which not only endows the
schemes with long-time stability properties but also removes undesirable numerical
dissipation. Conservation of the discrete kinetic energy Ek = ρ (v ·v) /2 is also one of
the crucial ingredients for fluctuation-dissipation balance, i.e., the requirement that
the Gibbs–Boltzmann distribution Z−1 exp [−Ek/ (kBT )] be the invariant distribution
of the stochastic velocity dynamics [19, 25, 79].

Consider first the spatial discretization of the advective term DUc in the con-
centration equation. Since divergence acts on vectors, which are represented on the
faces of the grid, Uc should be represented on the faces as well; that is, U is a linear
operator that maps from cell centers to faces and is a consistent discretization of the
advective flux cv. If we define an advection velocity u on the faces of the grid and also
define a concentration on each face of the grid, then the advective flux can directly
be calculated on each face. For example, for the x faces,

(46) (cv)x → (Uc)
(x)

i+ 1
2 ,j

= u
(x)

i+ 1
2 ,j

ci+ 1
2 ,j

.

For concentration, we can take u = v since the velocity is already represented on the
faces of the scalar grid. Simple averaging can be used to interpolate scalars from cells

D
ow

nl
oa

de
d 

01
/1

6/
13

 to
 1

28
.3

.5
.1

24
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1388 BALBOA USABIAGA ET AL.

to faces, for example,

(47) ci+ 1
2 ,j

=
1

2
(ci+1,j + ci,j) ,

although higher-order centered interpolations can also be used [28].
As discussed in section 3.2.1, we require that the advection operator be skew ad-

joint if DU1 = Du = 0. Our temporal discretization of the incompressible equations
(33)–(34) ensures that a discretely divergence-free velocity is used for advecting all
variables. The case of compressible flow will be discussed further in section 3.2.5. In
the incompressible case, S = DU can be viewed as a second-order discretization of
the “skew-symmetric” form of advection [77]

v ·∇c = v ·∇c+
c

2
∇ · v =

1

2
[∇ · (cv) + v ·∇c] .

Namely, using (46) we obtain

(DUc)i,j = Δx−1
(
u
(x)

i+ 1
2 ,j

ci+ 1
2 ,j
− u

(x)

i− 1
2 ,j

ci− 1
2 ,j

)
+Δy−1

(
u
(y)

i,j+ 1
2

ci,j+ 1
2
− u

(y)

i,j− 1
2

ci,j− 1
2

)
and rewrite the x term using (47) as(

u
(x)

i+ 1
2 ,j

ci+ 1
2 ,j
− u

(x)

i− 1
2 ,j

ci− 1
2 ,j

)
=

1

2

[(
u
(x)

i+ 1
2 ,j

ci+1,j − u
(x)

i− 1
2 ,j

ci−1,j

)
+ ci,j

(
u
(x)

i+ 1
2 ,j
− u

(x)

i− 1
2 ,j

)]
,

and similarly for the y term, to obtain

(48) (DUc)i,j = (Sc)i,j =
(
S̃c
)
i,j

+
1

2
ci,j (Du)i,j ,

where S̃ is a centered discretization of [∇ · (cv) + v ·∇c] /2:(
S̃c
)
i,j

=
1

2

[
Δx−1
(
u
(x)

i+ 1
2 ,j

ci+1,j − u
(x)

i− 1
2 ,j

ci−1,j

)
(49)

+ Δy−1
(
u
(y)

i,j+ 1
2

ci,j+1 − u
(y)

i,j− 1
2

ci,j−1

) ]
.

Since the advection velocity is discretely divergence free, S = S̃.
It is not hard to show that S̃ is skew-adjoint. Consider the x term in

[
S̃c
] · w,

and, assuming periodic boundary conditions, shift the indexing from i to i− 1 in the
first sum and from i to i+ 1 in the second sum, to obtain∑

i,j

wi,j

(
u
(x)

i+ 1
2 ,j

ci+1,j − u
(x)

i− 1
2 ,j

ci−1,j

)
= −
∑
i,j

ci,j

(
u
(x)

i+ 1
2 ,j

wi+1,j − u
(x)

i− 1
2 ,j

wi−1,j

)
.

Therefore, S̃ is skew-adjoint,
(
S̃c
) · w = −c · (S̃w). A similar transformation can

be performed with slip or stick boundary conditions as well. These calculations show
that (44) holds, and thus the discrete advection operator is skew-adjoint, as desired.
Note that the additional terms in (15) due to the Soret effect can be included by
advecting concentration with the effective velocity u = v − χST∇T .

The same approach we outlined above for concentration can be used to advect
the velocities as well. Each velocity component lives on its own staggered grid, and
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advection velocities are needed on the faces of the shifted grid, which in two dimensions
corresponds to the cell centers and the nodes of the grid. The velocity vx is advected
using an advection velocity field u(x) that is obtained via a second-order interpolation
of v, (

u(x)
x

)
i,j

=
1

2

(
v
(x)

i− 1
2 ,j

+ v
(x)

i+ 1
2 ,j

)
,(

u(x)
y

)
i+ 1

2 ,j+
1
2

=
1

2

(
v
(y)

i,j+ 1
2

+ v
(y)

i+1,j+ 1
2

)
,

and similarly for the other components. It is not hard to verify that the advection
velocity u(x) is discretely divergence-free if v is(

D(x)u(x)
)
i+ 1

2 ,j
=

1

2

[
(Dv)i,j + (Dv)i+1,j

]
,

showing that D(x)u(x) = 0 if Dv = 0. Therefore, the shifted advection operator
S(x) = D(x)U (x) is also skew-adjoint, as desired. Identical considerations apply for
the other components of the velocity.

3.2.5. Compressible equations. It is instructive at this point to summarize
our spatial discretization of the incompressible equations (14)–(15) before turning to
the compressible equations. The concentration equation (15) is discretized as

(50)
dc

dt
= −DUc+ χDGc+DΨ,

where U is given by (46) with advection velocity u = v − χST∇T . For the x
component of the velocity, we use the spatial discretization

dvx

dt
+ (Gπ)x = −D(x)U (x)vx + ηD(x)G(x)vx + ρ−1D(x)Σ(x),

and similarly for the other components, and the pressure ensures that Dv = 0.
Our staggered spatial discretization of the compressible equations (6)–(8) is closely

based on the discretization described above for the incompressible equations. An im-
portant difference is that for compressible flow we use the conservative form of the
equations; that is, we use the mass density ρ, the momentum density j = ρv, and
the partial mass density ρ1 = cρ as variables. The momentum densities are staggered
with respect to the mass densities. Staggered velocities are defined by interpolating
density from the cell centers to the faces of the grid, for example,

v
(x)

i+ 1
2 ,j

= j
(x)

i+ 1
2 ,j

/ρi+ 1
2 ,j

= 2j
(x)

i+ 1
2 ,j

/ (ρi+1,j + ρi,j) ,

which implies that Dj = DUρ.
The density equation (6) is discretized spatially as

(51)
dρ

dt
= −DUρ,

while for the concentration equation (8) we use

(52)
dρ1

dt
= −DUρ1 + ρ0χ0DGc+DΨ,
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where we assume that ρχ = ρ0χ0 is constant. For the x component of the momentum
density, we use

(53)
djx
dt

= −D(x)U (x)jx−c2T (Gρ)x+ηD(x)G(x)vx+
(
ζ +

η

3

)
(GDv)x+D(x)Σ(x),

and similarly for the other components. The spatio-temporal discretization ensures
strict local conservation of ρ, j, and ρ1.

The discretization (51)–(53) satisfies DFDB at equilibrium, specifically, the equi-
librium covariances of velocity and density are 〈vv�〉 = ρ−1

0 kBT0 I and 〈ρρ�〉 =
ρ0kBT0/c

2
T I, in agreement with the continuum spectra given in (17). Lineariz-

ing the semidiscrete density equation (51) around an equilibrium state (ρ,v) =
(ρ0 + δρ, v0 + δv) with Dv0 = 0 gives

d (δρ)

dt
+ S̃0 (δρ) = −ρ0 [D (δv)] .

Recall that the operator S̃0, defined by (49) with u = v0, is skew-adjoint, and the
fluctuations in density are thus controlled by the coupling with the velocity fluctu-
ations. For simplicity, consider this coupling for the case of a fluid at rest, v0 = 0,
and thus δj = ρ0 (δv). Linearizing the momentum update (53) and focusing on the
coupling with the density fluctuations, we obtain

d (δv)

dt
+ advection = −ρ−1

0 c2T [G (δρ)] + dissipation and forcing.

Fluctuation-dissipation balance requires the skew-symmetry property Lρ,v 〈vv�〉 =
−〈ρρ�〉L�

v,ρ, where Lρ,v = −ρ0D is the operator in front of δv in the density equa-
tion, and Lv,ρ = −c2TG is the operator in front of δρ in the velocity equation. This
skew-symmetry requirement is satisfied because of the key duality propertyD = −G�.
This demonstrates the importance of the duality between the discrete divergence and
gradient operators, not just for a single advection-diffusion equation but also for cou-
pling between the different fluid variables. In future work, we will explore generaliza-
tions of the concept of skew-adjoint discrete advection to the nonlinear compressible
equations [56, 78].

3.2.6. Boundary conditions. Nonperiodic boundary conditions, specifically,
Neumann or Dirichlet physical boundaries, can be incorporated into the spatial dis-
cretization by modifying the discrete divergence, gradient, and Laplacian operators
near a boundary. This needs to be done in a way that not only produces an accurate
and robust deterministic scheme but also ensures fluctuation-dissipation balance even
in the presence of boundaries. Here we extend the approach first suggested in an
appendix in [13] to the staggered grid. It can be shown that the inclusion of the (dis-
crete) incompressibility constraint does not affect the fluctuation-dissipation balance
when an unsplit Stokes solver is employed in the temporal integrator [46].

We assume that the physical boundary is comprised of faces of the grid. Since
only the direction perpendicular to the wall is affected, we focus on a one-dimensional
system in which there is a physical boundary between cells 1 and 0. For the component
of velocity perpendicular to the wall, some of the grid points are on the physical
boundary itself, and those values are held fixed and not included as independent
degrees of freedom. For the second-order spatial discretization that we employ, no
values in cells outside of the physical domain are required. Therefore, no special
handling at the boundary is needed.
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For cell-centered quantities, such as concentration and components of the velocity
parallel to the wall, the boundary is half a cell away from the cell center; that is,
the boundary is staggered. In this case we use the same discrete operators near
the boundaries as in the interior of the domain, using ghost cells extending beyond
the boundaries to implement the finite-difference stencils near the boundaries. One
can think of this as a modification of the stencil of the Laplacian operator L near
boundaries; specifically, when boundaries are present, the dissipative operator L �=
DG but rather L = DG̃, where G̃ is a modified gradient. Repeating the calculation
in (41) for the spatially discretized model equation

dc

dt
= χLc+

√
2χ/ (ΔV Δt)DW

leads to a generalization of the DFDB condition (42), assuming L� = L:

(54) χLCc + χCcL
� = 2χΔV −1L = −2χΔV −1DCWD� ⇒ L = −DCWD�.

Consider first a Neumann condition on concentration, ∂c(0)/∂x = 0. This means
that a no-flux condition is imposed on the boundary, and therefore for consistency
with physical conservation the stochastic flux on the boundary should also be set to
zero, W 1

2
= 0. The ghost cell value is set equal to the value in the neighboring interior

cell (reflection), c0 = c1, leading to

(55) (DW )1 = Δx−1 W 3
2
,
(
G̃c
)

1
2

= 0, (Lc)1 = Δx−2 (c2 − c1) .

If we exclude points on the boundary from the domain of the divergence operator,
which is also the range (image) of the gradient operator, then it is not hard to see

that the duality condition D� = −G̃ continues to hold. We can therefore continue to
use uncorrelated unit normal variates for the stochastic fluxes not on the boundary,
CW = I in (54).

If a Dirichlet condition c(0) = 0 is imposed, then the ghost cell value is obtained by
a linear extrapolation of the value in the neighboring interior cell (inverse reflection),
c0 = −c1, leading to
(56)

(DW )1 = Δx−1
(
W 3

2
−W 1

2

)
,
(
G̃c
)

1
2

= Δx−1 (2c1) , (Lc)1 = Δx−2 (c2 − 3c1) .

The duality condition is no longer satisfied, D� �= −G̃, but it is not hard to show
that the fluctuation-dissipation balance condition (54) can be satisfied by simply
doubling the variance of the stochastic flux on the boundary, 〈W 1

2
W �

1
2

〉 = 2. Note

that the Laplacian (56) is not formally second-order accurate at the boundary; how-
ever, its normal modes (eigenvectors) can be shown to correspond exactly to the
normal modes of the continuum Laplacian and have decay rates (eigenmodes) that
are second-order accurate in Δx2, and in practice, pointwise second-order accuracy
is observed even next to the boundary. Formal second-order local accuracy can be
obtained by using a quadratic extrapolation for the ghost cell, c0 = −2c1 + c2/3 and
(Lc)1 = Δx−2 (4c2/3 − 4c1); however, this requires a more complicated handling of
the stochastic fluxes near the boundary as well.

In summary, the only change required to accommodate physical boundaries is
to set the variance of stochastic fluxes on a physical boundary to zero (at Neumann
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boundaries) or to twice that used for the interior faces (at Dirichlet boundaries). For
density in compressible flows, the ghost cell values are generated so that the pressure
in the ghost cells is equal to the pressure in the neighboring interior cell, which
ensures that there is no unphysical pressure gradient in the momentum equation across
the interface. There is also no stochastic mass flux through faces on the boundary
independent of the type of boundary condition at the wall. For incompressible flow,
the gradient of pressure is discretized as Gπ = −D�π even in the presence of stick or
slip boundary conditions for velocity; more complicated velocity-stress or open [27]
boundary conditions are simple to handle with the projection-preconditioner solvers,
at least in the deterministic setting.

4. Implementation and numerical tests. We now describe in more detail
our implementations of the spatio-temporal discretizations described in section 3 and
provide numerical evidence of their ability to reproduce the correct fluctuation spec-
trum in uniform flows with periodic boundary conditions. A less trivial application
with nonperiodic boundaries is studied in section 5.

We consider here a uniform periodic system in which there is a steady background
(mean) flow of velocity v0. Unlike the continuum formulation, the discrete formulation
is not Galilean-invariant under such uniform motion and the covariance of the discrete
fluctuations is affected by the magnitude of v0. The stability and accuracy of the
spatio-temporal discretization is controlled by the dimensionless CFL numbers

α =
VΔt

Δx
, β =

νΔt

Δx2
, βc =

χΔt

Δx2
,

where V = cT (isothermal speed of sound) for low Mach number compressible flow,
V = ‖v0‖∞ for incompressible flow, and typically χ � ν. The explicit handling of
the advective terms places a stability condition α � 1, and the explicit handling of
diffusion in the compressible flow case requires max (β, βc) ≤ 1/(2d), where d is the
dimensionality. The strength of advection relative to dissipation is measured by the
cell Reynolds number r = α/β = VΔx/ν.

To characterize the weak accuracy of our methods we examine the discrete Fourier
spectra of the fluctuating fields at equilibrium and compare them to the continuum
theory discussed in section 2.2 for all discrete wavenumbers k. We use subscripts to
denote which pair of variables is considered, and normalize each covariance so that for
self-correlations we report the relative error in the variance, and for cross-correlations
we report the correlation coefficient between the two variables. For example, the
nondimensionalized static structure factor for concentration is

S̃c,c =
〈ĉĉ�〉

ΔV −1Sc,c
=

ΔV

Mρ−1
0 c0(1− c0)

〈ĉĉ�〉 ,

where ĉ(k) is the discrete Fourier transform of the concentration. Note that an ad-
ditional factor equal to the total number of cells may be needed in the numerator
depending on the exact definition used for the discrete Fourier transform [28]. Simi-
larly, the cross-correlations between different variables need to be examined as well,
such as, for example,

S̃c,v =
ΔV√[

Mρ−1
0 c0(1− c0)

] (
ρ−1
0 kBT0

) 〈ĉv̂�〉 .

For staggered variables, the shift between the corresponding grids should be taken
into account as a phase shift in Fourier space, for example, exp (kxΔx/2) for vx.
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For a perfect scheme, S̃c,c = 1 and S̃c,v = 0 for all wavenumbers, and DFDB in
our discretization ensures this in the limit Δt → 0. Our goal will be to quantify
the deviations from “perfect” for several methods as a function of the dimensionless
numbers α and β.

4.1. Incompressible solver. We have implemented the incompressible scheme
described in sections 3.1.2 and 3.2 using the IBAMR software framework [80], an open-
source library for developing fluid-structure interaction models that use the immersed
boundary method. The IBAMR framework uses SAMRAI [81] to manage Cartesian
grids in parallel, and it uses PETSc [82] to provide iterative Krylov solvers. The major-
ity of the computational effort in the incompressible solver is spent in the linear solver
for the Stokes system; in particular, it is spent in the projection-based preconditioner,
the application of which requires solving a linear Poisson system for the pressure and
a modified linear Helmholtz system for the velocities and the concentrations [34]. For
small viscous CFL numbers β � 1, the Poisson solver dominates the cost; however,
for β � 1, the Helmholtz linear systems become similarly ill-conditioned and require
a good preconditioner themselves. We employ the hypre library [83] to solve the linear
systems efficiently using geometric multigrid solvers.

For incompressible flow, one could directly compare the spectrum of the velocities
〈v̂v̂�〉 to the spectrum of the discrete projection operator P (see section 3.2.1). It is,
however, simpler and more general to instead examine the equilibrium covariance of
the discrete modes forming an orthonormal basis for the space of discretely divergence-
free modes. The amplitude of all modes should be unity, even if there are physical
boundaries present, making it easy to judge the accuracy at different wavenumbers.
For periodic boundary conditions, a discretely orthogonal basis is obtained by replac-
ing the wavenumber k = (kx, ky, kz) in (23)–(25) by the effective wavenumber k̃ that
takes into account the centered discretization of the projection operator, for example,

(57) k̃x =
exp (ikxΔx/2)− exp (−ikxΔx/2)

iΔx
= kx

sin (kxΔx/2)

(kxΔx/2)
.

Our temporal discretization ensures that the discrete velocities are discretely diver-
gence-free; that is, 〈v̂1v̂�1〉 = 0 to within the tolerance of the linear solvers used for
the Stokes system. For a perfect scheme, the dimensionless structure factor

S̃(2)
v =

ΔV

ρ−1
0 kBT0

〈v̂2v̂�2〉 ,

and analogously S̃
(3)
v (in three dimensions), would be unity for all wavenumbers, while

S̃
(2,3)
v ∼ 〈v̂2v̂�3〉 would be zero.

Note that for a system at equilibrium, ∇c̄ = 0, the linearized velocity equation
and the concentration equation (18) are uncoupled, and thus S̃c,v = 0. Observe
that the same temporal discretization is used for the velocity equation, projected
onto the space of discretely divergence-free vector fields consistent with the boundary
conditions, and for the concentration equation. Therefore, it is sufficient to present

here numerical results for only one of the self-correlations S̃
(2)
v , S̃

(3)
v , or S̃c,c. In

Figure 2 we show S̃
(2)
v as a function of the wavenumber k in three dimensions for

a cell Reynolds number r = 1 and advective CFL numbers α = 0.5 and α = 0.25.
Even for the relatively large time step, the deviation from unity is less than 5%, and
as α → 0 it can be shown theoretically and observed numerically that the correct
covariance is obtained at all wavenumbers.
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1394 BALBOA USABIAGA ET AL.

Fig. 2. Spectral power of the first solenoidal mode for an incompressible fluid, S̃
(2)
v (kx, ky, kz),

as a function of the wavenumber (ranging from 0 to π/Δx along each axis), for a periodic system
with 323 cells. A uniform background flow along the z axis is imposed. The left panel is for a

time step α = 0.5 and the right for α = 0.25. Though not shown, we find that S̃
(3)
v and S̃c,c are

essentially identical, and both the real and imaginary parts of the cross-correlation S̃
(2,3)
v vanish to

within statistical accuracy.

0.125 0.25 0.5 1
α = Δt  V / Δx

1×10
-3

1×10
-2

Error

Two dimensions
Three dimensions
Δt

2

0.0625 0.125 0.25
α = Δt  cT / Δx

1×10
-5

1×10
-4

1×10
-3

1×10
-2

1×10
-1

Error

vx - vx
vx - vy
ρ - vx
ρ − ρ
Δt

 3

Fig. 3. (Left) Relative error in the equilibrium variance of velocity (or, equivalently, concen-
tration) for several time steps, as obtained using our incompressible code with a background flow
velocity v0 =

(√
3, 2

)
/2 corresponding to cell Reynolds number r =

√
3/2 in two dimensions and

v0 = (1, 1/3, 1/3) corresponding to r = 1 in three dimensions, for a grid of size 322 and 323 cells,
respectively. The theoretical order of convergence O(Δt2) is shown for comparison. Error bars are
on the order of the symbol size. (Right) Normalized covariance of the discrete velocities and densi-
ties compared to the theoretical expectations, using the parameters reported in the caption of Figure
4. The value reported is the relative error of the variance of a variable or the correlation coefficient
between pairs of variables; see the legend. The theoretical order of convergence O(Δt3) is shown for
comparison. Error bars are indicated but are smaller than the symbol size except for the smallest
time step.

Theoretical analysis suggests that the error in the discrete covariance vanishes
with the time step and the background velocity as O(α2) ∼ O

(
V 2Δt2

)
for both veloc-

ity and concentration [46]. In the left panel of Figure 3 we show the observed relative
error in the variance of the discrete velocity as a function of α, confirming the predicted
quadratic convergence. As expected, identical results are obtained for concentration
as well. These numerical results confirm that our spatial discretization satisfies the
DFDB condition and the temporal discretization is weakly second-order accurate.

D
ow

nl
oa

de
d 

01
/1

6/
13

 to
 1

28
.3

.5
.1

24
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STAGGERED SCHEMES FOR FLUCTUATING HYDRODYNAMICS 1395

4.2. Compressible solver. Unlike the incompressible method, which requires
complex linear solvers and preconditioners, the explicit compressible scheme is very
simple and easy to parallelize on graphics processing units (GPUs). Our implemen-
tation is written in the CUDA programming environment and is three-dimensional
with the special case of Nz = 1 cell along the z axes corresponding to a quasi–two-
dimensional system. In our implementation we create one thread per cell, and each
thread writes only to the memory address associated with its cell and accesses only
the memory associated with its own and neighboring cells. This avoids concurrent
writes and costly synchronizations between threads, facilitating efficient execution on
the GPU. Further efficiency is gained by using the GPU texture unit to perform some
of the simple computations, such as evaluating the equation of state. Our GPU code
running in a NVIDIA GeForce GTX 480 is about 4 times faster (using double preci-
sion) than a compressible CPU-based code [28] running on 32 AMD cores using MPI.
Note that with periodic boundary conditions the velocity and the pressure linear sys-
tems in the incompressible formulation decouple, and fast Fourier transforms could be
used to solve them efficiently. We have used this to also implement the incompress-
ible algorithm on a GPU by using the NVIDIA FFT library as a Poisson/Helmholtz
solver. We emphasize, however, that this approach is applicable only to the case of
periodic boundary conditions.

We first examine the equilibrium discrete Fourier spectra of the density and ve-
locity fluctuations for a uniform periodic system with an imposed background flow,
with similar results observed for concentration fluctuations. In Figure 4 we show the
correlations of density and velocity fluctuations as a function of the wavenumber k in
three dimensions for a CFL number of α = 0.25. We see that self-correlations are close
to unity, while cross-correlations nearly vanish, as required, with density fluctuations
having the largest relative error of 5% for the largest wavenumbers.

Calculating cross-correlations in real space is complicated by the staggering of the
different grids. We arbitrarily associate the “upward” cell faces with the cell center,

defining 〈(δρ) (δvx)〉 ≡ 〈(δρi,j)
(
δv

(x)

i+ 1
2 ,j

)〉 and 〈(δvx) (δvy)〉 ≡ 〈(δv(x)i+ 1
2 ,j

)(
δv

(y)

i,j+ 1
2

)〉.
Theoretical analysis suggests that the error in the discrete covariance vanishes with
the time step as O(α3) ∼ O

(
c3TΔt3
)
[46]. In the right panel of Figure 3 we show

the relative error in the discrete covariances as a function of α in the presence of a
background flow, confirming the predicted cubic convergence. These numerical results
verify that our spatial discretization satisfies the DFDB condition and the temporal
discretization is weakly third-order accurate.

4.2.1. Dynamic correlations. For compressible flow, the dynamics of the fluc-
tuations is affected by the presence of sound waves, and it is important to verify that
the numerical scheme is able to reproduce the temporal correlations between the
fluctuations of the different pairs of variables. In particular, a good method should
reproduce the dynamic correlations at small wavenumbers and wavefrequencies cor-
rectly [28]. Theoretical predictions for the equilibrium covariances of the spatio-
temporal spectra of the fluctuating fields, usually referred to as dynamic structure
factors, are easily obtained by solving the equations (6)–(7) in the Fourier wavevector-
frequency (k, ω) domain and averaging over the fluctuations of the stochastic forc-
ing [17]. The density-density dynamic structure factor Sρ,ρ(k, ω) is accessible exper-
imentally via light scattering measurements, and for isothermal flow it exhibits two
symmetric Brilloin peaks at ω ≈ ±cTk. The velocity components exhibit an addi-
tional central Rayleigh peak at ω = 0 due to the viscous dissipation. As the fluid
becomes less compressible (i.e., the speed of sound increases), there is an increasing
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1396 BALBOA USABIAGA ET AL.

Fig. 4. Normalized static structure factors S̃ρ,ρ (top left), S̃vx,vx (top right), S̃ρ,vx (bottom

left), and S̃vx,vy (bottom right) for a compressible fluid with physical properties similar to water

for a periodic system with 303 cells. A uniform background flow with velocity v0 = (0.2, 0.1, 0.05)cT
is imposed, and the time step corresponds to an acoustic CFL number α = 0.25 and viscous CFL
number βν = 0.017 for shear viscosity and βζ = 0.041 for bulk viscosity.

separation of time scales between the side and central spectral peaks, showing the
familiar numerical stiffness of the compressible NS equations.

In Figure 5 we compare the theoretical to the numerical dynamic structure fac-
tors for one of the smallest resolved wavenumbers and observe very good agreement.
Note that unlike static correlations, dynamic correlations are subject to discretization
artifacts for larger wavenumbers, even as Δt → 0 [28]. Specifically, the positions
and widths of the various peaks are set by the effective wavevector k̃ rather than the
true wavevector k, as given for the standard second-order discretization of diffusion
in (57).

5. Giant fluctuations. As a nontrivial application of our staggered schemes for
fluctuating hydrodynamics, we perform the first incompressible computer simulations
of diffusive mixing in microgravity, recently studied experimentally aboard a satellite
in orbit around the Earth [12]. The experimental data presented in [12] shows good
agreement with theoretical predictions; however, various oversimplifications are made
in the theory, and, notably, only the solenoidal velocity mode with the largest wave-
length is considered. Numerical simulations allow for a more detailed comparison of
experimental data with fluctuating hydrodynamics, at least within the applicability
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Fig. 5. Numerical data (symbols) and theory (lines) for the real part of several dynamic struc-
ture factors for wavenumber k = (2, 2, 2) · 2π/L in a cubic periodic box with 303 cells and volume
L3. Self-correlations are shown in the left panel, and cross-correlations are shown in the right panel.
The imaginary part vanishes to within statistical accuracy for the off-diagonal terms. The physical
parameters are as reported in the caption of Figure 4.

of the physical approximations discussed in section 1.1.
The experimental configuration consists of a dilute solution of polystyrene in

toluene, confined between two parallel transparent plates that are a distance h = 1mm
apart. A steady temperature gradient ∇T = ΔT/h is imposed along the y axes via
the plates. The weak temperature gradient leads to a strong concentration gradient
∇c̄ = c̄ST∇T due to the Soret effect, giving rise to an exponential steady-state
concentration profile c̄(y). Quantitative shadowgraphy is used to observe and measure
the strength of the fluctuations in the concentration around c̄ via the change in the
refraction index. The observed light intensity, once corrected for the optical transfer
function of the equipment, is proportional to the intensity of the fluctuations in the
concentration averaged along the gradient:

c⊥(x, z) = h−1

∫ h

y=0

c(x, y, z)dy.

The main physical parameters we employed in our simulations are summarized in
Table 1. Additional details of the experimental setup and parameters are given in [12].

The large speed of sound in toluene makes the compressible equations very stiff at
the length scales of the experimental system. It is usually argued that compressibility
does not affect the concentration fluctuations [17]. Solving the compressible equations
in the presence of a concentration gradient confirms that, as long as there is a large
separation of time scales between the acoustic and diffusive dynamics, the presence
of sound waves does not affect the concentration fluctuations. In our compressible
simulations, we artificially decrease the speed of sound many-fold and set the cell
Reynolds number to r = cTΔx/ν ≥ 10. Numerical results show that this is sufficient
for approaching the limit r → ∞ to within the statistical accuracy of our results.
This decrease in cT corresponds to making the mass of the toluene molecules much
larger than the mass of the polystyrene macromolecules themselves, which is of course
physically very unrealistic. One can think of our compressible simulations of giant
fluctuations in microgravity as an artificial compressibility method for solving the
incompressible equations.

In the actual experiments reported in [12], concentration diffusion is much slower
than momentum diffusion, corresponding to Schmidt number Sc = ν/χ ≈ 3 ·103. This
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Table 1

Summary of parameters used in the simulations of giant fluctuations in zero gravity.

Parameter Value Notes

ρ 0.86 gr/cm3 on average only if compressible

χ(ν + χ) 1.2 · 10−8 cm4/s2 kept constant in all runs

ν variable Sc = ν/χ physical value ν = 6.07 · 10−3 cm2/s

χ variable Sc = ν/χ physical value χ = 1.97 · 10−6 cm2/s

ζ 0 none for incompressible

kBT 4.18 · 10−14 gr cm2/s corresponds to T = 303 K

M 1.51 · 10−20 gr not important for results

ST 0.0649 K−1 enters only via ST∇T

c0 0.018 on average only if nonperiodic

cT 1.11 cm/s physical value cT ≈ 1.3 · 105 cm/s

level of stiffness makes direct simulation of the temporal dynamics of the fluctuations
infeasible, as long averaging is needed to obtain accurate steady-state spectra, espe-
cially for small wavenumbers. However, as far as the nonequilibrium static correlations
are concerned, we see from (27) that the crucial quantity is χ(ν+χ) = (s+1)χ2, rather
than χ and ν individually. Therefore, we can artificially increase χ and decrease ν to
reduce s, keeping s � 1 and (s + 1)χ2 fixed. In the linearized case, it can be proven
more formally that there exists a limiting stochastic process for the concentration as
s→∞ so long as sχ2 is kept constant [84]. In fact, artificially decreasing the Schmidt
number while keeping sχ2 fixed can be seen as an instance of the seamless multiscale
method presented in [85].

5.1. Approximate theory. For large wavenumbers, the influence of the bound-
aries can be neglected and the periodic theory presented in section 2.2.1 applied. In
order to demonstrate the importance of the boundaries, and also to test the code by
comparing to the periodic theory, we have implemented a model in which qualita-
tively similar giant concentration fluctuations appear even though the macroscopic
concentration profile is uniform, c̄(y) = c0. Numerically, this sort of quasi-periodic
model is implemented by using periodic boundary conditions but adding an additional
source term −v ·∇c̄ in the concentration equation, as in (18). This term mimics our
skew-adjoint discretization of the advection by the fluctuating velocities

v ·∇c̄→ (DUc̄)i,j =
∇c̄
2

(
v
(y)

i,j+ 1
2

+ v
(y)

i,j− 1
2

)
and is conservative when integrated over the whole domain. Note that in this quasi-
periodic setup ∇c̄ is simply an externally imposed quantity unrelated to the actual
mean concentration profile. We emphasize that these quasi-periodic simulations are
used only for testing and theoretical analysis of the problem, and not for comparison
with the experimental results. In the simulations with physical boundaries and in
the experiments the concentration profile is exponential rather than linear. For the
purposes of constructing a quasi-periodic approximation, we take the effective con-
centration gradient to be ∇c̄ ≈ Δc/h, where Δc is the difference in concentration near
the two boundaries.

For periodic systems, the spectrum of the fluctuations of c⊥ can be obtained from
the full three-dimensional spectrum (27) by setting ky = k‖ = 0. For the specific
parameters in question, the equilibrium fluctuations in concentration are negligible
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Fig. 6. Snapshots of the concentration c⊥ in the plane perpendicular to the gradient ∇c̄ at
times 0.1τ0, τ0, and 5τ0 after the gradient is established. The thickness of the sample (perpendicular
to the page) is one quarter of the lateral extents of the system, h = Ly = Lx/4, and sets the scale
of the steady-state fluctuations. Compare to the experimental snapshots shown in Figure 1 of [12].

even at the largest resolved wavenumbers. When discretization artifacts are taken
into account, the quasi-periodic theoretical prediction for the experimentally observed
spectrum becomes

(58) S⊥
QP (kx, kz) =

〈(
δ̂c⊥
)(

δ̂c⊥
)�〉

=
kBT

ρ [χ(ν + χ)] k̃4⊥
(∇c̄)2 ,

where k̃4⊥ =
(
k̃2x+ k̃2z

)2
and the tilde denotes the effective wavenumber (57). Imposing

no-slip conditions for the fluctuating velocities makes the theory substantially more
complicated. A single-mode approximation for the velocities is made in [62] in order
to obtain a closed-form expression for the spectrum of concentration fluctuations in a
nonperiodic system S⊥

NP. For a small Lewis number and without gravity, it is found
that

(59)
S⊥
NP(k⊥)

S⊥
QP(k⊥)

≈ G(hk⊥) =
q4⊥

q4⊥ + 24.6q2⊥ + 500.5
,

where q⊥ = hk⊥ is a nondimensionalized wavenumber.
The Galerkin function G given by (59) reflects the physical intuition that the no-

slip condition suppresses fluctuations at scales larger than the distance between the
physical boundaries [12]. After the concentration gradient is established, “giant” [42]
concentration fluctuations evolve with a typical time scale of τ0 = h2/(π2χ) ∼ 1000s,
until a steady state is reached in which the typical length scale of the concentration
fluctuations is set by the finite extent of the domain. This is illustrated in Figure
6 via snapshots of c⊥(x, z; t) taken at several points in time after starting with no
concentration fluctuations at time t = 0.

5.2. Simulations and results. In our simulations, the plates are represented
by no-slip boundaries at y = 0 and y = h, and periodic boundaries are imposed
along the x and z axes to mimic the large extents of the system in the directions
perpendicular to the gradient. A Robin boundary condition is used for concentration
at the physical boundary,

∂c

∂n
= −c (n · vs) ,

ensuring that the normal component of the concentration flux vanishes at a physical
boundary. The stochastic concentration flux also vanishes at the boundary as for
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Fig. 7. Ratio between the numerical and theoretical discrete spectra of concentration projected
along the y axes as a function of the normalized wavenumber q⊥ = k⊥h. For all runs Ny = 32
cubic hydrodynamic cells along the y axes were used, and all systems have aspect ratio Nx/Ny =
Nz/Ny = 4. Error bars are indicated for some of the curves to indicate the typical level of statistical
uncertainty. (Left) Two dimensions, for both compressible and incompressible fluids (see the legend),
with either periodic boundary conditions (empty symbols) or physical boundaries (solid symbols)
imposed at the y boundaries for several Schmidt numbers Sc = ν/χ. (Right) Three dimensions, with
the same symbols as the left panel), along with arbitrarily normalized experimental data [12] (see
the legend) corresponding to Sc ≈ 3 · 103 (experimental measurements courtesy of A. Vailati).

Dirichlet boundaries since the Soret term does not affect fluctuation-dissipation bal-
ance. In the codes the boundary condition is imposed by setting the concentration in
a ghost cell to

cg = cn
2± vsΔy

2∓ vsΔy
,

where cn is the value in the neighboring cell in the interior of the computational
domain, and the sign depends on whether the ghost cell is at the low or high end of the
y axis. The boundary condition is imposed explicitly, which leads to nonconservation
of the total concentration when a semi-implicit method is used for the diffusive terms
in the concentration equation. This can be corrected by implementing the boundary
condition implicitly or using an explicit method for concentration; however, we do
not do either since the observed change in the average concentration is small for the
specific parameters we use.

Using the incompressible formulation allows for a much larger time step, not only
because of the lack of acoustics but also because of the implicit temporal discretiza-
tion of the viscous terms in the momentum equations. However, it is important to
remember that a time step of our GPU-parallelized compressible code takes much
less computing than a time step of the incompressible code. Nevertheless, we are
able to study larger system sizes in three dimensions using the incompressible algo-
rithm. In the incompressible simulations, we used (36) for the velocity equation in
order to avoid unnecessary projections. Because of the explicit handling of the con-
centration boundary conditions, we employed a predictor-corrector algorithm for the
concentration equation, in which both the predictor and the corrector stages have the
form (37).

In Figure 7 we show numerical results for the steady-state spectrum of the dis-
crete concentration field averaged along the y axes, in two dimensions (left panel) and
in three dimensions (right panel), for both bulk (quasi-periodic) and finite (nonpe-
riodic) systems. In order to compare with the theoretical predictions (58) and (59)
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most directly, we plot the ratio of the observed to the predicted spectrum. This
choice of normalization not only emphasizes any mismatch with the theory but also
eliminates the power-law (k−4

⊥ ) divergence and makes it easier to average over nearby

wavenumbers k̃⊥ and also estimate error bars.1 For the runs reported in Figure 7 we
applied the largest concentration (temperature) gradient (ΔT = 17.4K) used in the
experiments [12]; we have verified that the nonequilibrium concentration fluctuations
scale as the square of the gradient.

Both panels in Figure 7 show an excellent agreement between the theory (58)
and the numerical results for quasi-periodic systems. This shows that correcting for
the spatial discretization artifacts by replacing k⊥ with k̃⊥ accounts for most of the
discretization error. For the compressible runs, we use a relatively small time step,
α = 0.2, leading to temporal discretization errors that are smaller than the statistical
accuracy except at the largest wavenumbers. Our semi-implicit discretization of the
incompressible equations gives the correct static covariance of the concentration for
all time step sizes. Based on the analysis presented in Appendix A, the majority of
the incompressible simulations employ a time step corresponding to a viscous CFL
number β = 1 or β = 2, with a few of the largest systems run at β = 5 to better
resolve the smaller wavenumbers.

In the left panel of Figure 7 we compare results from two-dimensional compress-
ible and incompressible simulations and find excellent agreement. For nonperiodic
systems, the single-mode Galerkin theory (59) is not exact and the theory visibly
overpredicts the concentration fluctuations for smaller wavenumbers in both two and
three dimensions. We observe only a partial overlap of the data for different Schmidt
numbers Sc = ν/χ for smaller wavenumbers, although the difference between Sc = 10
and Sc = 20 is relatively small.

In three dimensions we rely on the incompressible code in order to reach time
scales necessary to obtain sufficiently accurate steady-state averages for large Schmidt
numbers. In the right panel of Figure 7 we compare numerical results for quasi-
periodic and nonperiodic compressible and incompressible systems to the theoretical
predictions and also to experimental data from [12, 86]. While the numerical data
does not match the experiments precisely at the smallest wavenumbers, a more care-
ful comparison is at present not possible. First, the boundary conditions affect the
small wavenumbers strongly, and our use of periodic boundary conditions in the x
and z directions does not match the experimental setup. The experimental data
has substantial measurement uncertainties and is presently normalized by an arbi-
trary prefactor. Within this arbitrary normalization, our numerical results seem to
be in good agreement with the experimental observations over the whole range of
experimentally accessible wavenumbers, and the agreement at small wavenumbers
improves as the Schmidt number of the simulations increases. The actual magnitude
of the macroscopic nonequilibrium fluctuations in c⊥ is given by the integral of the
structure factor S⊥

c,c over all wavenumbers k⊥. Numerically we observe fluctuations〈
(δc⊥)2
〉
/c̄2⊥ ≈ 3 · 10−7, which is consistent with experimental estimates [86].

6. Conclusions. We have presented spatio-temporal discretizations of the equa-
tions of fluctuating hydrodynamics for both compressible and incompressible mixtures
of dynamically identical isothermal fluids. As proposed by some of us in [28], we judge
the weak accuracy of the schemes by their ability to reproduce the equilibrium co-

1Note, however, that the most reliable error bars are obtained by averaging over many uncorre-
lated runs started with different random number seeds.

D
ow

nl
oa

de
d 

01
/1

6/
13

 to
 1

28
.3

.5
.1

24
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1402 BALBOA USABIAGA ET AL.

variances of the fluctuating variables. In particular, for small time steps the spatial
discretization ensures that each mode is equally forced and dissipated in agreement
with the fluctuation-dissipation balance principle satisfied by the continuum equa-
tions. A crucial ingredient of this discrete fluctuation-dissipation balance is the use
of a discrete Laplacian L = −DD� for the dissipative fluxes, where D is a conser-
vative discrete divergence, with a suitable correction to both the Laplacian stencil
and the stochastic fluxes at physical boundaries. Furthermore, we utilize a centered
skew-adjoint discretization of advection which does not additionally dissipate or force
the fluctuations, as previously employed in long-time simulations of turbulent flow,
where it is also crucial to ensure conservation and avoid artificial dissipation [77].

For the compressible equations, our spatio-temporal discretization is closely based
on the collocated scheme proposed by some of us in [28], except that here we employ a
staggered velocity grid. It is important to point out the difference between a collocated
scheme, in which the fluid variables are cell-centered but the stochastic fluxes are face-
centered (staggered), as described in [28], and a centered scheme where all quantities
are cell-centered. Several authors [26, 27] have already noted that centered schemes
lead to a Laplacian that decouples neighboring cells, which is problematic in the
context of fluctuating hydrodynamics. We emphasize, however, that these problems
are not shared by collocated schemes for compressible fluids, for which the Laplacian
L = −DD� has the usual compact 2d+ 1 stencil, where d is the dimensionality [28].
Discretizations in which all conserved quantities are collocated may be preferred over
staggered ones in particle-continuum hybrids [13] or, more generally, in conservative
discretizations for nonuniform grids.

A staggered grid arrangement, however, has a distinct advantage for incompress-
ible flow. Namely, the use of a staggered grid simplifies the construction of a robust
idempotent discrete projection P = I+D�L−1D that maintains discrete fluctuation-
dissipation at all wavenumbers. In the temporal discretization employed here, based
on prior work by one of us [34], this projection is used as a preconditioner for solving
the Stokes equations for the pressure and velocities at the next time step. For periodic
systems, the method becomes equivalent to a classical Crank–Nicolson-based projec-
tion method, while at the same time avoiding the appearance of artificial pressure
modes in the presence of physical boundaries [71, 72].

The numerical results presented in section 5 verify that our numerical simulations
model experimental measurements of giant fluctuations [12] during diffusive mixing of
fluids faithfully. The numerical simulations give access to a lot more data than is ex-
perimentally measurable. For example, the spectrum of concentration fluctuations in
the x-z plane can be computed for planes (slices) as the distance from the boundaries
is varied, giving a more complete picture of the three-dimensional spatial correlations
of the nonequilibrium fluctuations. We defer a more detailed analysis, including a
study of temporal correlations, to future work.

The compressible solver we developed utilizes modern GPUs for accelerating the
computations. In the future we will investigate the use of GPUs for the incompressible
equations for nonperiodic systems. For grid sizes that are much larger than molecular
scales, the stability restriction of explicit compressible solvers becomes severe and it
becomes necessary to eliminate sound waves from the equations by employing the low
Mach number limit. A challenge that remains to be addressed in future work is the
design of zero Mach number methods [48] for solving the variable-density equations
of fluctuating hydrodynamics, as necessary when modeling mixtures of miscible fluids
with different densities. This would enable computational modeling of the effects
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of buoyancy (gravity) in experimental studies of the giant fluctuation phenomenon
performed on Earth [39, 42, 43].

Appendix A. Implicit midpoint rule as a Gibbs sampler. We consider
here numerical methods for the general additive-noise linear SDE

(A1)
dx

dt
= Ax+KW (t) ,

where W(t) denotes white noise. If the eigenvalues of A have negative real parts, the
long-time dynamics tends to a Gaussian equilibrium distribution

(A2) Peq (x) = Z−1 exp

(
−x�S−1x

2

)
,

where the covariance matrix S is the solution to the linear system (see, for example,
equation (30) in [28] or equation (3.10) in [64])

(A3) AS + SA� = −KK�.

If one is interested only in calculating steady-state observables (expectation values),
then a numerical method for solving (A1) needs to sample only the equilibrium Gibbs
distribution (A2), without having to approximate the correct dynamics.

The implicit midpoint rule or Crank–Nicolson discretization that we employed in
section 3.1.2,

(A4) xn+1 = xn +A

(
xn + xn+1

2

)
Δt+Δt1/2KW n,

can be seen as a Markov chain Monte Carlo (MCMC) algorithm for sampling from the
distribution (A2). This sampling is exact; that is, the equilibrium distribution of the
chain (A4) is exactly (A2). This important fact can be shown using the techniques
described in [28], but here we present an alternative derivation.

A well-known MCMC algorithm for sampling the Gibbs distribution is the Me-
tropolis–Hastings algorithm. In this algorithm, one treats xn+1 as a trial or proposal
move that is then to be accepted with probability

α =
Peq

(
xn+1
)

Peq (xn)

Prev

(
xn+1 → xn

)
Pforw (xn → xn+1)

,

where Pforw is the transition probability for the chain (A4) and Prev is the transition
probability for the time-reversed chain (this important distinction ensures strict time
reversibility of the chain with respect to the equilibrium distribution). Explicitly,

Prev

(
xn+1 → xn

)
= C exp

[
− (W n)

�
(W n)

2

]
,

Pforw

(
xn → xn+1

)
= C exp

⎡⎢⎣−
(
W̃

n)� (
W̃

n)
2

⎤⎥⎦ ,
where the reverse step noise W̃

n
is the solution to the equation (here the adjoint of

A appears because of time reversal)

xn = xn+1 +A�

(
xn + xn+1

2

)
Δt+Δt1/2KW̃

n
.
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Note that the case of noninvertible K can be easily handled by working not with the
random flux W n but rather with the stochastic increments KW n, whose covariance
KK� can be assumed to be invertible without loss of generality.

A tedious but straightforward matrix calculation shows that the acceptance prob-
ability α = 1; that is, no rejection is necessary for the implicit midpoint rule to sample
the correct equilibrium distribution, regardless of the time step Δt. The calculation
of α is simple to do if a Fourier transform is used to diagonalize the hydrodynamic
equations (see (19)) to obtain a system of scalar SDEs with complex coefficients. For
the stochastic advection-diffusion equation (38) with v = v0, which is a good model
for more general hydrodynamic equations,

(A5) A ≡ A = −a+ b i, K ≡ K =
√
2a, S ≡ S = 1,

with a = χk2 and b = −kv0, where k is the wavenumber.
While the time step Δt can be chosen arbitrarily without biasing the sampling,

the optimal choice is the one that minimizes the variance of the Monte Carlo estimate
of the observable of interest. In the simulations of giant fluctuation experiments, the
observable of interest is the covariance (spectrum) of the fluctuations S = 〈xx�〉. The
variance of the Monte Carlo estimate of S is proportional to the autocorrelation time
τ of Sn = xn (xn)�, which itself is proportional to the sum of the autocorrelation
function of Sn [87]. Focusing on the scalar SODE (A5), we get the autocorrelation
time

τ ∼
∞∑

n=0

[〈
SkSk+n

〉− 〈Sk
〉2]

=
∞∑
n=0

(AA�)n =
1

2aΔt
+

1

2
+

aΔt

8
+

bΔt

a
.

For the purely diffusive equation, v0 = 0, the statistical accuracy for a fixed number
of time steps is proportional to

τ−1 =
8k̃2β

4 + 4k̃2β + k̃4β2
,

where β = νΔt/Δx2 is the viscous CFL number and k̃ = kΔx is the dimensionless
wavenumber. Note that τ−1 ∼ βk̃2 for small k̃, so increasing the time step improves
the sampling. However, for large k̃, increasing the time step reduces the statistical
accuracy (this is related to the fact that the Crank–Nicolson algorithm is A-stable but

not L-stable), τ−1 ∼ (βk̃2)−1
. The wavenumber with the highest statistical accuracy

k̃opt depends on the time step, βk̃2opt = 2, or, alternatively, the optimal choice of
time step depends on the wavenumber of most interest. For the type of problems we
studied in this work, the spectrum of the fluctuations has power-law tails ∼ k−4, and
therefore all wavenumbers are important. Using β ∼ 2 produces a good coverage of
all of the wavenumbers.

Appendix B. Fluctuation-dissipation balance for incompressible flow.
Discrete fluctuation-dissipation balance is affected by the presence of an incompress-
ibility constraint. The spatially discretized velocity equation linearized around a sta-
tionary equilibrium state has the form, omitting unimportant constants in the noise
amplitude,

(B1) ∂tv = P

[
νLv +

√
2νDW v

]
,
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where we used a nonsymmetric stochastic stress tensor since the symmetry does not
affect the results presented here. The steady-state covariance of the velocities Sv =
〈vv�〉 is determined from the fluctuation-dissipation balance condition (A3) with A =
νPL and K =

√
2ν PD, giving

(B2) PLSv + SvL
�
P
� = −2PDD�

P
�.

The fluctuation-dissipation balance condition for the simple advection-diffusion equa-
tion

L+L� = DG+ (DG)� = −2DD�

implies that Sv = P is the solution to (B2) if P is self-adjoint, P� = P, as stated in
(45) with all of the constants included.

The above analysis does not account for the temporal discretization. For small
time steps, our temporal discretization of (B1) behaves similarly to a projected Euler–
Maruyama method:

vn+1 = P

[
vn + νLvΔt+

√
2νΔtDW v

]
.

An important difference with the continuum equation (B1) is that the velocity in the
previous time step is also projected; i.e., the increment of O (Δt) is added to Pvn

and not to vn. If P is idempotent, P2 = P, just as the continuum projection operator
is, then subsequent applications of the projection operator do not matter since vn is
already discretely divergence-free, Pvn = vn. In the literature on projection methods
idempotent projections are called exact projections.

The above considerations lead to the conclusion that Sv = P if P
� = P and

P
2 = P. Both of these conditions are met by the MAC discrete projection operator P =

I−D� (DD�)−1 D, which shows that our spatio-temporal discretization gives velocity
fluctuations that have the correct covariance (45). A straightforward extension of the
analysis in Appendix A shows that the Crank–Nicolson temporal discretization (36)
gives the correct equilibrium velocity covariance for any time step size, not just for
small time steps. Further details will be presented in future publications [46].
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[51] P. Español, Stochastic differential equations for non-linear hydrodynamics, Phys. A, 248
(1998), pp. 77–96.

[52] J. L. Lebowitz, E. Orlanndi, and E. Presutti, Convergence of stochastic cellular automa-
tion to Burgers’ equation: Fluctuations and stability, Phys. D, 33 (1988), pp. 165–188.

[53] L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from particle systems,
Comm. Math. Phys., 183 (1997), pp. 571–607.

[54] R. Kubo, The fluctuation-dissipation theorem, Rep. Progr. Phys., 29 (1966), pp. 255–284.
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