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Abstract: A parallel adaptive mesh refinement (AMR) algorithm is proposed and
applied to the predictions of both laminar and turbulent steady non-premixed com-
pressible combusting flows. The parallel solution-adaptive algorithm solves the sys-
tem of partial-differential equations governing two-dimensional axisymmetric laminar
and turbulent compressible flows for reactive thermally perfect gaseous mixtures us-
ing a fully coupled finite-volume formulation on body-fitted multi-block quadrilateral
mesh. The compressible formulation can readily accommodate large density varia-
tions and thermo-acoustic phenomena. A local preconditioning technique is used
to remove numerical stiffness and maintain solution accuracy for low-Mach-number,
nearly-incompressible flows. A preconditioned multigrid algorithm is used for the ef-
ficient solution on highly stretched meshes. A flexible block-based hierarchical data
structure is used to maintain the connectivity of the solution blocks in the multi-block
mesh and facilitate automatic solution-directed mesh adaptation according to physics-
based refinement criteria. This AMR approach allows for anisotropic mesh refinement
and the block-based data structure readily permits efficient and scalable implementa-
tions of the algorithm on multi-processor architectures. For calculations of near-wall
turbulence, an automatic near-wall treatment readily accommodates situations dur-
ing adaptive mesh refinement where the mesh resolution may not be sufficient for
directly calculating near-wall turbulence using the low-Reynolds-number formulation.
Numerical results for co-flow laminar and turbulent diffusion flames are described and
compared to available experimental data. The numerical results demonstrate the valid-
ity and potential of the parallel AMR approach for predicting both fine-scale features
of laminar and complex turbulent non-premixed flames.
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1 INTRODUCTION

In the last twenty years, numerical methods have be-
come an essential tool for the investigation of combust-
ing flows. The application of computational fluid dynam-
ics (CFD) methods to reactive flows has yielded an im-
proved understanding of combustion processes. Neverthe-
less, combustion involves a wide range of complicated phys-
ical and chemical phenomena(flame behaviour is dictated
by a strong interaction between the flow structure, chem-
ical kinetics, and thermodynamic properties of the reac-
tants and products), each with their own characteristic
spatial and/or temporal scales. In many cases, combust-
ing flows exhibit large disparities in these characteristic
scales, mainly because combustion is usually associated
with turbulent flows. Due to more manageable compu-
tational requirements and somewhat greater ease in han-
dling complex flow geometries, most practical simulation
algorithms are based on the Reynolds- or Favre-averaged
Navier-Stokes equations, where the turbulent flow struc-
ture is entirely modelled and not resolved. In spite of
simplifications offered by the time-averaging approach, the
system of equations governing combusting flows can be
both large and stiff and its solution can still place severe
demands on available computational resources.

Many approaches have been taken to reduce the com-
putational costs of simulating combusting flows. One
successful approach is to make use of solution-directed
mesh adaptation, such as the adaptive mesh refinement
algorithms developed for aerospace applications (Berger
(1984); Berger and Colella (1989); Quirk (1991); Powell
et al. (1993); De Zeeuw and Powell (1993); Quirk and
Hanebutte (1993); Berger and Saltzman (1994); Aftosmis
(1998); Groth et al. (1999, 2000)). Computational grids
that automatically adapt to the solution of the governing
equations are very effective in treating problems with dis-
parate length scales, providing the required spatial resolu-
tion while minimising memory and storage requirements.
Recent progress in the development and application of
AMR algorithms for low-Mach-number reacting flows and
premixed turbulent combustion is described by Day and
Bell (2000) and Bell et al. (2001, 2002). Another approach
for coping with the computational cost of reacting flow
prediction is to apply a domain decomposition procedure
and solve the problem in a parallel fashion using multiple
processors. Large massively parallel distributed-memory
computers can provide many fold increases in processing
power and memory resources beyond those of conventional
single-processor computers and would therefore provide an
obvious avenue for greatly reducing the time required to
obtain numerical solutions of combusting flows.

This work seeks to combine these two numerical ap-
proaches, producing a parallel AMR method that both re-
duces the overall problem size and the time to calculate
steady solutions for combusting flows from the laminar to
turbulent regimes. In particular, a highly scalable parallel

Copyright (¢) 200x Inderscience Enterprises Ltd.
Copyright (©) 200x Inderscience Enterprises Ltd.

block-based AMR, algorithm is proposed for predicting a
wide range of two-dimensional non-premixed compressible
combusting flows.

In the following sections, the mathematical modelling
of non-premixed combustion is presented for turbulent
flows and the parallel AMR algorithm is described in de-
tails. Numerical verification of the proposed parallel AMR
scheme is then presented by considering the numerical pre-
dictions for three classical non-reacting flow problems and
one reactive flow problem. Numerical results are described
and discussed for non-premixed methane-air laminar and
turbulent co-flow axisymmetric diffusion flames. Finally,
conclusions of this work are given.

2 MATHEMATICAL MODELLING

The governing conservation equations describing the be-
haviour of a thermally perfect compressible reactive
gaseous mixture are formulated for both laminar and tur-
bulent reactive flows. For laminar reactive flows, Navier-
Stokes equations are employed and the formulation is
rather standard and straightforward. Herein, we will only
present mathematical modelling for turbulent combusting
flows to keep this section brief.

2.1 Favre-Averaged Navier-Stokes Equations

A system of Favre-averaged Navier-Stokes equations de-
scribing a thermally-perfect compressible turbulent reac-
tive mixture can be formulated as:
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where Egs. (1)—(3) reflect the conservation of mass,
momentum, and energy for the reactive mixture, p is
the Reynolds-averaged mixture density, # is the Favre-
averaged mean velocity of the mixture, p is the Reynolds-
averaged mixture pressure given by the ideal gas law
p= 25:1 pcn R, T where N is the number of species, R,
is the species gas constant, and T is the mixture temper-
ature. Here, e = |i]2/2 + S0, ¢uhn — p/p + k is the
Favre-averaged total specific mixture energy, k is the spe-
cific turbulent kinetic energy and Dy, is the foefﬁcient for

the diffusion of the turbulent energy, 7 and X are the fluid
stress tensor and the turbulent Reynolds stress tensor for
the mixture, respectively, ¢ and ¢, are the laminar and
turbulent heat flux vector, respectively. Eq. (4) describes



the time evolution of the species mass fraction, where 1w,
is the time-averaged or mean rate of the change of the
species mass fraction produced by the chemical reactions.
The molecular stress Ls give_I} by the general stress-strain

relationship 7 2u(S — %I_' V - @), where g is molecular

viscosity, S is the strain rate tensor, and I is the identity

tensor. For species n, the molecular and turbulent diffusive
flux, J, and J;,,, are modelled by

L?ln = _PDnVCn and \71571 = —th"Vcn .

The molecular and turbulent heat flux are modelled by
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where x and k; are the laminar and turbulent thermal con-
ductivity of the mixture and D,, and D, are the molec-
ular and turbulent diffusivity of species n relative to the
major species, respectively. Given laminar and turbulent
Schmidt numbers, Sc and Se¢;, D,, and D, are obtained
using D,, = u/pSc and Dy, = pi/pSec;. In addition, h,, is
the absolute (chemical and sensible) internal enthalpy for
species n.

2.2 Two-Equation k-w Model

The two-equation k-w model of Wilcox (1998) is used here
to model the unresolved turbulent flow quantities. In this
approach, the Boussinesq approximation is used to relate

the Reynolds stress tensor, _/i, to the mean flow strain-rate
tensor using a turbulent eddy viscosity, g, X = QM(S" —
%fﬁ <) — %fpk with p; = pk/w. Transport equations
are solved for turbulent kinetic energy, k, and the specific
dissipation rate, w, given by

) (5)
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where ¢*, 8%, a, o, and (3 are closure coefficients for the
two-equation model and are given by Wilcox (2002).
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2.3 Thermodynamic and Transport Properties

Thermodynamic relationships and transport coefficients
are required to close the systems of equations given above
for both laminar and turbulent combusting flows. Ther-
modynamic and molecular transport properties of each
gaseous species are prescribed using the empirical database
compiled by Gordon and McBride (1994) and McBride and
Gordon (1996), which provides curve fits for the species en-
thalpy, hyn; specific heat, ¢, _; entropy; viscosity, p,; and
thermal conductivity, k,, as functions of temperature, 7.
The Gordon-McBride data set contains curve fits for over
2000 substances, including 50 reference elements.

The molecular viscosity, u, and thermal conductivity,
k, of the reactive mixture are determined using the mix-
ture rules of Wilke (1950) and Mason and Saxena (1958),
respectively. Turbulent contributions to thermal conduc-
tivity and species diffusivity are modelled by making an
analogy between momentum and heat and mass transfer
and introducing the turbulent Prandtl and Schmidt num-
bers, Pr; and Scy, both of which are taken to be constant
(Pr; =0.9 and Sc; = 1), and assuming &; = p¢c,/Pry and
Dy = pt/ pSc.

2.4 Reduced Chemical Kinetics

The combustion of methane is considered here. Al-
though several detailed chemical reaction mechanisms are
available for describing methane-air combustion processes
(GRI-Mech 3.0), for computational simplicity, our at-
tention shall be restricted to reduced chemical kinetic
schemes. Both one- and two-step reduced chemical re-
action mechanisms as described by Westbrook and Dryer
(1981) are used.

Empirically derived expressions for the reaction rates in
each case are used. The five species considered in the one-
step reaction mechanism are methane (CHy), oxygen(Os),
carbon dioxide (COgz), water (H20), and nitrogen (Ngz).
Nitrogen is assumed to be inert. Carbon monoxide (CO)
species is also considered in the two-step reaction mecha-
nism. Further details and reaction rates for these reduced
mechanisms are given by Westbrook and Dryer (1981).

2.5 Eddy Dissipation Model

The mean reaction rates, wp, in Eq. (4) describe the
mean production and consumption of each of the chemical
species due to the chemical reactions and strong interac-
tions between turbulence and chemistry and are estimated
using the eddy dissipation model (EDM) of Magnussen
and Hjertager (1976). This model assumes that turbu-
lence mixing limits the fuel burning and that the fuel reac-
tion rate is limited by the deficient species. The individual
species mean reaction rate is then taken to be the mini-
mum of the rates given by the finite-rate chemical kinetics
(i.e., the law of mass action and Arrhenius reaction rates)
and the EDM value. The latter is related to the turbulence
mixing time and is estimated using the dissipation rate, w.

2.6 Treatment of Near-Wall Turbulence

Both low-Reynolds-number and wall-function formulations
of the k-w model are used for the treatment of near-wall
turbulent flows, with a procedure for automatically switch-
ing from one to the other, depending on mesh resolution.
In the case of the low-Reynolds-number formulation, it can
be shown that lim, ,ow = v where y is the distance
normal from the wall. Rather than attempting to solve
the w-equation directly, the preceding expression is used
to specify w for all values of y*+ < 2.5, where y™ =u,y/v,
ui=r, /p, and 7, is the wall shear stress. Provided there
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are 3-5 computational cells inside y™ = 2.5, this proce-
dure reduces numerical stiffness, guarantees numerical ac-
curacy, and permits the k-w model to be solved directly in
the near-wall region without resorting to wall functions. In
the case of the wall-function formulation, the expressions

k=

2
u m .

_ w=—— are used to fully specify k and w for
Vs VBiry’

y+ <30-250, where & is the von Kdrman constant.

A procedure has also been developed to automatically
switch between these two approaches, depending on the
near-wall mesh resolution. In this procedure, the values of
k and w are approximated by

2 . + 30 2 2
P min(y™*, 30) and w=wy |1+ Wywall ’
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where w, = ﬁf‘; 5 and Wyall = ﬁ This procedure has

been devised to prescribe k and w for y* lying between
2.5 and a cutoff value. where w, and wya are the val-
ues in the near-wall sub-layer and in the log layer, respec-
tively. The cutoff is taken to be in the range 30-50 for
this study. When 4™ is close to the lower limit, 2.5, & and
w approach zero and the asymptotic value, respectively.
When y* approaches the cutoff value, the wall function
is recovered. This automatic near-wall treatment readily
accommodates situations during adaptive mesh refinement
where the mesh resolution may not be sufficient for directly
calculating near-wall turbulence using the low-Reynolds-
number formulation.

3 PARALLEL AMR ALGORITHM

3.1 Finite Volume Scheme

A finite volume scheme is proposed to solve the system
of partial-differential equations governing two-dimensional
axisymmetric laminar and turbulent compressible flows for
reactive thermally perfect gaseous mixtures using a fully
coupled finite-volume formulation on body-fitted multi-
block quadrilateral mesh. Applying the divergence the-
orem to the differential form of the system of governing
equations in two-dimensional axisymmetric coordinates,
Egs. (1)—(6)), one arrives at the integral form

d S

— UdA+]{ ﬁ-fdl:/ (——2+8Sc+S¢)dA, (7)
dt J ag) 10 AT

where U is the vector of conserved variables, F the flux
dyad, defined as F = (F-F,,G—G,), S, the source term
associated with the axisymmetric geometry, S, and S¢ the
source terms due to finite rate chemistry and turbulence
modelling to be included for turbulent flows, A the control
area, | the closed contour of the control volume, r is the
radial distance, and 7 is the unit outward vector normal
to the closed surface. For laminar flows, U is given by

(8)

T
U= [ Ps PUr, PUz, p€, PC1, ..., PCN ] )

and pk and pw are included for turbulent flows. Note that
the last species N is chosen to be Nitrogen and used to
accommodate the numerical errors. In other words, the
concentration of Nitrogen is corrected by using ¢y = 1.0 —
271:!:—11 ¢, after solving the system.

This fully compressible formulation can readily accom-
modate large density variations and thermo-acoustic phe-
nomena. Nevertheless, laminar combusting flows are in
general characterised by very low Mach numbers (M <
0.2) and nearly incompressible behaviour. Therefore, a
local preconditioning technique proposed by Weiss and
Smith (1995) and Turkel (1999) is used here to remove nu-
merical stiffness and maintain solution accuracy for low-
Mach-number flows. The preconditioned system of gov-
erning equations is integrated over quadrilateral cells of
a structured multi-block quadrilateral mesh. The semi-
discrete form of this finite-volume formulation applied to
cell (i,7) is given by

dU, 1 P 7
FTJ T AL D B it —
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where I' is the Weiss-Smith preconditioning matrix for the
conserved variable system, 7; ; and A; ; are the radial dis-
tance and area of cell (i, 7), and Al is the length of the cell
face.

The inviscid (hyperbolic) component of the numerical
flux at each cell face is evaluated using limited linear re-
construction (Barth (1993)) and one of several Riemann-
solver based flux functions (Roe (1981); Einfeldt (1988);
Linde (2002)). The viscous (elliptic) component of the nu-
merical flux is evaluated by employing a diamond-path re-
construction procedure as described by Coirier and Powell
(1996).

©J faces,k bJ

3.2 Time Marching Method

For the time-invariant calculations performed as part of
this study, a multi-stage time-marching scheme is used
to solve the coupled set of non-linear ODEs, that arise
from the finite-volume spatial discretisation procedure.
The time-marching scheme is based on the optimally-
smoothing multi-stage time marching scheme developed
by van Leer et al. (1989). The general M stage op-
timally smoothing time-marching scheme for integrating
Equation(9) from the time level n to time level n + 1 can
be written as

Uy, =10y,
m stage: ¢ U, = UY, —apnAt" R ;(U™1)
1 _ 7M™
U5 =Ug;
where m = 1---M, At"=t*t! — " is the size of the

time step and ay, are multi-stage coefficients. The coef-
ficients used here have been selected to optimize the high-
frequency damping for first- and second-order upwind dis-
cretisations of the scalar advection equation in multigrid



applications van Leer et al. (1989). They are not optimized
for diffusion problems or viscous flows.

The source terms associated with finite-rate chemistry
and turbulence modelling are usually responsible for much
of the numerical stiffness in the resulting discretised system
of equations. The use of semi-implicit time integration
can be utilised to cope with the stiffness of the system.
This method treats source terms implicitly, while treating
the fluxes explicitly. Hence, this method avoids solving
the large block matrices associated with the fully implicit
scheme. A local linear system of equations is then solved
to obtain the solution change using a dense matrix solver.
In this case a LU decomposition was used.

The inviscid Courant-Friedrichs-Lewy stability, viscous
von Neumann stability, and turbulent and chemical time
step constraints are imposed when selecting the time step.
Note that, for reacting flows, the inverse of the maximum
diagonal of the chemical source term Jacobian is added
to the time step calculation. The time step, At", is then

determined by
9S. \ "
(ﬂ max(aU)) )

(10
where Al is the cell-face length of a cell, ¢ is the sound
speed, and p and py are molecular viscosity and turbulent
eddy viscosity, respectively, and where a and 3 are scaling
factors.

Al « pAl?
] + ¢’ 2 max (u, p1y)”

At" =min (CFL

3.3 Preconditioned Multigrid

Application of multigrid to the Favre-averaged Navier-
Stokes equations can result in convergence rates that are
far from optimal due to the stiff source term associated
with the turbulence models. Classic multigrid remedies for
these multigrid difficulties, such as directional-coarsening,
directional implicit smoother, combining directional coars-
ening and smoothing, and combining a point-implicit
block-Jacobi preconditioner and J-coarsening, etc., are well
documented and the effects are illustrated for some ex-
ample problems by Pierce and Giles (1996, 1997) and
Mayvriplis (1998). Sheffer et al. (1998) employed the point-
implicit formulation of Bussing and Murman (1987, 1988)
in combination with an explicit time-stepping multigrid
solver for calculating high speed reactive flows. Gerlinger
and Briiggemann (1997) and Gerlinger et al. (1998) in-
vestigated the ¢g-w model and proposed the techniques of
computing the production term and the divergence of ve-
locity field only on the finest mesh and restricted these
values to coarser meshes. For complicated geometries and
simple flow field initializations, they initiated the calcula-
tion with several fine mesh iterations before restricting to
coarser meshes. Refer Gao (2008) for details on a litera-
ture review in terms of multigrid applications to turbulent
flows.

In this study, to remedy the multigrid difficulties in sta-
bility and convergence due to the stiff turbulence produc-
tion terms and chemical source terms and the use of highly

stretched meshes, we employed a point-implicit block-
Jacobi preconditioner (matrix preconditioner) in combi-
nation with the multigrid solver. The turbulence quan-
tities are restricted to the coarse mesh but not updated
so as to enhance the stability of the scheme and avoid
non-physical solutions. Note that we do not believe that
the point-Jacobi preconditioning will provide a fully sat-
isfactory solution to issues with high-aspect-ratio meshes;
however, our experiences show that the preconditioning
combined with modifications to the restriction and prolon-
gation operators partially alleviates the problem.

3.3.1 Smoothing Operator

The point-implicit block-Jacobi preconditioner used herein
is based on the form of the discrete residual operator, R,
and obtained by extracting the terms corresponding to the
center cell in the stencil. The application of the matrix
preconditioner to the multi-stage time-marching scheme is
rewritten as

I]O —1IJn
GJ T g 1
. m _ 1J0 - . m—1
m stage: Ui)zrl— Ui’{v[ vam P 5 Ry (UM
l n l
L T T

where v includes the time step and P;]l is the inverse of
the matrix preconditioner for cell (i, 7). The construction
of the matrix preconditioner is illustrated here using the
system of governing equations in a two-dimensional ax-
isymmetric system. Given the residual function for cell
(4,7), R, ;, which can be written as

N¢
au,, -1, Sui ;
R;;=—2=—") Fy il Alk—%+stm‘ + Sci
Y og=1

dt A
(11)

the matrix preconditioner, P; ;= g—% i is a NxN matrix
and has the form
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Each term P; ; consists of five components and they result
from the inviscid numerical flux Jacobian, C;, the viscous
flux Jacobian, C,, and the source Jacobians due to axisym-
metric coordinate system, C,, the source Jacobian due to
turbulence, C¢, and the source Jacobian due to chemistry,
C.. The evaluation of each of these Jacobian matrices is
discussed below.

The inviscid numerical flux Jacobian at each cell face
is evaluated by the solutions of a Riemann problem in a
rotated frame aligned with the normal to the cell face and
takes on the form of

_9(F-i)  oF ogF* OUp g

Ci = = :
gU;; — OF* U 0U;;

(13)



where Uj /R and F* are the solution state and flux in the

0%11:R is evaluated for both the
Roe and HLLE flux functions. This inviscid Jacobian eval-
uation is approximated by assuming that the eigenvalues
and eigenvectors (appearing in Roe and HLLE flux func-
tions) are constant and, when using higher order scheme,
the gradients of the primitive variables are also assumed
to be constant. Pierce and Giles (1997) also suggested
that using the matrix precondition based on a first-order
discretization for higher-order schemes is acceptable.

The viscous numerical flux Jacobian is formulated de-
pending on the method used to evaluate the viscous flux.
In this study, the viscous numerical flux Jacobian is deter-
mined using a diamond-path procedure. The general form
for the viscous flux Jacobian is

rotated frame. The term

5‘<nr F, +n, GV)

F, -7
aUzJ B

In the source Jacobians, Cg, the three terms are lumped
together as

o381y 98, . 0S.; ;
c,=-Sr i i 1
0U,, | 0U,, | 90U, (15)

The preconditioner was tested using a finite-difference
method with a first order accurate approximation of the
residual Jacobian:

R, ;(U,VU)
au

~ R(Uiyj + Ez — R(UZ’]) + O(e) 7

,J
where € = nU with n= 1076 ~ 107°. The verification has
been performed with varied solution fields and different

mesh stretching factors. The observed maximum relative
error was found to be about

OR__ R(Ui;+e)—R(U, ;)
an,j €
o= - |<20%.  (16)
8Ui)j

It is felt that this error is acceptable considering the ap-
proximations used in the Jacobian evaluation and the nu-
merical error associated with the numerical scheme.

3.3.2 Restriction and Prolongation Operators

In particular, it was found that the multigrid convergence
was significantly affected by the prolongation operator. A
standard bi-linear interpolation was used initially to trans-
fer corrections from coarse to fine mesh; however, the per-
formance of the multigrid scheme suffered. Convergence
was hampered and, in some cases, the procedure failed to
converge. In this work, efforts have been made to devise
more effective prolongation operators for meshes with large
cell aspect ratios.

Figure 1 illustrates a stretched grid. Several pro-
longation operators are investigated: simple injection,

Ui ine = Ui conrse; area weighted injection, Usj o =

(Ai,j Coarse/z AiJ' ﬁne) Ui,j coarse’ & standard bi-linear in-
terpolation; and finally, a standard bi-linear interpolation
plus a linear interpolation, meaning that interpolating the
value for the coarse node (i,j) using standard bi-linear
first and then interpolating for the fine cell (i, j) with val-
ues from both coarse node (i, ) and coarse cell (i, j) with a
linear interpolation. The effectiveness of using these differ-
ent prolongation operators has been studied for a laminar
non-reacting flow problem using stretched computational
grids. Based on this study, it is suggested that a cell-
aspect-ratio-based sensor can be applied as a switch in the
approach of the prolongation operator. A cell-aspect-ratio-
based sensor was implemented in the multigrid algorithm
as follows: simple injection is used for cells with aspect
ratio higher than a cutoff value, and standard bi-linear in-
terpolation is then employed for cells with aspect ratios
lower than that cutoff value.

Note that the multigrid algorithm is applied directly to
each of the solution blocks without regard to the level of
refinement for the grid blocks associated with each solu-
tion block, i.e., the grids are not necessarily on the same
refinement level due to the AMR procedure. This block-
based approach to the multigrid algorithm can adversely
affect its performance. This performance degradation may
be remedied by utilising additional multigrid levels span-
ning across blocks to bring all solution content to the same
level of refinement, but this is not considered here. In ad-
dition, the system of governing equations is solved on the
coarsest grid level. The communication for the multigrid is
then carried out on the coarsest grids between blocks. The
number of inter-block messages on the coarsest meshes is
often nearly the same as that on the fine meshes, thereby
the ratio of computation to communication may decrease
and the parallel performance would be adversely affected.

3.4 Block-Based Adaptive Mesh Refinement

A flexible block-based hierarchical data structure has been
developed and is used in conjunction with the finite-
volume scheme described above to facilitate automatic
solution-directed mesh adaptation on multi-block body-
fitted quadrilateral mesh according to physics-based re-
finement criteria. In a block-based AMR strategy, mesh
adaptation is accomplished by the dividing and coarsening
of appropriate solution blocks. In general, each block also
has an equal number of cells. The basic data structure is
then a tree, where any block that requires refinement gen-
erates a number of equal sized blocks when a resolution
change of two is assumed. The block-based AMR strategy
results in a rather light tree data structure for prescrib-
ing the connectivity between blocks as compared to the
tree structure generally used for tracking cell connectivity
in the cell-based methods. In addition, the block-based
data structure naturally lends itself towards an efficient
and readily scalable parallel implementation. It amortizes
the overhead of communication over entire blocks of cells,
instead of over single cells as in cell-based data structures.
However, generally larger numbers of refined cells can be



created (i.e., typically more than the corresponding num-
ber of cells used in cell-based tree data structures) thereby
possibly increasing the amount of computational work and
storage space needed to solve a given problem.

Applications of the block-based approach on Cartesian
mesh are described, for example, by Quirk and Haneb-
utte (1993), Berger and Saltzman (1994), Gombosi and
co-workers (1994), and MacNeice et. al. (2000). Following
Groth et al. (1999, 2000) for computational magnetohydro-
dynamics, a flexible block-based hierarchical data struc-
ture to facilitate automatic solution-directed mesh adap-
tation on multiblock body-fitted (curvilinear) meshes for
complex flow geometries has been developed. While intro-
ducing some added complications, the use of body-fitted
meshes permits more accurate solutions near boundaries,
enables the use of anisotropic grids with grid point clus-
tering and stretching, and allows for better resolution of
thin boundary and mixing layers. Note that, in this study,
the mesh refinement is constrained such that the grid res-
olution changes by only a factor of two between adjacent
blocks and the minimum resolution is not less than that of
the initial mesh. Standard multigrid-type restriction and
prolongation operators are used to evaluate the solution on
all blocks created by the coarsening and division processes,
respectively.

We use a heuristic set of refinement criteria based on our
physical understanding of the flow properties of interest
(so-called physics-based refinement criteria). For the non-
reacting flows considered here, the following measures are
used €1 o |Vpl, ez o |V-il| , e5  |[V@1] , in the decision to
refine or coarsen a solution block. These three quantities
correspond to local measures of the density gradient, com-
pressibility, and vorticity of the mean flow field and enable
the detection of contact surfaces, shocks, and shear layers.
For combusting flows, additional measures were identified
for directing the mesh adaption. The following four ad-
ditional measures, €4  |Vk|,e5 o< [Vw|, e o |[VT], €7 o
|6Cn| are used. The first two measures correspond to
gradients of the specific turbulent kinetic energy and dissi-
pation rate per unit turbulent kinetic energy, respectively,
and relate to the structure of the turbulent field. The last
two quantities measure the gradients of mean temperature
and mean concentration for species n, respectively, and
provide reliable detection of flame fronts and combustion
zones for reactive flows.

3.5 Domain Decomposition and Parallel Imple-
mentation

Domain decomposition is carried out by farming the so-
lution blocks out to the separate processors, with more
than one block permitted on each processor. For homoge-
neous architectures, an effective load balancing is achieved
by simply distributing the blocks equally among the pro-
cessors. For heterogeneous parallel machines, a weighted
distribution of the blocks can be adopted to preferentially
place more blocks on the faster processors and less blocks
on the slower processors.

Placing nearest-neighbour blocks on the same processor
can also help to reduce the overall communication costs. A
Morton ordering space-filling curve (Aftosmis et al. (2004))
is adopted to provide nearest-neighbour ordering of the so-
lution blocks in the multi-block quadrilateral AMR meshes
(Figure 2), and improve the parallel performance of the so-
lution method.

The parallel implementation of the block-based AMR
scheme was developed using the C++ programming lan-
guage (Stroustrup (2001)) and MPI (message passing in-
terface) (Gropp et al. (1999)). Use of these standards
greatly enhances the portability of the computer code.
Inter-processor communication is mainly associated with
block interfaces and involves the exchange of ghost-cell
solution values and conservative flux corrections at every
stage of the multi-stage time-integration procedure. Mes-
sage passing of the ghost-cell values and flux corrections is
performed in an asynchronous fashion with gathered wait
states and message consolidation.

4 NUMERICAL VERIFICATION

The parallel implementation has been carried out on a par-
allel cluster of 4-way Hewlett-Packard ES40, ES45, and
Integrity rx4640 servers with a total of 244 Alpha and Ita-
nium 2 processors. A low-latency Myrinet network and
switch is used to interconnect the servers in the cluster.
All of the numerical results reported here were obtained
using this parallel cluster. Initial verification of the pro-
posed parallel AMR scheme is carried out by considering
the numerical predictions for three classical non-reacting
flow problems (a laminar Couette flow, a laminar flat plate
boundary layer flow and a fully-developed turbulent pipe
flow) and one reactive flow problem (a premixed laminar
flame). The solutions for these problems are well estab-
lished and can be used to assess the validity and accuracy
of the scheme. Herein, we only present a laminar Couette
flow, a fully-developed turbulent pipe flow and a premixed
laminar flame to keep this section brief,

4.1 Laminar Couette Flow

The computation of non-reacting laminar Couette flow in
a channel with a moving wall was considered in order to
demonstrate the accuracy of the viscous spatial discretisa-
tion scheme. The case with an upper wall velocity of 29.4
m/s and a favourable pressure gradient of dp/dx=—3,177
Pa/m was investigated and compared to the analytic so-
lution. The predicted velocity profile (not shown here)
matches the exact analytic solution for this incompressible
isothermal flow. The Li-norm of the error in axial compo-
nent of velocity is shown in Figure 3 for both the uniform
and adaptive grids. The slope of the norm is 2.02, indicat-
ing that the finite-volume scheme is indeed second-order
accurate.



4.2 Fully-Developed Turbulent Pipe Flow

A verification of the parallel AMR scheme for non-reacting
turbulent flows has been performed. The numerical results
of a non-reacting fully-developed turbulent pipe flow with
Re = 500,000 are compared to the experimental data of
Laufer (1954). Solutions for both the wall function and
low-Reynolds-number formulations of the k-w turbulence
model are compared to experimental mean axial velocity
and turbulent kinetic energy profiles in Figures 4 and 5.
Calculations with the low-Reynolds-number formulation
were performed using 80 cells in the radial direction with
3-4 of those cells lying within the laminar sub-layer. The
first cell off the wall was located at y* ~0.6. The results
using the wall functions were obtained using 32 cells in the
radial direction with the first cell located at y*=~43. The
agreement between the experimental data and numerical
results for this case is generally quite good. As expected,
it is evident that the k-w model is able to reproduce the
characteristic features of fully-developed pipe flow.

4.3 Multigrid Acceleration

Convergence acceleration provided by the preconditioned
multigrid algorithm was also examined for the fully devel-
oped turbulent pipe flow problem. A mesh of size 1,024
cells and having cell aspect ratios in the range of 10 to
2x10° and an off-wall spacing of 7.0x10~7 m was used in
this study. There were 32 cells in the radial direction and
an automatic wall boundary treatment was employed. The
influence of using different multigrid levels and cycles on
convergence features has also been investigated.

Figures 6 and 7 compare the convergence rates achieved
for the turbulent pipe flow using the explicit time-marching
scheme with local time-stepping, the multigrid algorithm
with explicit smoother, and the preconditioned multigrid
approach. The convergence rate is shown as a function of
both the number of iterations and the number of equivalent
right-hand side (RHS) evaluations. Clearly, the precondi-
tioned multigrid results in a more efficient convergence rate
than the others. Notice from the figures that the precondi-
tioned multigrid algorithm exhibited a convergence stall af-
ter the residual in the turbulent kinetic energy dropped to
about 10%. Tt is believed that this effect is due to the non-
linear nature of the slope limiters and their activation in
smooth regions of the flow field (venkatakrishnan (1993)).
This convergence stall can be alleviated by freezing the
limiter after the residual has dropped to a predefined level;
however, this technique was not employed here.

Tables 1-3 summarise some convergence features for the
fully developed turbulent pipe flow problem. Note that the
maximum grid level for these cases was chosen to be 3, al-
lowing for relatively smaller-sized solution blocks. Table 1
lists the numerical data from using both the regular and
the preconditioned multigrid and the results for grid-level
and multigrid-cycle effects are presented in Table 2 and
Table 3. The term work unit (WU) is defined as the time
for one right-hand-side evaluation on the finest mesh.

Table 1 indicates that the preconditioned multigrid with
5-stage optimal smoothing scheme produces a 14 times
speedup over multigrid without a preconditioner and is
shown in Figure 8. For both cases, the Ly norms of the
residual for turbulent kinetic energy drop about six orders
of magnitude. The data from Table 2 shows a speedup
factor of four between the 3-level multigrid and the single-
level computation. This grid-level influence on the con-
vergence is shown in Figure 9. The convergence rate of
2-level is the same as that of a 3-level for this case, and
both used the V-cycle. The same convergence rates for
both 2- and 3-level might be due to the fact that the tur-
bulence source terms were not recalculated on the coarse
meshes. Figure 10 shows that the 3-level V- and W-cycle
preconditioned multigrid algorithms, using a 5-stage opti-
mal smoothing scheme, have nearly the same speedup in
terms of multigrid cycles, while Table 3 indicates the V-
cycle uses about half the computation time of the W-cycle.
The reason might be that the W-cycle is expensive in a par-
allel algorithm when frequent coarse-level calculations lead
to poor processor utilisation. From these results, it appears
that a 3-level V-cycle preconditioned multigrid should de-
liver an optimal speed up for computing turbulent flows.
For this reason, the 3-level V-cycle preconditioned multi-
grid was employed in the numerical predictions of the tur-
bulent reactive and non-reactive flows that follow.

4.4 Premixed Laminar Flame

Verification of the proposed parallel AMR, scheme for re-
active flows is carried out by considering the numerical
predictions of planar one-dimensional premixed methane-
air laminar flames for a range of equivalence ratios and
comparing the predictions to those obtained using the
CHEMKIN program PREMIX. The six-species, two-step,
reduced kinetic scheme for the oxidation of methane de-
scribed above is used. CHEMKIN is a commercial soft-
ware tool available from Reaction Design for solving com-
plex chemical kinetics problems and PREMIX is a utility
that can be used for predicting one-dimensional premixed
flames. A detailed 17-species, 58-reaction kinetic scheme is
used in the PREMIX calculations to represent the oxida-
tion of methane. These comparisons provide a check of the
algorithms ability to predict two key features of laminar
flames: the flame temperature and laminar flame speed.

For the premixed flame predictions, a fixed (non-
adapted) one-dimensional mesh with 400 non-uniformly
space computational cells is used. The steady state or
time-invariant structure of the flame is then obtained by
starting with uniform fresh and burnt gas solution states
at atmospheric and the adiabatic flame temperatures, re-
spectively, and iterating until a steady-state solution is
achieved with a stationary flame structure. The upstream
and downstream boundary velocity and pressure are ad-
justed such that the mass flux is constant throughout the
domain.

The numerical results for the premixed laminar flame
are summarised in Figures 11 and 12 and Table 4. The ta-



ble gives predictions of both the equilibrium temperature
of the products, T', and the laminar flame velocity, sy, as
a function of the equivalence ratio (¢ = 0.6, 0.8, 1.0, and
1.2). These figures depict the predicted flame structure for
¢=1 and show variation of the velocity, temperature, and
mass fraction through the flame. The predicted laminar
flame speed is sy, = 40.6 cm/s in this case and the tem-
perature of the products (flame temperature) is 7' = 2256.
The overall agreement between the two sets of results is
very good, especially considering that the six-species two-
step chemical kinetics scheme used by the parallel solver
is greatly simplified in comparison to the 17-species, 58-
reaction scheme used in the CHEMKIN calculations. This
provides strong support for the validity of the proposed
reactive flow solver.

It should be noted that the flow Mach numbers for the
premixed laminar flames are very small (M =~ 0.001 —
0.003) and the low-Mach-number preconditioning is abso-
lutely necessary for these cases in order to get accurate
predictions of the flame structure with the proposed com-
pressible finite-volume formulation.

5 RESULTS AND DISCUSSIONS

The parallel AMR method is applied to solutions of ax-
isymmetric co-flow methane-air laminar and turbulent dif-
fusion flames. The six-species, two-step, reduced kinetic
scheme for the oxidation of methane is again used for the
laminar diffusion flame calculations and the five-species,
one-step, reduced kinetic scheme for the oxidation of
methane is used for turbulent diffusion flame calculations.

5.1 Non-Premixed Laminar Diffusion Flame

The computational domain is rectangular in shape with
dimensions of 10 cm by 5 cm. The axis of symmetry
is aligned with the left boundary of the domain and the
right far-field boundary is taken to be a free-slip boundary
along which inviscid reflection boundary data is specified.
The top or outlet of the flow domain is open to a stag-
nant reservoir at atmospheric pressure and temperature
and Neumann-type boundary conditions are applied to all
properties except pressure which is held constant. The bot-
tom or inlet is subdivided into four regions (a innermost
region of the fuel inlet, a small gap associated with the
annular wall separating the fuel and oxidiser, a region of
co-flowing oxidiser, and a far-field boundary along which
free-slip boundary conditions are applied). Additional de-
tails concerning the setup for this diffusion flame can be
found in the papers by Mohammed et al. (1998) and Day
and Bell (2000). The solution domain is initialised with
a uniform solution state corresponding to quiescent air at
298K, except for a thin region across the fuel and oxi-
diser inlets, which is taken to be air at 1500 K so as to
ignite the flame. Note that the Mach and Reynolds num-
ber based on the fixed diluted methane flow in the fuel
inlet are M =0.0016 and Re=169.

Figure 13 shows the computed isotherms and flame
structure obtained using a sequence of adaptively refined
grids starting from the initial mesh (96 solution blocks with
3,072 cells) and proceeding to the final mesh after five lev-
els of refinement (396 blocks with 12,672 cells). The se-
quence of adaptively refined grids, showing both the solu-
tion blocks and computational cells, is also shown in Fig-
ure 14. The effect of the finer resolution can be clearly
seen, as the flame structure becomes much sharpened and
more resolved. Finally, Figure 15 shows the mass fractions
of the combustion products.

A comparison of the results of Figures 13-15 with those
given in the previous studies by Mohammed et al. (1998)
and Day and Bell (2000) reveals, that in spite of the in-
herent simplifications used in the two-step reaction mech-
anism, the predicted flame structure agrees very well with
the previous work. The “wishbone” structure of the high-
temperature region is present and the computed lift-off and
flame heights are 0.05 cm and 3.3 cm, respectively, with a
maximum centre-line temperature of 2080 K. All of these
values agree reasonably well with the previously published
results. The predicted value of the carbon monoxide, CO,
mass fraction concentration at z=3 cm along the centre-
line is cco = 0.026 and, considering the limitations of the
reduced chemistry mechanism being used, is in reasonable
agreement with those of Mohammed et al. (1998), who
report a mass fraction of cco =0.03 at the same location.

5.2 Non-Premixed Turbulent Diffusion Flame

The International Workshops on Measurement and Com-
putation of Turbulent Non-Premixed Flames (TNF) has
established an Internet library of well-documented exper-
imental database for turbulent non-premixed flames that
are appropriate for combustion model verification and vali-
dation. The Sydney bluff-body burner configuration shown
in Figure 16 that forms part of this experimental database
has data available for both non-reacting and reacting cases.
The bluff-body has a diameter of D, =50 mm and is lo-
cated in a co-axial flow of air. Various gases can be injected
through an orifice of diameter 3.6 mm at the base of the
cylindrical bluff body. The bluff-body stabilised flames
have a recirculation zone close to the base of the bluff body.
This burner configuration produces a relatively extensive
and complex turbulent field and causes intense mixing be-
tween the reactants and combustion products. The stabili-
sation mechanisms resemble those of industrial combustors
and yet the boundary conditions for the bluff-body flames
are simple and well-defined, making them well suited for
investigating in great detail the capabilities of models for
turbulent non-premixed diffusion flames.

5.2.1 Bluff-Body Burner Non-reacting Flows

In the cold non-reacting bluff-body burner flow case, air
is injected through the orifice at the base of the cylindri-
cal bluff body with a temperature of 300 K and a bulk
velocity of 61 m/s. The bulk velocity and temperature of



the co-flowing air are 20 m/s and 300 K, respectively. The
Reynolds and Mach numbers based on the high-speed jet
are Re=193,000 and Ma=0.18.

We have examined predicted solutions on a sequence of
refined meshes to establish the grid-convergence of the so-
lution. The flow field predictions have been computed on
a sequence of adaptively refined grids, 5 16 x 16 cell blocks
and 1,280 cells, 14 16 x 16 cell blocks and 3,584 cells, 26
16x16 cell blocks and 6,656 cells, and 53 16x16 cell blocks
and 13,568 cells. The mesh resolution was such that the
typical size of the computational cells nearest the wall was
in the range 0.2 < y* < 1. It is apparent that the majority
of the solution parameters do not change as the mesh is
refined from 6,656 cells to 13,568 cells, as shown in Fig-
ures 20-23. The numerical solutions can be said to be
virtually grid independent.

Figure 17 shows the predicted mean velocity and stream-
lines and reveal the formation of a double-vortex struc-
ture in the re-circulation zone which are important in con-
trolling fuel/oxidiser mixing. The calculations indicate
that the re-circulation zone extends to x/Dj =~ 0.8. This
is slightly less than the experimentally observed value of
x/Dy = 1.0. The agreement between the predictions and
experiment is further confirmed by a comparison of the pre-
dicted radial profiles of the mean axial velocity component
at ©/Dp=0.6 and x/D,=1.0 downstream from the base of
the bluff-body to the measured data as shown in Figure 18
and 19, and by a comparison of the predicted axial (centre-
line) profile of the mean axial velocity component to ex-
perimental results as depicted in Figure 20. The predicted
root mean square (RMS) fluctuations of the velocity com-
ponents and specific Reynolds stress (u'v’) are also com-
pared to the experimental data in Figures 21, 22 and 23.
It can be seen that there are under- and/or over-predicted
regions (r/Ry < 0.2). These regions encompass the inner
vortex and the vicinity of the outer vortex of a double-
vortex structure in the re-circulation zone. Re-circulation
zones with complex turbulent structures are quite sensitive
to the turbulence modelling and a variety of RANS sim-
ulations have addressed this sensitivity to the turbulence
model and/or combustion models (Dally et al. (1998); Xu
(2000); Merci (2001); Liu et al. (2005)). The overall agree-
ment between the numerical solution and the experimen-
tal data for these turbulence quantities is quite reasonable
and is comparable to other results reported in the litera-
ture (Dally et al. (1998); Turpin and Troyes (2000); Merci
(2001)).

For the ethylene jet case, ethylene (CoHy) is injected at
the base of the bluff-body with a velocity of 50 m/s and
a temperature of 300 K. In this case, the Reynolds and
Mach numbers based on the ethylene flow are Re=145, 000
and Ma = 0.11. Numerical results for the ethylene fuel
jet are depicted in Figure 24, where the predicted mass
fraction of CoHy obtained using a mesh consisting of 479
6 x 6 cell blocks and 17,244 cells, with five levels of re-
finement, is compared to measured CoH,4 concentrations.
The mesh resolution was also such that the typical size of
the computational cells nearest the wall was in the range

0.2 < y* < 1. The predictions of the mixing field (Fig-
ure 24) also appear to be quite reasonable when compared
to the experimental data. Detailed comparisons of the pre-
dicted on-axis axial and radial distributions at z/D,=1.0
of the mean CoH4 mass fraction to measured values given
in Figures 25-26 also indicate that the fuel and oxidiser
mixing process is quite well reproduced.

5.2.2 Bluff-Body Burner Reacting Flow

For the reacting case, methane (CHy) is injected through
the orifice at the base of the cylindrical bluff body with a
temperature of 300 K. The bulk velocities of the co-flowing
air and methane fuel are 25 m/s and 108 m/s, respectively.
The Reynolds and Mach numbers of the methane jet are
Re=315,000 and Ma=0.24.

Computations were carried out on a sequence of adap-
tively refined grids, 7 16 x 16 cell blocks and 1,792 cells,
28 16 x 16 cell blocks and 7,168 cells, 70 16 x 16 cell blocks
and 17,920 cells, 97 16x16 cell blocks and 24,832 cells, and
112 16 x 16 cell blocks and 31,744 cells to assess the grid
independence of the predictions. As in the non-reacting
cases, the mesh resolution was such that the typical size of
the computational cells nearest the wall was in the range
0.2 < y© < 1. The results of the refinement study are
shown in Figures 27-30, and the majority of the solution
parameters, such as, axial velocity, temperature, and ma-
jor species COs3, do not change as the mesh is refined from
24,832 cells to 31,744 cells. The grid convergence solution
is achieved.

Figure 31 shows the predicted distributions of mean tem-
perature and mean mass fraction of CO;y for this turbu-
lent non-premixed flame. The predicted flame structure is
generally in agreement with the experimentally observed
structure. The flame is quite elongated and three zones
can be identified: the re-circulation, neck, and jet-like
propagation zones. A vortex structure is formed in the
re-circulation zone and acts to stabilise the flame. The
maximum flame temperature is about 2180 K. The pre-
dicted mean temperature, 1350 K, and mass fraction of
COg, 0.1, at location of (z/Dy = 1.92, r/Ry = 0.4) are
compared to the measured values of the flame tempera-
ture, 1120 K, and carbon dioxide concentration, 0.07. The
temperature and hence carbon dioxide concentration are
somewhat over-predicted. However, the agreement with
the experimental values is reasonable considering the lim-
itations of the simplified reduced chemical kinetics scheme
and turbulence/chemistry interaction model used herein,
as well as the fact that radiation transport is not taken
into account in the simulation.

5.3 Multigrid Acceleration

The numerical solutions for both the cold and hot cases of
the two-dimensional axisymmetric bluff-body burner flows
were obtained using the preconditioned multigrid tech-
nique. The 3-level V-cycle preconditioned multigrid with a
3-stage optimally smoothing scheme was employed. A pro-



longation operator, based on a cell-aspect-ratio sensor as
discussed above, was also applied. For those cells with as-
pect ratios greater than a value of 1000, a simple injection
was used. Standard bi-linear interpolation was employed
for cells with aspect ratios smaller than this value. The
CFL number was 0.2.

Both the multigrid and preconditioned multigrid algo-
rithms speed up the convergence rates to the steady-state
solutions quite significantly for both cases as compared to
the convergence rate achieved using the semi-implicit time-
marching method alone (i.e., smoother alone without the
multigrid procedure). The preconditioned multigrid seems
to have a more positive effect for the reacting case than for
the non-reacting problem. Although the convergence rate
slows after the residual has been reduced by 4-5 orders
of magnitude, and this slow down may be associated with
limitations of the proposed multigrid method when AMR
is used, overall it is felt that satisfactory convergence rates
have been achieved. The preconditioned multigrid pro-
vides a speedup of about two in terms of CPU time over
regular multigrid for both cases.

5.4 Parallel Performance

Parallel speedup (strong scaling), parallel scale-up (weak
scaling), and parallel efficiency are often used to mea-
sure/evaluate the parallel performance of a parallel algo-
rithm. The parallel speedup, Sp, is defined as S, = t1/¢,,
the parallel scale-up, Sy, defined as Sy = t1/t, p, and the
parallel efficiency, E, is defined as E, = S, /p , where 1 is
the time required to solve the problem by a single proces-
sor, and t, is the time required to solve the problem by p
processors. While both the parallel speedup and the paral-
lel scale-up are important to consider, the parallel speedup
is probably more relevant for engineering problems of prac-
tical interest. High efficiency for strong scaling is gener-
ally harder to achieve than for the weak scaling problem.
Herein, the parallel speedup and efficiency of the proposed
parallel solution-adaptive algorithm applied to three flow
problems (a laminar diffusion flame, a turbulent pipe flow,
and a turbulent diffusion flame) have been assessed.

For the laminar diffusion flame problem, Figure 32 shows
that the parallel speed-up of the block-based AMR scheme
is linear and is 90% efficient for up to 32 processors using
the larger (10 x 10) solution blocks. For the smaller (8 x 8)
blocks, the efficiency drops slightly down to 80% efficient.
Figure 33 shows that the parallel speedup of the block-
based AMR scheme for the turbulent pipe flow problem is
nearly linear and is at least 90% efficient for up to 32 pro-
cessors using the larger (10 x 10) solution blocks. For the
smaller (8 x 8) blocks, the efficiency drops slightly down to
87% efficient. The rather high level of performance should
generally be expected for the two-dimensional algorithm
with the explicit time marching scheme.

The parallel performance of the proposed algorithm is
further assessed for a fixed-size turbulent diffusion flame
problem using up to 64 processors. An added difference
of this parallel performance assessment from the previous

ones is the use of 3-level V-cycle preconditioned multigrid
technique in the computations. It can be observed in Fig-
ure 34 that the proposed scheme provides a nearly linear
speedup and is about 76% efficient for up to 64 proces-
sors using the larger 24 x 24 cell solution blocks. For the
smaller 16 x 16 cell solution blocks, the parallel efficiency
drops to 68%. Compared to the estimation shown in Fig-
ure 33, the parallel efficiency is somewhat reduced. The
performance is affected by the coarse grid calculations of
the multigrid algorithm. As mentioned earlier, the num-
ber of inter-block messages on the coarse meshes is often
nearly the same as that on the fine meshes, thereby de-
creasing the ratio of computation to communication and
adversely affecting the parallel performance.

6 CONCLUSIONS

A highly scalable parallel AMR scheme has been described
for non-premixed combusting flows. The combination of
a block-based AMR strategy and parallel implementation
has resulted in a powerful computational tool, as demon-
strated by the numerical results for both laminar and tur-
bulent non-premixed flames. The predicted flame struc-
ture of an axisymmetric co-flow methane-air laminar dif-
fusion flame, including the computed lift-off, flame heights
and the maximum centre-line temperature, agrees reason-
ably well with the previously published results. A quanti-
tative evaluation of the parallel AMR algorithm has also
been carried out for a complex turbulent combusting flow
in a bluff-body burner having a relatively complex physical
geometry. For complex turbulent combusting flows, deal-
ing with the near-wall turbulence is challenging within an
AMR procedure. This study proposed a somewhat novel
automatic and smooth switching procedure for computing
wall turbulence that is well suited to the AMR scheme
considered here. In order to provide enhanced conver-
gence for steady-state problems, a preconditioned (matrix
preconditioner) multigrid strategy has been proposed and
developed for two-dimensional turbulent combustion cal-
culations. It is thought to be one of the first applications
of a parallel AMR scheme with multigrid to turbulent-
combusting flow calculations in the literature, and signif-
icantly improved convergence was achieved by devising a
cell-aspect-ratio-based prolongation operator for treating
highly stretched meshes. This numerical study demon-
strates the validity and potential of the parallel AMR ap-
proach for predicting fine-scale features of complex turbu-
lent non-premixed flames.
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Table 1: Matrix-preconditioner effects on convergence of
the 4-level V-cycle multigrid for the fully-developed tur-
bulent pipe flow.

Method CPU time [min] | WUs | Speedup
Multigrid 210.5 17542 1
Preconditioned 15 1250 14
multigrid

Table 2: Grid-level effects on convergence of the V-cycle
preconditioned multigrid for the fully-developed turbulent

pipe flow.
Method CPU time [min] | WUs | Speedup
Single-level 35.8 2983 1
2-level 10.9 908 3.3
3-level 9.69 807.5 3.7

Table 3: The V- and W-cycle effects on convergence of
the 3-level preconditioned multigrid for the fully-developed
turbulent pipe flow.

Method | CPU time [min] | WUs | Speedup
W-cycle 38 3166.7 1
V-cycle 22 1833.3 1.72
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Figure 1: Illustration of different prolongation operators
on a stretched body-fitted quadrilateral mesh.

Solution Equivalence Ratio, ¢

Method 0.6 0.8 1.0 1.2
T (K) PREMIX | 1656 | 1993 | 2234 | 2143
Current 1650 | 1995 | 2256 | 2221
sy (cm/s) | PREMIX | 12.15 | 29.1 | 41.0 | 38.6
Current 13.3 | 294 | 40.6 | 38.5

Table 4: Comparison of the predictions of the parallel
AMR algorithm using the two-step methane reduced mech-
anism to those of the CHEMKIN PREMIX program with
detailed chemistry for various equivalence ratios. Predic-
tions of both the equilibrium temperature of the prod-
ucts, T, and the laminar flame velocity, sy, are shown for
¢ =0.6, 0.8, 1.0, and 1.2.
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Figure 2: Morton ordering space filling curve used to pro-
vide nearest-neighbour ordering of blocks for more efficient
load balancing of blocks on multiple processors. The thick
black line represents the space filling curve passing through
each of the solution blocks in the multi-block AMR, mesh.
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Figure 3: Li-norms of the solution error as a function of
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Figure 6: Comparisons of convergence rates as a function
of multigrid cycles for 4-level V-cycle multigrid between
regular multigrid and preconditioned multigrid with a 5-
stage optimal smoothing scheme for the fully-developed
turbulent pipe flow.
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tioned multigrid with a 5-stage optimal smoothing scheme
for the fully-developed turbulent pipe flow.
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Figure 15: Predicted mass fractions of products CO5, HyO,
and CO for laminar diffusion flames.
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Figure 17: Predicted flow velocity and streamlines for non-
reacting flow field of bluff-body burner.
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Figure 18: Comparison of predicted and measured axial

velocity component at x/Dp = 0.6 downstream from the
base of the bluff-body for non-reacting bluff-body burner
with air jet.
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Figure 19: Comparison of predicted and measured axial
velocity component at /Dy = 1.0 downstream from the
base of the bluff-body for non-reacting bluff-body burner
with air jet.
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Figure 20: Comparison of predicted and measured on-axis
axial profiles of the mean axial velocity component down-
stream from the base of the bluff-body for non-reacting
bluff-body burner with air jet.
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Figure 21: Comparison of predicted and measured \/ u'?
at /D, =0.6 downstream from the base of the bluff-body
for non-reacting bluff-body burner with air jet.
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Figure 22: Comparison of predicted and measured Y/ v'?
at /D, =0.6 downstream from the base of the bluff-body
for non-reacting bluff-body burner with air jet.
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Figure 23: Comparison of predicted and measured u'v’ at
x/Dy=0.6 downstream from the base of the bluff-body for
non-reacting bluff-body burner with air jet.
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Figure 24: Predicted mean Cy;H, mass fraction for non-
reacting flow field of bluff-body burner.
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Figure 25: Predicted axial profile of the mean CoH4 mass
fraction for non-reacting flow field of bluff-body burner.
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Figure 26: Predicted radial profile of the mean CoH4 mass
fraction at x/Dj, =1.0 for non-reacting flow field of bluff-
body burner.
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Figure 27: Predicted mean axial velocity along the center-
line of the bluff-body for reacting bluff-body burner.
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Figure 28: Predicted mean axial velocity at /D, = 1.92
downstream from the base of the bluff-body for reacting
bluff-body burner.
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Figure 29: Predicted mass fraction of COq at x/D,=1.92
downstream from the base of the bluff-body for reacting
bluff-body burner.
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Figure 30: Predicted mass temperature at x/Dp = 1.92
downstream from the base of the bluff-body for reacting
bluff-body burner.
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Figure 33: Parallel speedup (strong scaling), S, and the
parallel efficiency, E,, for a fixed size problem using up to
32 processors.
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Figure 32: Scaled parallel speed-up and parallel efficiency

for a fixed-size laminar diffusion flame problem using up Figure 34: Parallel speedup (strong scaling) and efficiency

to 32 processors. for computation of a two-dimensional turbulent diffusion
flame problem with 3-level V-cycle preconditioned multi-
grid using up to 64 processors.



