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Abstract

Simulations are routinely used to study the process of carbon dioxide (CO2) sequestration
in saline aquifers. In this paper, we describe the modeling and simulation of the dissolution-
diffusion-convection process based on a total velocity splitting formulation for a variable-
density incompressible single-phase model. A second-order accurate sequential algorithm,
implemented within a block-structured adaptive mesh refinement (AMR) framework, is used
to perform high resolution studies of the process. We study both the short term and long
term behaviors of the process. It is found that the onset time of convection follows closely
the prediction of linear stability analysis. In addition, the CO2 flux at the top boundary,
which gives the rate at which CO2 gas dissolves into a negatively buoyant aqueous phase, will
reach a stabilized state at the space and time scales we are interested in. This flux is found
to be proportional to permeability, and independent of porosity and effective diffusivity,
indicative of a convection-dominated flow. A 3D simulation further shows that the added
degrees of freedom shorten the onset time and increase the magnitude of the stabilized CO2

flux by about 25%. Finally, our results are found to be comparable to results obtained from
TOUGH2-MP.

1. Introduction

Geologic carbon dioxide (CO2) sequestration involves injecting CO2 into saline aquifers.
The primary mechanism of securing the CO2 relies on a leak-proof formation to prevent the
immiscible CO2 gas that forms on top of the brine from leaking to the surface. However, on
geological time scales, secondary geochemical mechanisms, such as dissolution trapping and
mineral trapping can play significant roles [11] by either changing the CO2 into a negatively
buoyant state or immobilizing the CO2. Dissolution trapping occurs when CO2 dissolves
into the brine under ambient temperature and pressure conditions in a typical aquifer. This
increases the density of the brine at the interface of the layers by 0.1-1%, depending on the
salinity of the brine. Due to the gravitational instability and the heterogeneity in the rock
properties of the aquifer, CO2-rich brine fingers will form, leading to a convective flow that
transports these CO2-rich brines downward while driving brine with low CO2 concentration
upwards. This mechanism accelerates the rate at which CO2 is dissolved and provides a more
secure mechanism by which CO2 can be stored [4, 20, 27]. In this work, we focus on the
dissolution-diffusion-convection process. We do not consider the effects of mineral trapping
on the process, although they can be significant [3, 11].
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The significance of density change due to dissolution of CO2 in the context of CO2 stor-
age was first proposed by Weir and his coworkers [24, 25]. Lindeberg and Wessel-Berg [14]
then studied the stability criteria for the dissolution-diffusion-convection process. This is
followed by several linear stability analyses [4, 5, 7, 22, 26] that yield important relations for
the onset time for convection, the dominant wavelength for growth of convective plumes and
the growth rates of these fingers. Results from these analyses are also found to be consistent
with results from high-accuracy direct numerical simulations [22]. In these studies, the for-
mation properties are usually assumed to be homogeneous (except in [4, 5] where anisotropic
permeability fields are considered), and perturbations are introduced directly into the initial
concentration profile. In addition, the incompressibility and Boussinesq assumptions are
made.

There are fewer theoretical studies on the effects of heterogeneity on the onset of con-
vection and the subsequent convective behavior. Gounot and Caltagirone [6] attempted to
model the effects of fluctuation in permeability on free convection. However, the prevalent
approach of studying the effects of heterogeneity is through direct numerical simulations.
Numerical studies using TOUGH family of codes by Pruess and Zhang [20] suggested that
relations derived from linear stability analyses are valid. In their studies, a full compressible
model with detailed equation of states is used although the simulations are limited by the
achievable grid resolution.

Accurate characterization of the long term behavior of the convective process is also
important. Riaz et al. [22] showed that the long term behavior of the flow cannot be pre-
dicted from the initial concentration profiles based on the linear stability analysis, especially
for large Rayleigh numbers. Further examinations of the long term behavior of the CO2

flux [7, 20] suggested that the dissolution rate fluctuates about a constant mean value. Re-
sults in [20] suggested that this mean dissolution rate is approximately 1.5 – 2 times larger
than the dissolution rate at the onset of convection. The contribution of the convective pro-
cess towards enhancing the dissolution rate is thus significant considering the fact that the
dissolution rate is a function of

√
1/t in the absence of convective process [20]. Laboratory

studies [12, 27] have so far obtained results that are qualitatively and quantitatively similar
to the simulation results.

We note that the dissolution-diffusion-convection process is conceptually similar to un-
steady thermal boundary layer problem. Existing literature (e.g. [16, 21] and references
therein) on the unstable thermal boundary-layer problem adds to our understanding of the
dissolution-diffusion-convection process. However, as pointed out in [8, 20], there are impor-
tant differences. In a geothermal problem, the initial condition is usually given by a constant
temperature gradient while in the CO2 dissolution problem, no initial gradient of dissolved
aqueous CO2 exists, resulting in a system that is unconditionally unstable for buoyancy-
driven convection [20]. In addition, the change in the density in the current problem must
be accounted for through a mass flux boundary condition [8, 9] so that the mass balance law
is observed. In thermal problems, a Dirichlet boundary condition is usually used. We note
that most linear stability analyses utilize the latter form of boundary condition.

The goal of this work is to use high-resolution simulations to accurately characterize the
dissolution-diffusion-convection process. We use a variable-density incompressible single-
phase model, described in Section 2, that takes into consideration the compositional effects on
density and allows us to study the effects of the heterogeneity in the permeability on the onset
of instability. Thus, it is different from models in previous studies that use the Boussinesq
approximation. The Boussinesq approximation also necessitates the use of either a perturbed
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Fluid properties
viscosity, µ 0.5947× 10−3 Pas

water density, ρw 994.56 kgm−3

saturated CO2 mass fraction, X1 0.049306
density increase due to CO2 dissolution, ∆ρ 10.45 kgm−3

diffusivity, D 2× 10−9 m2s−1 [23]

Table 1: Fluid properties.

initial condition [22] or a randomized porosity distribution to initiate the instability. We
elaborate further on this in Section 2.2. We then solve the resulting system of equations
using a parallelized second-order accurate block-structured adaptive method described in
Section 3. Compared to other existing numerical studies, such as [4, 20], our numerical
approach allows tight control of numerical errors and numerical dispersion. In addition, the
adaptive mesh refinement framework allows us to capture the small scale dynamics that
have significant influence on the large scale fingering structure and late time behavior [22].
In Section 4, we examine the onset of convection and the long-term behavior of the diffusion-
convection process. In particular, we examine how the onset time of convection and the long-
term stabilized mass flux vary with permeability, porosity, and effective diffusivity. These
numerical results are preceded by some discussions of the numerical aspects of simulating
the two stages of the process. Although most of the analyses are based on 2D models,
we also examine a full 3D problem based on hydrogeologic parameters appropriate for the
Carrizo-Wilcox aquifer in Texas [15]. In Section 5, some of the results are compared to
those obtained through TOUGH2-MP, a parallelized version of the general-purpose simulator
TOUGH2/ECO2N [18, 19, 28]. We conclude by proposing a 1D model for simulating the
dissolution-diffusion-convection process at field scale in Section 6.

2. Problem Formulation

2.1. Setup

Figure 1 shows the simulation setup for a two dimensional problem. The simulation
domain, of height H and width W , is impermeable to fluid flow on the top and bottom
boundaries and is periodic on left and right boundaries. The CO2-saturated brine forms a
separate layer above the impermeable top boundary; we assume the dissolution rate of CO2

gas into the layer is sufficiently high that the layer remains saturated for the length of the
simulation. We allow diffusion of CO2-saturated brine into the simulation domain through
the top boundary. This simulation setup then allows us to use a variable-density single-phase
incompressible model to treat the dissolution-diffusion-convection process.

The fluid properties, as specified in Table 1, are derived from the ECO2N fluid module
of TOUGH2 [19] and correspond to pure water (no salinity) at temperature and pressure
conditions of T = 45◦C, P = 100 bar, as would be encountered in typical terrestrial crust
near 1000 m depth. Isothermal conditions are assumed.

2.2. Governing Equations

The mass conservation equations are given by

∂φρXα

∂t
+∇ · (ρXαu) = ∇ · φτDρ∇Xα, α = 1, 2 (1)
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Figure 1: Setup

where X1 is the mass fraction of CO2, X2 is the mass fraction of water, ρ is the density of
the aqueous phase, τ is the tortuosity coefficient, D is the diffusion coefficient, and φ is the
porosity coefficient. The term τD is also known as the effective diffusivity. The volumetric
flux u is given by Darcy’s law:

u = −κ
µ

(∇p− ρg). (2)

The system is closed by the equation of state given by

ρ

(
X1

ρ1

+
X2

ρ2

)
= 1, (3)

where ρ1 is the density of saturated aqueous CO2 and ρ2 is the density of water. The equation
of state reflects the condition that there is no volume change upon mixing. We note that by
summing (1) over all the components, we obtain

∂φρ

∂t
+∇ · (ρu) = 0, (4)

For this system, we want to understand how the equation of state constrains its evolution.
In particular, we want to relate the equation of state to a condition on the velocity divergence.
This will then allow us to derive a pressure equation for use in our sequential numerical
scheme described in Section 3. We first define

Dφ = φ
∂

∂t
+ u · ∇, (5)

which is a scaled Lagrangian derivative. Then, (1) and (4) can be expressed as

ρDφX1 = ∇ · φτDρ∇X1, (6)

Dφρ+ ρ∇ · u = 0. (7)
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If we apply Dφ to (3), we obtain

1

ρ
Dφρ+

2∑
α=1

ρ

ρα
DφXα = 0. (8)

By substituting (6) and (7) into the above, we obtain

∇ · u =
2∑

α=1

1

ρα
∇ · φρτD∇Xα. (9)

Similar results are obtained in [2]. A similar compressible model can be found in [8].
Substituting (2) into (9), we obtain an elliptic equation given by

−∇ · κ
µ

(∇p− ρg) =
2∑

α=1

1

ρi
∇ · φρτD∇Xα. (10)

We impose no flow boundary condition on the bottom boundary; −κ
µ
∇p =

∑2
α=1

1
ρα
ρτD∇Xα

on the top boundary; and periodic boundary conditions in all other directions.
Let us point out one difference between models with and without the Boussinesq ap-

proximation that is relevant to the current work. With the Boussinesq approximation, the
pressure equation is given by

−∇ · κ
µ

(∇p− ρg) = 0. (11)

Let us assume the density ρ is initially uniform in the simulation domain. At time t > 0,
CO2 enters the domain only through diffusion. With uniform φ and τ , the change in X1, the
mass fraction of CO2, is independent of the horizontal coordinate. This generates a change
in ρ that is also independent of the horizontal coordinate. Since ρg is now independent of
the horizontal coordinate, (11) is solved by

p = p0 +

∫ 0

−y
ρ(y′)gdy′, (12)

where y denotes the coordinate in the vertical direction. The above implies that the velocity
is identically zero, and thus does not depend on the variation in κ. Fluctuations in κ alone
cannot induce convective instability in the flow. The instability must then be initiated by
introducing fluctuations in the porosity or the initial concentration profile. For our model,
a gradient in X introduces a nonzero RHS in (10), leading to variation in pressure p and
a nonzero velocity u that are dependent on κ. Thus, fluctuations in κ will eventually lead
to instability, allowing us to examine the effects of the fluctuations in κ on the onset of
convection and its subsequent behavior. Within the incompressible framework, the model
we presented is exact in the sense that it takes the compositional effects on density into full
consideration. In addition, it does not add much computational cost to a simulation based
on a model that employs the Boussinesq approximation. Other consequences of applying the
Boussinesq assumption are documented in [8, 10, 13].

3. Numerical Method

The basic integration scheme is based on the total velocity approach. Component equa-
tions (1) and the pressure equation (10) form a set of coupled equations that can be efficiently
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solved by an IMPES-like method in which the pressure equation is solved implicitly and the
mass conservation equations are solved using an explicit treatment of advection and an im-
plicit treatment of diffusion. The basic algorithm is constructed so that the overall splitting
approach is second-order accurate in time. The diffusion terms are discretized implicitly so
that the diffusive term ∇ · φρτD∇X does not limit the time step so that the time step is
controlled by the explicit discretization of advection. We summarize the discretization and
time-stepping procedure for a single grid.

The spatial discretization uses a volume of fluid approach in which (ρXα)nijk denotes the
average value of ρXα over cell (i, j, k) at time tn; Xα and p are defined on cell centers while
Fα = ρXαu and u are defined on cell edges. To simplify notation, let λ = κ/µ. The time
stepping procedure is then given as follows.

• Step 1: Solve the discretized pressure equation (10), given by

Dλ(Gp) = Dλρg −D
2∑

α=1

1

ρα
φρτD(GXα), (13)

for p with properties evaluated using ρn and Xn. We then use equation (2) to define
the Darcy velocity un. Here D and G are second-order accurate discretizations of
the divergence and gradient operators, respectively. The divergence operator returns
a cell-centered divergence from face-centered values; the gradient operator differences
cell-centered values to return normal gradients on faces. In two dimensions the dis-
cretization of Dλ(Gp) at cell (i, j) would be

λi+ 1
2
,j(pi+1,j − pi,j)− λi− 1

2
,j(pi,j − pi−1,j)

∆x2
+
λi,j+ 1

2
(pi,j+1 − pi,j)− λi,j− 1

2
(pi,j − pi,j−1)

∆y2

where ∆x and ∆y are the mesh spacings in the x and y directions, respectively. (We
note that although we include this initial solution of the pressure equation as formally
part of the method, it does not need to be done in practice. See discussion below.)

• Step 2: Use (1) to advance the solution from time tn to time tn+1 based on un.
We use an unsplit second-order Godunov scheme to compute the hyperbolic fluxes.
The Godunov discretization is then coupled to a Crank-Nicolson discretization of the
diffusive terms, so that

φ
(ρX)n+1,∗ − (ρX)n

∆t
+DF n+1/2,∗ =

1

2

(
2∑
i=1

D
1

ρni
φρnτDGXn + D

1

ρn+1,∗
i

φρn+1,∗τDGXn+1,∗

)
(14)

with a suitable linearization of the coefficients of the diffusion term; here superscript
(n+ 1, ∗) denotes functions of ρX evaluated at (ρX)n+1,∗. In this step, F n+1/2,∗ denotes
time-centered fluxes computed using the Godunov procedure but with the total velocity
evaluated at tn.

• Step 3: Solve the pressure equation (9), with properties evaluated using (ρX)n+1,∗,
to compute a new total Darcy velocity un+1,∗ from (2). We then define un+1/2 =
1/2(un + un+1,∗) so that we can time center the dependence of the flux on u.
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Figure 2: AMR grid with three levels of refinement. Each level of grids is shown with a different color.

• Step 4: Use (1) to re-advance the solution from time tn to time tn+1, this time using
un+1/2 to obtain values of (ρX)n+1,

φ
(ρX)n+1 − (ρX)n

∆t
+ DF n+1/2 =

1

2

(
2∑
i=1

D
1

ρni
φρnτDGXn + D

1

ρn+1
i

φρn+1τDGXn+1

)
(15)

again with a suitable linearization of the coefficients of the diffusion term. In this step,
F n+1/2 denotes time-centered fluxes computed using the Godunov procedure but with
the total velocity evaluated at tn+1/2.

In above, un+1,∗ is different from un+1, leading, formally, to two pressure solves in each
time step. However, numerical studies suggest that the difference between un+1,∗ and un+1 is
sufficiently small that the convergence rate is not adversely affected [17]. We thus use un+1,∗

in lieu of computing un+1 in Step 1. The overall time-stepping procedure is integrated into
an adaptive mesh refinement (AMR) framework to efficiently accommodate the difference
in scale between the diffusive boundary layer and the large-scale convective fingers. Details
of the algorithm are described in [17]. Our approach to adaptive refinement uses a nested
hierarchy of logically rectangular grids with simultaneous refinement of the grids in both
space and time. The grid changes with time based on a set of user-defined refinement
criteria; we use component density gradients of all the components. Shown in Figure 2
is a snapshot of the grid; finer grids are placed in regions where small features with large
concentration gradients are present. The resulting algorithm is parallelized and shows good
scaling behavior up to several thousand CPUs (Appendix A).

4. Results

4.1. Onset of Convection

Figure 3 shows a sequence of snapshots of the density of CO2(aq). They depict the
transition from a diffusion-dominated flow to a convection-dominated flow; we note that
there is no abrupt change. The slight fluctuations in the diffusive layers, shown in the top
snapshot, grow into prominent fingers. These fingers subsequently merge to form larger
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10 mD 1 D 80 D

Figure 3: Component density of CO2(aq); time increases from top to bottom.

fingers, developing into a more complex flow pattern. The qualitative results shown in
Figure 3 are similar to those reported in previous studies [7, 22].

The onset time of convection cannot be defined in an absolute sense. Here, we define the
onset time of convection, tonset as the time at which the average mass flux at the top boundary,
F0, has a relative deviation of 1% from a pure diffusive mass flux and use this definition to
determine the time at which convection becomes an important transport mechanism.

During the initial stage of the flow, we are interested in determining the onset time of
convection, and how this is affected by the magnitude of and variability in the permeability,
porosity and effective diffusivity. The effects are examined directly by creating permeability
or porosity distributions with a random fluctuation about a mean value of κ̄ or φ̄ respectively.
In subsequent sections, magnitudes of the mean properties are given by κ̄ = 10 D, φ̄ = 0.3
and τD = 2× 10−9 m2s−1, except where noted.

4.1.1. Numerical Considerations

We begin this section with an analysis of the influence of numerical errors on the onset
time. For homogeneous permeability and porosity, the two-dimensional problem at hand can
be essentially reduced to a one-dimensional diffusion problem. Convective transport is only
induced when a non-uniform flow field is generated by the heterogeneity in the permeability
or the porosity function. However, linear solvers with finite tolerances can introduce small
non-uniform errors that can also eventually lead to instability and convective flow. It is
imperative that we ensure that any convective transport in our simulation is induced by the
heterogeneity in the formation properties, and not due to the finite tolerances of the linear
solver we use. In particular, the tolerances must be sufficiently small that they have limited
influence on the dynamics of the flow, and thus the onset time.

Since the Darcy velocity is computed from the pressure gradient, we will look at tolerances
of the linear solver used to solve the pressure equation in our numerical scheme. Our multigrid
linear solver uses two tolerances to control the accuracy of the linear solve: the relative error
tolerance, εrel and the absolute error tolerance, εabs. Figure 4 shows that with a uniform
κ̄ = 10 D and εrel = 10−12, numerical errors will indeed lead to an onset of convection.
However, the numerically-induced onset time increases with decreasing εabs, reflecting the
decreasing magnitude of the numerical errors. The numerically-induced onset times are
more than a factor of 2 larger than the onset times obtained when 1% fluctuation in κ is
introduced. Even then, we note that the onset time converges to a value of 2.3 × 105 s
only when εabs ≤ 10−14; numerical errors lead to shorter onset times at tolerance levels of
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Figure 4: Examining effects of numerical errors on onset time.

εabs = 10−12 and 10−13. Decreasing εrel to 10−14 does not change the results. We thus
conclude that the convergence criteria given by εrel = 10−12 and εabs = 10−14 are sufficient
to ensure the onset times determined from our simulations are not adversely affected by
numerical errors. The above analysis also shows that our method has excellent control of
the numerical errors; with appropriate tolerances, we are able to ensure the numerical errors
have negligible effects on our simulation.

Another factor that affects the accuracy of the simulation is the grid resolution. Based
on linear stability analysis, the dimensional critical wavelength λc is defined as [26]

λc = 96.23
φµτD
κ∆ρg

. (16)

To fully capture the dynamics during the onset of convection, the dimensions of the simu-
lation domain must be significantly larger than λc. We ensure that the width is more than
30 times larger than λc by varying it with κ, φ and D. In Section 4.2.1, we show that for
studying the long term behavior, an even larger width is needed to ensure boundary effect
does not distort the evolution of the fingers and to obtain an accurate characterization of
the long-term mass flux. The height is chosen such that the finger tips are still sufficiently
far from the bottom boundary that the flow is not affected by the bottom boundary. This
is similar to the open systems in [7].

The grid resolution must also be sufficiently high to resolve λc so that we can capture
the initiation of the convective flow accurately. We perform a grid convergence study to
determine the appropriate grid size. To ensure the underlying statistics are consistent at
different grid resolutions for an uncorrelated random distribution, we adjust the level of
fluctuation with grid size. It reflects the notion that for a truly random medium, as grid
blocks become larger, the variance of the fluctuations will be lower because of averaging.
For example, an initial 1% fluctuation for a given resolution has to be reduced by half when
the grid size in each direction is doubled. Experiments confirm that this provides a better
convergence behavior.

We examine four grid sizes: ∆x = 1/256, 1/512, 1/1024, and 1/2048. The corresponding
fluctuations are given by 0.25%, 0.5%, 1% and 2%. Figure 5 shows that the onset time
converges to a single value. From Table 2, we can conclude that the onset time converges to
2.23×105s. An effective resolution of ∆x = 1/1024, which is a factor of 100 smaller than λc,
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∆x % fluctuation onset time, s
1/256 0.25 2.44× 105

1/512 0.5 2.33× 105

1/1024 1 2.26× 105

1/2048 2 2.23× 105

Table 2: Onset time for different resolutions. The % fluctuation varies as a function of resolution.

is thus sufficient. Results in subsequent sections are obtained based on the tolerances and
effective resolution established here.

4.1.2. Onset time

Here, we determine how the onset time varies with the magnitudes of the relative fluctu-
ations in formation properties. We expect the onset time to decrease when the magnitude of
the fluctuations is increased. This is indeed borne out by Figure 6. However, Figure 6 further
shows that for similar levels of % fluctuation, the fluctuations in φ lead to faster onset time
than the fluctuations in κ. This is likely because the fluctuations in φ cause non-uniform
transport of solute from the start of the simulation while the fluctuations in κ require a slow
buildup of velocity fluctuations that eventually reach a magnitude that is sufficiently large
to induce an onset of convection. Nevertheless, the rates at which the onset times decrease
with increasing fluctuation strength are similar.

Linear stability analysis [4] suggests that the onset time is related to properties of the
aquifer and fluid through the following relation:

tonset = c0
µ2φ2τD

(∆ρ)2g2κ2
. (17)

We want to determine whether our simulation results can reproduce the relations between
tonset and κ̄, φ̄ and τD in (17). In the κ case, we vary κ̄ between 0.01 D and 80 D with a 1%
level of fluctuation. Similarly, in the φ case, we vary φ̄ between 0.05 and 1, again with 1%
fluctuation. In the τD case, τD varies from 0.5× 10−9 m2s−1 to 4× 10−9 m2s −1. However,
τD is uniform and convective behavior is induced by a random κ distribution with a mean
of 500 mD and 1% fluctuation with constant φ = 0.15.

Figure 7 clearly shows linear relations between tonset and 1/κ̄2, φ̄2, and τD of (17). By
determining the gradient of the L2-fitted line based on the data for κ, we found c0 to be
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Figure 6: Variation of onset time with % fluctuation in φ and % fluctuation in κ.

3670. However, when the same analysis are performed on the data for φ, we found c0 to be
1796. This again shows that for similar levels of fluctuation, the fluctuations in φ lead to a
shorter onset time. We can also deduce from Figure 6 that c0 decreases as the % fluctuation
increases. We would like to point out that the critical time in [7, 22], which is the onset

time in the large Rayleigh number limit [7], is proportional to µ2φτD
(∆ρ)2g2κ2 . This is because the

time is scaled by φH2/D instead of H2/D used by King et al. [4, 5] and Xu et al. [26]. Our
numerical results show that the latter is a more appropriate scaling.

The magnitude of c0 is of considerable interest and a wide range of values has been
reported in the literature. In most cases, the discrepancies can be attributed to different
criteria used to define the onset time. In the linear stability analysis performed in [4, 5] that
found c0 = 75–78, the onset time is determined by minimizing over all possible wavenumbers
the time at which the amplification of the square-averaged perturbation is at its minimum.
Using the same criterion, Xu et al. [26] obtained a similar value for c0. In Riaz et al. [22]
that reported a value of approximately 5001, the onset time is defined as the time at which
the growth rate of the amplitude of the dominant mode becomes positive within the linear
stability analysis framework. Since we use a different definition of onset time, c0 values we
obtained cannot be directly compared to the values obtained in these studies. However,
similar to the current paper, Pruess and Zhang [20] define the onset time based on the
deviation of a simulated mass flux from a pure diffusive flux, although the % deviation is
not specified. They found c0 to be 1155.6 and 1411.5 for the cases they examined. These
values are of the same order of magnitude as our reported values; any discrepancy can be
attributed to the differences in the actual % deviation used in defining the onset time, the
statistics of the underlying heterogeneity in the rock properties, and the equation of states
used in the simulations.

4.2. Long Term Behavior

At long time, the flow is characterized by fingers that extend along the length of the
domain, as shown in Figure 8. The velocity field shown in the figure shows pockets of

1In [22], the onset time relation is given by tonset = 146 µ2φτD
(∆ρ)2g2κ2 ; the exponent of φ is 1 instead of 2.

Reinterpreting the results in [22], we deduce c0 = 487 and this is consistent with a separate calculation
based on Figure 15 of [22] which gives c0 = 506.
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circulating flow: the heavier CO2-rich fluid moves downward in distinct fingers while lighter
fluid between the fingers moves upward. However, since the top boundary is impermeable,
the upward moving solution must move horizontally, pushing nascent fingers into one another
and finally into one of the adjacent extended fingers that has a large downward velocity. This
indirectly improves the efficiency by which CO2 is removed from the top boundary. Within an
extended finger, we observe that blobs of aqueous CO2 with higher concentration may pinch
off from the extended finger, and move downward at a greater speed. These blobs eventually
diffuse to a point where they are indistinguishable from the extended finger. The above
descriptions are consistent with the descriptions of the fingering dynamics in [22]. These
observations suggest that the dominant mechanism by which CO2 is transported downward
is through the extended fingers that form after the onset of convection.

In [20], Pruess and Zhang concluded that the resulting CO2 flux will stabilize to a mean
value, and fluctuate with a ±15% deviation from the mean. Accurate characterization of
this stabilized flux is important as it allows the dissolution-diffusion-convection process to be
modeled as a constant flux in a full-scale carbon sequestration simulation. It also determines
the rate at which CO2 is removed from the highly mobile and buoyant gas phase, and put
into a less mobile and negatively buoyant aqueous phase. Thus, the quantification of this
rate has important ramifications for storage security. In this section, we will first look at the
intricacy of identifying this stabilized flux from numerical simulations. We will then look at
how fingering structures vary with κ, φ and τD. We also determine the empirical relations
between the long-time mass flux and these formation properties.

4.2.1. Numerical Considerations

Figure 9 shows the evolution of F0(t), the mass flux at the top boundary, for a domain
of size 1 m × 8 m. To determine whether the flux has indeed stabilized, we compute the
moving average of F0, defined as

Fm(t) =
1

∆t

∫ t+∆t/2

t−∆t/2

F0(t′)dt′ (18)

where ∆t is sufficiently large that fluctuations in Fm are below 5% for the last Ns time steps
at which Fm is evaluated; in this study, Ns = 100. We note that in our simulation, the time
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Figure 8: Component density of CO2(aq) after a long time.

step is determined based on the advective CFL number which is fixed at 0.75. For different
combinations of κ and φ, fixed Ns will lead to different values of ∆t. A comparison based
on fixed Ns (with fixed CFL number) instead of fixed ∆t then allows us to take the scale
differences in space and time into consideration. We further define the stabilized flux 〈F0〉
as

〈F0〉 =
1

∆T

∫ T

T−∆T

Fm(t)dt (19)

where T is the last t at which Fm is evaluated, and ∆T is chosen such that the interval
[T −∆T, T ] contains Ns sample points of Fm. The fingers should be sufficiently far from the
bottom of the simulation domain at time T +∆t/2. For this particular case, ∆t = 3.1×106s,
and 〈F0〉 is found to be 1.46× 10−6 kg/m2/s; Fm(t) is also shown in Figure 9.

We note that F0 fluctuates in excess of 25% with respect to 〈F0〉. This is likely due to
boundary effects: the domain, with a width of 1 m, can only accommodate two extended
fingers. There are thus insufficient fingers to provide a good averaging for determining 〈F0〉.
In Table 3, we increase the width of the domain and determine 〈F0〉, the maximum relative
deviations from 〈F0〉 in the sample set used to compute 〈F0〉, and the number of fingers
for domains with different widths. The fluctuation decreases with increasing width; the
relative deviation of F0 from 〈F0〉 for W = 16 m is about a factor of 5 smaller than the
relative deviation for W = 1 m. The mean also appears to converge to 1.5× 10−6 kg/m2/s.
This shows that having a width that can accommodate two fingers may be sufficient, but a
larger width will lead to better averaging. In our subsequent simulations, the domain size
will vary with the parameters used. The results are checked to ensure that the domains
are sufficiently large that we have at least two extended fingers and the magnitudes of the
velocities at the lower boundary is still zero (up to the prescribed solver tolerances) at the
end of the simulations. The second criterion ensures that the finger tips are sufficiently far
from the lower boundary.
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Figure 9: Variation of F0 and Fm with time. The stabilized mass flux 〈F0〉 is determined based on Fm within
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W 〈F0〉, kg/m2/s maximum relative deviation number of fingers
1 1.46× 10−6 27.0 2
2 1.48× 10−6 12.2 4
8 1.52× 10−6 7.2 8
16 1.50× 10−6 5.7 17

Table 3: Stabilized mass fluxes for different domain size. The deviation shown is the maximum absolute
relative deviation of F0 from 〈F0〉.

We next examine what effects the magnitude of the relative fluctuation has on the stabi-
lized mass flux. Table 4 shows that there is no distinct correlation between 〈F0〉 and the %
fluctuation in κ; κ has a mean of 10 D, and constant φ = 0.3 and τD = 2× 10−9 m2s−1 are
used. Furthermore, using the solution for the 0.25% fluctuation case as reference, we see that
the deviations of 〈F0〉 for all other cases are within the 5% window that we use to determine
〈F0〉. Thus, we can conclude that 〈F0〉 does not depend on strength of the fluctuations.

4.2.2. Stabilized Mass Flux

The characteristics of the fingering phenomenon are primarily determined by the relative
strength between the convective process and the diffusive process. As κ̄ increases, the Darcy
velocity u increases as well due to (2). The convective term ∇ · ρXu is correspondingly
larger, which diminishes the stabilizing effects of the diffusive process. Thus, more extended
fingers are formed per unit width, and these fingers are in general narrower, as shown in
Figure 10. On the other hand, an increase in φ̄ reduces the effects of convective process.

% fluctuation 〈F0〉, kg/m2/s maximum % deviation from the 0.25% case
0.25 1.52× 10−6 −
0.5 1.50× 10−6 1.9
1 1.59× 10−6 4.5
2 1.53× 10−6 1.0
10 1.55× 10−6 2.1

Table 4: Stabilized mass fluxes for different levels of fluctuation.
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Figure 10: Density of CO2 for κ̄ = 10 mD, 1 D and 80 D. Time at which the snapshots are taken are
respectively 4× 1012 s, 4× 108 s, and 4× 105 s.

Thus, as φ̄ increases, the number of fingers per unit width decreases, and the fingers become
wider, as shown in Figure 11. Similarly, as τD increases, the number of fingers per unit
width decreases, as shown in Figure 12.

Our convergence study in Section 4.2.1 has shown that the long-time mass flux reaches
a stabilized state as we approach geological length scales. We would like to determine
the empirical relations between 〈F0〉 and various formation properties. To determine these
relations, simulations with different combinations of κ̄, φ̄ and D are performed. The ranges
examined are similar to Section 4.1.2 for most cases. In the κ case, the range is [0.01, 80] D. In
the φ case, the range is reduced to [0.05, 0.4] because the domain size needed to accommodate
sufficient number of fingers for φ > 0.4 can be quite large. Since φ is in general small in
real aquifers, this smaller range avoids unnecessary demands on the available computational
resources. In the τD case, the range we examined is [0.5, 4] × 10−9 m2s−1 and κ and φ are
respectively 500mD and 0.15. Based on Figure 13, we can conclude that 〈F0〉 is proportional
to κ̄ but does not depend on φ̄ and τD. This shows that although a decrease in φ̄ or τD
leads to an increase in the number of fingers per unit width, it does not imply an increase
in 〈F0〉.

We now determine the magnitude of a dimensionless flux term based on the above results.
Following [22], we scale u, ρ and X by κ∆ρg/µ, ∆ρ and X0. The dimensionless flux F ∗ is
then given by

F ∗ = F

(
µ

C0κ∆ρg

)
. (20)

Evaluating the data in Figure 13 yields 〈F ∗〉 ≈ 0.017 − 0.018. Similar results are found
in [7] where the average dimensionless dissolution rate (equivalent to 〈F ∗〉) is found to
be approximately 0.017 and independent of the Rayleigh number. However, due to the
scaling relations used in [7], Hesse suggested that mass dissolution rate of CO2 is given by
0.017C0κ∆ρg

φµ
. The dependence on φ is again a result of scaling t by φH2/D, where H is the

characteristic length, instead of H2/D used in [4, 5, 26]. If the latter is used, the scaling result
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Figure 11: Density of CO2 for φ̄ = 0.05, 0.1 and 0.4. Times at which the snapshots are taken are respectively
6× 105 s, 1× 106 s and 6× 106 s.

4 m 4 m 4 m

0.5 2.0 4.0

Figure 12: Density of CO2 for τD = 0.5, 1 and 4 ×10−9 m2s−1. Times at which the snapshots are taken
are respectively 2.0 × 108 s, 2.1 × 108 s and 2.6 × 108 s. Note that the solutions for the last two cases are
simulated on larger domains but truncated here for comparison.
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Figure 13: Variation of 〈F0〉 with κ̄, φ̄ and τD.

is then consistent with the simulation results. This again shows that for scaling analysis, t
should be scaled by H2/D.

4.3. Three-Dimensional Problem

Here, we perform a three-dimensional simulation of the diffusion-convection process to
determine whether the results will differ significantly from a two-dimensional simulation.
Since a 3D simulation is significantly more resource intensive, we will examine only one
set of hydrogeologic parameters, corresponding to the Carrizo-Wilcox aquifer in Texas; its
deeper sections are very large and promising targets for CO2 storage [15]. The Carrizo-
Wilcox aquifer is modeled as having a mean permeability of 500 mD, a uniform porosity
of 0.15 and uniform effective diffusivity of 2 × 10−9 m2/s; the permeability variation was
modeled with a uniform random fluctuation of 1%. The simulation was performed with a
parallel implementation of the AMR algorithm in 3D. The domain is of size 8 m × 8 m ×
32 m. Four levels of grids are used, and grids at the finest level have a resolution of 1/128
m. CPU, memory and storage requirements for a simulation based on a uniform grid at the
finest resolution would have been significantly larger than that required by an AMR-based
method.

Figure 14 shows the velocity fields and the contour plots of the CO2 densities for two
different levels at t = 3 × 107 s, 4.8 × 107 s and 3.8 × 108 s. At time 3 × 107 s, the
isoconcentration surface resembles a rippled sheet. Velocities point upward at the crests and
downward at the ridges. The downward velocities are also larger, as indicated by the larger
arrows, thus facilitating the growth of fingers. As time progresses, the flow develops into
a circulating flow field. Shown in the image at t = 4.8 × 107s is an intermediate stage of
the growth where the presence of many pockets of upward and downward fluid leads to a
rather complex flow pattern. The isoconcentration surface is less wavy and narrow ridges
are being formed due to the merging of nascent fingers, a process driven by the velocity
field. Eventually, a quasi-steady circulating flow field is obtained, as shown in the image
at t = 3.8 × 108 s. The velocity field bears close resemblance to the 2D results shown in
Figure 8. However, when pockets of upward moving fluid reach the top boundary, they move
outward in all directions of a horizontal plane instead of moving along a horizontal line as
in the case of 2D flow. As a result, narrow ridges are formed when different pockets of the
diverted fluid meet and they act as conduits for downward moving fluid; we note that the
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Figure 14: Evolution of the velocity fields and CO2 densities at different times.

downward velocity is usually largest along the ridges. Here, quasi steady state refers to a
state where the maximum size of the pockets stays approximately constant, but the flow
pattern evolves dynamically.

In Figure 15, we show the isosurface of CO2 concentration at ρX = 24 kg/m3 to highlight
the structure of the 3D fingers. The fingers at early time (t = 3× 107 s) are approximately
cylindrical in shape as one would deduce from a 2D simulation assuming the 2D fingers
are similar in all directions perpendicular to the z-axis. For our discussion here, the z-axis
is along the direction of the gravity, xy-plane is perpendicular to z-axis, and z = 0 is the
top boundary. However, as time progresses, the fingers grow larger and flatter. When we
compare the cross-sections of the 3D solution along the yz-plane at 3.8 × 108 s to the 2D
solution, the differences, as shown in Figure 16, are apparent. In particular, the cross-
section along x = 4 m shows a cross-section of the flat three-dimensional fingers observed in
Figure 15 that cannot be deduced from a 2D simulation. This network of flat fingers is more
clearly shown by the cross-sections along the xy-plane in Figure 17. The finger tips also
show a less rounded profile compared to those in the 2D simulation, as shown in Figure 16.
These observations suggest that while the early-time behavior can be predicted based on
a 2D model, there are significant differences between the 2D and 3D fingering structures.
Note that the finest level of the AMR grid is also shown in the image for t = 3.8 × 108s of
Figure 15. Only a small percentage of the whole domain needs to be resolved at the finest
level, leading to greater computational efficiency.

It is clear from the above that the additional degrees of freedom add significant complexity
to the fingering phenomena. We next determine whether it has any appreciable influence on
the integral measures that we are interested in. In Figure 18, we compare the evolution of F0
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3.8 x 108 s

3.0 x 107 s

4.8 x 107 s

Figure 15: A view from below shows flat characteristic of the fingers. The surface corresponds to a concen-
tration of 20 kg/m3. The yellow boxes shown in the viewgraph for t = 3.8 × 108 s is the finest level of the
AMR grid.

cross-section of 3D results 2D results

x=2m x=4m x=6m

Figure 16: A comparison between cross-sections in the yz-plane of the 3D solution at t = 3.8× 108 s and a
2D solution.
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Figure 17: Cross-sections in the xy-plane of the 3D solution at t = 3.8× 108 s.
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Figure 18: Comparing the results from a 2D simulation and a 3D simulation.

of a 3D simulation to a 2D simulation with the same fluid and formation parameters, and grid
resolution. We obtain a somewhat smaller onset time and a higher maximum mass flux during
the transient stage. The fluctuation of mass flux at long time is also smaller compared to the
2D simulation due to larger number of fingers which leads to better averaging. The stabilized
mass flux is found to be 8.97 × 10−7 kg/m2/s, which is 25% higher than a comparable 2D
simulation. While the difference is statistically significant, the increase is small in view of
the typically large variation in permeability for geologic media. Thus the effect of additional
spatial degrees of freedom on onset time and stabilized mass flux is modest.

5. Comparison to Results from TOUGH2-MP

The same problem of convective instability discussed above was simulated with a par-
allelized version TOUGH2-MP [28] of the general-purpose reservoir simulator TOUGH2.
Initial calculations used the ECO2N fluid property module [19]. However, since the condi-
tions in the present problem are limited to a single aqueous phase, a more efficient simulation
can be obtained by using EOS7, in which the fluid is represented as a two-component mixture
of H2O and brine. We use the brine component to represent density changes in the aqueous
phase from CO2 dissolution. Numerical work is approximately proportional to NEQ2, where
NEQ is the number of equations per grid block. Accordingly, a given problem can be solved
with EOS7 (NEQ = 2) in less than half the time required with ECO2N (NEQ = 3). Our
test calculations have confirmed excellent agreement between simulations using EOS7 and
ECO2N.
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Figure 19: Simulated distribution of dissolved CO2 after 101.6 days for three different random number seeds
to generate permeability heterogeneity (given at the bottom of each plot). Note the different horizontal and
vertical scales.

To achieve results with “small” space discretization errors, we experimented with different
domain sizes and grid resolutions. We found a domain of width W = 1 m, height H = 5
m, and a vertical grid resolution of 1 mm near the top boundary, which was gradually
coarsened going downward, to be sufficient. Horizontal grid resolution was 10 mm, and the
total number of grid blocks was 52,300.2

5.1. Results

The convective pattern shows similar features to those seen in the adaptive grid simula-
tions discussed previously, including fingering convection, merging and pinch-off of fingers,
and continuous generation of new fingers as older ones grow. As an example, Figure 19 shows
convective patterns for three different random number seeds after a time of 101.6 days. The
resolution of features is somewhat inferior in comparison to the adaptive gridding, Figure 8.
Specifics of the convective activity are very sensitive to small problem variations, but we
observe that integral measures of the process, such as onset time of convection, and long-
term behavior of the CO2 mass flux carried by the convection, are quite robust to modest
changes in problem parameters. Indeed, for the three cases with different random permeabil-
ity fields shown in Figure 19, onset times of convection are identical, and long-term stabilized
fluxes show random fluctuations of ± 15% about the same mean of approximately 1.3×10−6

kg/m2/s.
We explored the sensitivity of the onset time for convection to the random perturbations

applied to the medium. Figure 20 shows that the onset time for convection decreases with
increasing strength of the applied perturbation of the medium. Porosity perturbations are
seen to be more effective in triggering convective instability than permeability perturbations.
These results are consistent with the results in Section 4.1.2, as shown in Figure 6.

A comparison calculation with a perfectly homogeneous medium yields a substantially
larger onset time, as in this case convective instability arises only from numerical roundoff.
The onset times obtained from TOUGH2-MP simulations are around 6 − 9 × 104 s, about
a factor 3 smaller than obtained with the adaptive algorithm. At a nominal onset time of

2Simulations presented here were performed on a Dell T5400 dual quad core computer with a total of 8
cores, and in most cases 16 processes were run (two per processor), as this was found to reduce total execution
time compared to running 8 processes. Depending on grid resolution and simulation time, individual runs
typically took from 1/2 to 4 hours.
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Figure 20: Simulated CO2 fluxes at the top boundary at early times, for different random perturbations of
the porosity or permeability field.

7.5 × 103 s, the thickness of the diffusive boundary layer is 12.2 mm, which should be well
resolved with our 1 mm grid resolution. Potential reasons for the discrepancy are similar to
the reasons given for the discrepancy in c0 discussed in Section 4.1.2.

The convective CO2 flux at the top is equal to the CO2 dissolution rate per unit area.
Due to the partially chaotic nature of the convection process, this rate fluctuates, but the
fluctuations are modest in size, and fluxes stabilize at 1.3×10−6 kg/m2/s (± 15%), regardless
of how the instability was triggered (Figure 21). This is approximately 13% smaller than
the value obtained from the adaptive gridding simulations. This is likely due to the higher
resolution achieved by the adaptive gridding simulations, which allow fine-scale convective
behavior, including those away from the top boundary, to be resolved.

We also performed simulations with different boundary conditions at the sides and bottom
of the domain, such as no flow conditions on the sides, and constant pressure conditions on
the bottom. Onset times for convection and long-term stabilized fluxes were found to be
insensitive to boundary conditions. A more extensive account of TOUGH2 analyses of the
dissolution-diffusion-convection process is available in a laboratory report [20].

6. Conclusion

High-resolution two-dimensional simulations of the diffusion-convection process in CO2

sequestration were performed using a block structured adaptive mesh refinement method.
Numerical aspects of the simulations were examined and the short and long term behaviors
of the process are examined.

We found that although details of the convection process are chaotic in nature, integral
measures, such as the onset time of convection, and the long-term CO2 mass flux associated
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Figure 21: Longer-term behavior of simulated CO2 fluxes at the top boundary.

with the convective activity, are robust and insensitive to modest problem variations. At
short time, the onset time of convection follows the prediction of linear stability analysis. The
constant c0 in (17) for onset time is found to be in the range of 1000-5000 and is dependent
on the level of fluctuation in the formation properties. It is of the same order of magnitude
as that reported in [20] and any discrepancy can be attributed to differences in the details of
the simulation parameters. There are however large variations in the value of c0 reported in
the literature. These variations can usually be attributed to differences in the models used to
describe the diffusion-convection process, the criteria by which the onset time is determined,
and the levels or forms of fluctuations used in the simulations.

At long time, the CO2 mass flux reaches a stabilized state that approaches a constant
value at space and time scales of interest for geological storage of CO2. In particular, we
show that the long term behavior is convection-dominated and depends only on the mean
value of the permeability. It also does not depend on the level of fluctuation. These empirical
observations suggest that we can model the behavior of the process on geological time and
space scales using a simplified model. Let the formation properties be uniform and given by
the mean values. Then the mass conservation equation for CO2 given by (1) can be expressed
as

∂φ̄ρX1

∂t
+∇ · F = ∇ · φ̄τDρ∇X1, (21)

where F = ρX1u and u = − κ̄
µ
(∇p − ρg). The linear relation between 〈F0〉 and κ̄ suggests

that the dominant mechanism by which CO2 is transported downward is convective in nature
and can be efficiently modeled using the mean values of κ and φ. In addition, since 〈F0〉
does not depend on τD, we can further approximate the divergence condition (9) by

∇ · u = 0. (22)
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Since the top boundary is impermeable, we must model the influx of CO2(aq) at the top
boundary explicitly by imposing the boundary condition

φ̄τDρ∇X1 = 〈F0〉, (23)

at the top boundary, with a corresponding condition for φ̄τDρ∇X2 so that the net mass flux
is zero.

The divergence condition (22), the conservation equation (21) and the boundary condition
(23) then constitute a simplified model that is relevant on geological scales where the complex
convective pattern at small scales can be approximated by a uniform convective flux. Since
the model depends only on the mean values of κ, φ, and τD, we can avoid the need to
resolve the fluctuations that lead to the fingering phenomenon. Thus, we do not need to
take the diffusive layer, which is small relative to the geological length scale, and the onset
time, which is again small relative to the geological time scale, into consideration. When
used as a subgrid model, this model can potentially simplify the inclusion of the dissolution-
diffusion-convection process in a large- scale flow simulation of carbon sequestration. The
use of this model as a subgrid model in a large-scale multiphase flow simulation of carbon
sequestration will be examined in future work.

A detailed three-dimensional simulation shows that the added degrees of freedom add
significant complexity to the fingering phenomena. However, the changes in the integral
measures, i.e. the onset time and stabilized mass flux, are modest when compared to the two-
dimensional simulations. Results from the two-dimensional simulations are also compared
to results from TOUGH2-MP and good agreement is obtained.
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Appendix

A. Scaling Study

To measure the parallel performance of the algorithm, we use a weak scaling study
based on a replicated problem strategy as discussed in [1]. We consider a three-dimensional
three-component two-phase system with a layered permeability function. A pressure drop
is applied along the x-direction and gravity is ignored. By replicating the problem in the
y and z directions, we are able to scale the problem size without modifying the problem
characteristics, particularly with regard to how adaptive criteria and grid generation impact
the overall problem. In Figure 22, we present scaling data compared to ideal behavior for a
range of processors from 256 to 2048. We observe a small deviation from the ideal scaling,
which is primarily attributable to increases in the time spent in the elliptic solver.
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Figure 22: Parallel performance of the adaptive algorithm based on weak scaling.
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