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Abstract We introduce MISO, the Mixed-Integer Surrogate Optimization
framework. MISO aims at solving computationally expensive black-box op-
timization problems with mixed-integer variables. Although encountered in
many applications, such as optimal reliability design or structural optimiza-
tion, for example, where time consuming simulation codes have to be run in
order to obtain an objective function value, the development of algorithms for
this type of optimization problem has rarely been addressed in the literature.
A single objective function evaluation may take from several minutes to hours
or even days. Thus, only very few objective function evaluations are allowable
during the optimization. Because the objective function is black-box, deriva-
tives are not available and numerically approximating the derivatives requires
a prohibitively large number of function evaluations. Therefore, we use surro-
gate models to approximate the expensive objective function and to decide at
which points in the variable domain the expensive objective function should
be evaluated. We develop a general surrogate model framework and show how
sampling strategies of well-known surrogate model algorithms for continuous
optimization can be modified for mixed-integer variables. We introduce two
new algorithms that combine different sampling strategies and local search to
obtain high-accuracy solutions. We compare MISO in numerical experiments
to a genetic algorithm, NOMAD, and SO-MI. The results show that MISO is
in general very efficient with respect to finding improved solutions within very
few function evaluations. The performance of MISO depends on the chosen
sampling strategy. The MISO algorithm that combines a dynamic coordinate
search with a target value strategy and a local search performs best among all
algorithms.
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Abbreviations and Notation

DYCORS DYnamic COordinate search using Response Surface
models (Regis and Shoemaker, 2013)

EGO Efficient Global Optimization Jones et al (1998)
MISO Mixed-Integer Surrogate Optimization
MISO-CS MISO - Coordinate Search
MISO-EI MISO - Expected Improvement
MISO-RS MISO - Random Sampling
MISO-SM MISO - Surface Minimum
MISO-TV MISO - Target Value
MISO-CSTV MISO with combination of CS and TV
MISO-CSTV-local MISO with combination of CS, TV, and a local

search
MISO-CSTV-l(f) MISO-CSTV-local that uses fmincon as local opti-

mizer
MISO-CSTV-l(o) MISO-CSTV-local that uses ORBIT (Wild et al,

2007) as local optimizer
NOMAD Nonlinear Optimization by Mesh-Adaptive Direct

search (Le Digabel, 2011)
RBF Radial basis function
SO-MI Surrogate Optimization - Mixed Integer (Müller

et al, 2013b)
SRBF Stochastic Radial Basis Function algorithm (Regis

and Shoemaker, 2007)

f(·) Computationally expensive objective function
d Problem dimension
d1 Number of integer variables
d2 Number of continuous variables
z Variable vector
zli, z

u
i Lower and upper variable bounds of the ith variable

Z Set of evaluated points, Z = {z1, . . . , zn}
n0 Number of points in the initial experimental design
n Number of already evaluated points
sn(·) Surrogate model fit to n data points
I Indices of the integer variables

1 Introduction and Motivation

In engineering optimization problems, evaluating the objective function often
requires a computationally expensive computer simulation that approximates
the physical behavior of the system under consideration. These simulation
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models are black-box, and thus the analytical description and derivatives are
not available. Automatic differentiation is in many cases not applicable due to
confidentiality restrictions of the simulation codes. Numerical differentiation
requires many computationally expensive objective function evaluations and
is therefore inefficient. Thus, derivative-free methods (Conn et al, 2009) are
widely used.

When optimizing such computationally expensive black-box problems, the
goal is to find near optimal solutions within only very few expensive objective
function evaluations in order to keep the optimization time acceptable.
Surrogate models (also known as response surface models or metamodels)
have been developed to efficiently solve this type of optimization prob-
lems (Forrester et al, 2008; Giunta et al, 1997; Glaz et al, 2008; Koziel
and Leifsson, 2013; Marsden et al, 2004; Simpson et al, 2001). Surrogate
models are computationally cheap approximations of the expensive objective
function (Booker et al, 1999). During the iterative optimization routine, the
information from the surrogate model is exploited in order to detect promising
sample points in the variable domain. Hence, the computationally expensive
objective function is evaluated only at very few carefully selected points, and
thus near optimal solutions can be found efficiently.

Surrogate model algorithms have mainly been developed for continuous
optimization problems (Gutmann, 2001; Jones et al, 1998; Müller and Piché,
2011; Müller and Shoemaker, 2014; Regis and Shoemaker, 2007, 2013; Wild
et al, 2007). Only very recently have surrogate model algorithms been devised
for optimization problems that have integer constraints for some or all
variables (Davis and Ierapetritou, 2009; Holmström, 2008b; Müller et al,
2013a,b; Rashid and Cetinkaya, 2012) and where the integer variables may
assume a large range of values rather than only binary values (Müller et al,
2013a,b). The goal of this paper is to develop an algorithm framework for
computationally expensive black-box mixed-integer optimization problems
where the variables are not restricted to binary values.

We consider optimization problems of the following form:

min f(z) (1)

s.t −∞ < zli ≤ zi ≤ zui <∞, i = 1, . . . , d (2)

z ∈ Zd1 × Rd2 , d1 + d2 = d, (3)

where f(·) denotes the computationally expensive black-box objective func-
tion, zli and zui denote the lower and upper bounds of variable i, d is the
problem dimension, d1 denotes the number of the integer variables, and d2
denotes the number of continuous variables. For real world applications where
a single function evaluation may require several hours or even days, often
only few hundred evaluations of f(z) are allowable, and thus algorithms that
are able to find a (near) optimal solution within a very limited number of
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function evaluations are needed.

In Section 2, we briefly describe different surrogate model types. We give a
general surrogate model optimization algorithm description in Section 3 and
we briefly review widely-used surrogate model algorithms for continuous opti-
mization and the few developments for mixed-integer problems. In Section 4
we describe the Mixed-Integer Surrogate Optimization (MISO) framework and
show how the sampling strategies of existing continuous surrogate model al-
gorithms can be modified for mixed-integer optimization problems. We also
introduce a new memetic algorithm that combines local and global searches
in order to find solutions of higher accuracy. In Section 5, we compare var-
ious algorithms that follow the MISO framework with SO-MI (Müller et al,
2013b), NOMAD (Le Digabel, 2011), and MATLAB’s genetic algorithm on a
set of benchmark problems and applications arising in reliability-redundancy
optimization and structural design optimization. We show that the algorithms
following the MISO framework are very efficient when the goal is to find good
solutions within very few function evaluations. Section 6 concludes the paper.

2 Surrogate Models

Various surrogate model types have been used in the literature within
optimization frameworks. Radial basis functions (RBFs) (Gutmann, 2001;
Müller et al, 2013b; Powell, 1992; Regis and Shoemaker, 2007, 2009; Wild and
Shoemaker, 2013) and kriging (Davis and Ierapetritou, 2009; Forrester et al,
2008; Jones et al, 1998; Simpson et al, 2001) are interpolating models, whereas
polynomial regression models (Myers and Montgomery, 1995) and multi-
variate adaptive regression splines (Friedman, 1991) are non-interpolating.
Moreover, there are mixture models (also known as ensemble models) that
exploit information from several different surrogate model types (Goel et al,
2007; Müller and Piché, 2011; Müller and Shoemaker, 2014; Viana et al, 2009).

Although in general any type of surrogate model (ensemble) can be used within
our MISO framework, we focus here on RBFs because they have been shown
most successful in comparison to other surrogate model types (Müller and
Shoemaker, 2014). An RBF interpolant is defined as follows:

s(z) =

n∑
ι=1

λιφ(‖z− zι‖) + p(z), (4)

where φ(·) is a radial basis function (here we use the cubic function φ(r) = r3),
zι, ι = 1, . . . , n, denotes the points at which the objective function value is
known (already sampled points), and p(·) denotes the polynomial tail whose
order depends on the chosen RBF type (for the cubic RBF we need at least a
linear polynomial tail p(z) = a + bT z). The parameters λι ∈ R, ι = 1, . . . , n,
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and the parameters a ∈ R and b = [b1, . . . , bd]
T ∈ Rd are determined by

solving the following linear system of equations[
Φ P
PT 0

] [
λ
c

]
=

[
F
0

]
, (5)

where Φιν = φ(‖zι − zν‖), ι, ν = 1, . . . , n, 0 is a matrix with all entries 0 of
appropriate dimension, and

P =


zT1 1
zT2 1
...

...
zTn 1

 , λ =


λ1
λ2
...
λn

 c =


b1
b2
...
bd
a

 , F =


f(z1)
f(z2)

...
f(zn)

 . (6)

The matrix in (5) is invertible if and only if rank(P) = d+ 1 (Powell, 1992).

3 Review of Surrogate Model Algorithms

3.1 General Surrogate Model Algorithm

Surrogate model based optimization algorithms consist in general of the fol-
lowing steps:

Algorithm 1 General Surrogate Model Algorithm

1: Create an initial experimental design and do the expensive objective func-
tion evaluations at the selected points.

2: Fit the chosen surrogate model to the data in Step 1.
3: Use the information from the surrogate model to select the point znew for

doing the next expensive function evaluation.
4: Do the expensive evaluation at znew: fnew = f(znew).
5: if Stopping criterion is not met then
6: Update the surrogate model and go to Step 3.
7: else
8: Return the best solution found during the optimization.
9: end if

In Step 1, an initial experimental design is created and the computationally
expensive objective function is evaluated at the selected points. In general,
any initial design strategy may be used, but it has to be ensured that there
are sufficiently many points to fit the chosen surrogate model in Step 2. The
objective function value predictions of the surrogate model at unsampled
points are used in Step 3 to select the next evaluation point. After the new
function value has been obtained in Step 4, the surrogate model is updated
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in Step 6 if the stopping criterion has not been satisfied (for example, the
budget of function evaluations has not been exhausted) and a new point is
selected for evaluation. Otherwise the algorithm stops and returns the best
solution found during the optimization in Step 8.

This framework has been adopted in several well-known algorithms for
continuous optimization such as EGO (Jones et al, 1998), Gutmann’s
RBF method (Gutmann, 2001), DYCORS (Regis and Shoemaker, 2013),
SRBF (Regis and Shoemaker, 2007), and SO-M-s (Müller and Shoemaker,
2014). The major differences between these algorithms are

– the type of surrogate model used to approximate the expensive objective
function in Step 2;

– the method for selecting a new evaluation point in Step 3.

3.2 Previous Surrogate Model Algorithms for Continuous Optimization

Several surrogate model algorithms have been introduced in the literature for
addressing computationally expensive black-box optimization problems with
continuous variables. The EGO algorithm (Efficient Global Optimization)
by Jones et al (1998) uses a kriging surrogate model. A new decision variable
vector is selected based on the solution of an auxiliary optimization problem
that aims at maximizing the expected improvement that is computed based
on the error estimate of the kriging surface.

Gutmann (2001) uses RBF surrogate models and selects the next evaluation
point based on a target value strategy. A target value is defined and a com-
putationally cheap auxiliary optimization problem that aims at minimizing a
so-called bumpiness measure is solved on the RBF model.

SO-M-s (Müller and Shoemaker, 2014) does the next computationally expen-
sive function evaluation at the minimum point of the surrogate surface. Any
type of surrogate model may be used within the SO-M-s framework, but the
authors showed that RBFs and ensembles containing RBFs perform generally
well. EGO, Gutmann’s RBF method, and SO-M-s have in common that
an auxiliary optimization problem is solved on the computationally cheap
surrogate model in order to select the next evaluation point.

The algorithm SRBF by Regis and Shoemaker (2007) uses an RBF model
and a stochastic sampling approach. A large set of candidates for the next
evaluation point is generated by adding random perturbations to all variables
of the best point found so far. Two scores are computed for each candidate
point and the candidate with the best weighted sum of these scores is selected
as new evaluation point.
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Regis and Shoemaker (2013) suggested a second stochastic sampling approach
called DYCORS. The generation of candidate points in DYCORS is similar
to SRBF, except that the probability of perturbing each variable of the best
point found so far decreases with the number of realized expensive objective
function evaluations and the search thus becomes more local. DYCORS has
been shown to be more efficient for large-dimensional problems.

3.3 Previous Surrogate Model Algorithms for Mixed-Integer Optimization

Surrogate model algorithms for mixed-integer optimization of computation-
ally expensive black-box problems are scarce and implementations of the
algorithms are hardly available. SO-MI (Müller, 2014; Müller et al, 2013b) is
the first surrogate model based algorithm for mixed-integer optimization that
is able to address problems with large numbers of variables that may have a
large range and are not restricted to binary values. SO-MI uses a cubic RBF
model and a stochastic sampling strategy in which four points are evaluated
in parallel in each iteration. The MATLAB implementation is open source
and available from the authors.

Holmström’s adaptive radial basis function algorithm for mixed-integer
problems (Holmström, 2008b) uses an adaptive version of Gutmann’s target
value sampling strategy. The algorithm was shown to perform well for
low-dimensional problems (up to 11 dimensions) with up to six integer
variables of which most were binary. The implementation is contained in the
commercial TOMLAB toolbox for MATLAB.

Davis and Ierapetritou (Davis and Ierapetritou, 2009) developed a surrogate
model algorithm for mixed-integer problems with binary variables. The au-
thors combine a branch and bound algorithm with a kriging surface and show
the effectiveness of the algorithm on two application examples from process
synthesis.

4 MISO Framework

The algorithms for continuous optimization briefly reviewed in Section 3.2
can be easily modified for mixed-integer optimization problems. Only Steps 1
and 3 of Algorithm 1 (the initial experimental design and the selection of
new sample points) have to be adjusted. The goal is to find a near-optimal
solution within a very restricted number of function evaluations. Hence, no
computationally expensive evaluations should be wasted at points that do
not satisfy the integrality constraints. Also for many application problems,
the black-box simulation model may crash when continuous values are used
for integer variables which makes the application of methods such as branch
and bound that depend on solving relaxed subproblems impossible. Thus,
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the goal is to evaluate the expensive objective function only at integer-feasible
points. The general surrogate model framework shown in Algorithm 1 can thus
be modified to the MISO (Mixed-Integer Surrogate Optimization) framework
shown in Algorithm 2.

Algorithm 2 General MISO Framework

1: Create an initial experimental design. Ensure that the integer variables of
the points in the design assume integer values. Do the expensive objective
function evaluations at the selected points.

2: Fit the chosen surrogate model to the data in Step 1.
3: Use the information from the surrogate model to select the point for doing

the next expensive function evaluation. Ensure with the sampling strategy
that the newly selected point znew satisfies the integrality constraints.

4: Do the expensive evaluation at znew: fnew = f(znew).
5: if Stopping criterion is not met then
6: Update the surrogate model and go to Step 3.
7: else
8: Return the best solution found during the optimization.
9: end if

In Step 1 of Algorithm 2, when creating the initial experimental design, we
create only points that satisfy the integrality constraints. We use a symmet-
ric Latin hypercube design and round the values of the integer variables. The
computationally expensive objective function evaluations are done at the se-
lected points and the surrogate model is fit to this data in Step 2. When fitting
the surrogate model, we assume that all variables are continuous in order to
obtain a smooth surface. However, in Step 3 we have to guarantee that each
newly selected evaluation point satisfies the integer constraints.

4.1 Modifications of Continuous Surrogate Model Algorithms for
Mixed-Integer Problems

We adapted Forrester’s implementation of EGO (Forrester et al, 2008),
SRBF (Regis and Shoemaker, 2007), DYCORS (Regis and Shoemaker, 2013),
Gutmann’s RBF method (Gutmann, 2001), and SO-M-s (Müller and Shoe-
maker, 2014) according to the MISO framework for mixed-integer problems.
We will denote the algorithms as follows:

– MISO-CS (MISO - Coordinate Search): the mixed-integer version of DY-
CORS;

– MISO-RS (MISO - Random Sampling): the mixed-integer version of SRBF;
– MISO-EI (MISO - Expected Improvement): the mixed-integer version of

Forrester’s EGO implementation (Forrester et al, 2008);
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– MISO-TV (MISO - Target Value): the mixed-integer version of Gutmann’s
RBF method;

– MISO-SM (MISO - Surface Minimum): the mixed-integer version of
SO-M-s.

For algorithms that follow a stochastic sampling approach such as MISO-CS
and MISO-RS, we generate integer-feasible random sample points. MISO-CS
and MISO-RS both follow the steps of the continuous algorithms described
by Regis and Shoemaker (2007, 2013). Both methods generate candidate
points by perturbing the best point found so far (zbest). For mixed-integer
problems, we use the perturbation r = sgn(ρ) max{1, |σρ|} for the integer
variables, where ρ ∼ N (0, 1) and σ denotes the perturbation radius of the
current iteration. Thus, the integer perturbation is at least one unit. When
perturbing the continuous variables of zbest, we add σρ to the value.

For algorithms that solve an auxiliary optimization problem on the surrogate
model in order to select new sample points such as MISO-EI, MISO-TV, and
MISO-SM, we can substitute the optimization routine used for solving the
auxiliary problem with a mixed-integer global optimization algorithm. Finding
the optimum of the auxiliary problem is in general itself a global optimization
problem. Thus, we can use, for example, a mixed-integer genetic algorithm
for minimizing the bumpiness measure in MISO-TV, for finding the minimum
point of the surrogate surface in MISO-SM, and for finding the maximum of
the expected improvement in MISO-EI, respectively. Hence, the newly selected
point znew (the optimum of the auxiliary problem) will satisfy the integer
constraints. Except for the optimization subroutine used for optimizing the
auxiliary problems, MISO-EI, MISO-TV and MISO-SM follow the steps of the
algorithms described by Forrester et al (2008), Gutmann (2001); Holmström
(2008b), and Müller and Shoemaker (2014), respectively.

4.2 MISO-CSTV and MISO-CSTV-local

We developed two new algorithms, namely MISO-CSTV and MISO-CSTV-
local, that combine a coordinate search (stochastic sampling) with a target
value strategy (minimizing an auxiliary objective function on the surrogate
model). MISO-CSTV-local is a memetic algorithm that uses in addition a local
search in order to improve the solution accuracy. The algorithms’ steps are
described in Algorithm 3. Both algorithms require the following parameters,
where the parameter settings 3-10 related to the c-Step are adopted from Regis
and Shoemaker (2013).

1. The number of points in the initial experimental design n0 = 2(d+ 1).
2. A maximum number of allowed function evaluations nmax.
3. The initial perturbation radius σ0 = 0.2l(D), where l(D) is the shortest

side of the hyper-rectangle D defined by the variables’ upper and lower
bounds.
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4. A minimum σl = 2−6σ0 for the perturbation radius σ (σl ≤ σ).
5. The number of candidate points generated in each iteration N =

min{500d, 5000}.
6. A threshold for the number of allowed consecutive successful improvement

trials in the c-Step (coordinate search step) T cs = 3.
7. A threshold for the number of allowed consecutive unsuccessful improve-

ment trials in the c-Step T cf = max{5, d}.
8. A threshold for the number of times the perturbation radius in the c-Step

can be decreased T ch = 5.
9. A weight pattern W =< 0.3, 0.5, 0.8, 0.95 > for computing the weighted

sum of scores for the candidate points.
10. A function to determine the perturbation probability q(n) =

min{20/d, 1}(1 − log(n − n0 + 1)/ log(nmax − n0)), where n denotes the
number of function evaluations done so far.

11. A pattern for the target value strategy stage G =< 0, 1, . . . , 10, 11 >.
12. A threshold for the number of consecutive unsuccessful improvement trials

in the t-Step T tf = |G|, where |G| denotes the cardinality of the set G.
13. A surrogate model constructed by using n evaluation points sn(·).
14. A mixed-integer genetic algorithm MI-GA.
15. A threshold distance δ below which two points are considered equal. The

distance ‖ · ‖ between two points is the Euclidean distance.
16. For MISO-CSTV-local only: a local optimization algorithm for continuous

problems.

In Algorithm 3, we first initialize the counters Ccf (for counting the number
of consecutive failed improvement trials in the c-Step), Ccs (for counting the
number of consecutive successful improvement trials in the c-Step), and Ccr
(for counting the number of times we decreased the perturbation radius σ in
the c-Step). We also initialize the counters Ic (for counting the iterations in
the c-Step), Ctf (the number of consecutive failed improvement trials in the

t-Step), Cts (the number of consecutive successful improvement trials in the t-
Step), and Ctg (the iteration counter for the t-Step). We use the same approach
for creating the initial experimental design as for the other MISO algorithms.
The evaluation of the computationally expensive objective function at the
points in the initial design can be done in parallel if the necessary computing
resources are available. We fit a cubic RBF model with linear polynomial tail
to the data and select znew either by the coordinate search strategy (c-Step)
or the target value strategy (t-Step) in MISO-CSTV (see Algorithms 4 and 5,
respectively). In MISO-CSTV-local an additional l-Step may be used (a local
search described in Algorithm 6). MISO-CSTV and MISO-CSTV-local both
start with the c-Step.

4.2.1 c-Step: Coordinate Search

In the c-Step described in Algorithm 4, we generate a set of N candidates for
the next sample point (Step 3) by adding random perturbations to randomly
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Algorithm 3 MISO-CSTV/MISO-CSTV-local

1: Initialize c-Step ← true, t-Step ← false, l-Step ← false.
2: Initialize counters Ccf ← 0, Ccs ← 0, Ccr ← 0, Ic ← 0, Ctf ← 0, Cts ← 0, and

Ctg ← 1.
3: Create a symmetric Latin hypercube design with n0 = 2(d+ 1) points and

round the integer variables. Do the computationally expensive function
evaluations at the generated points. Denote the set of sampled points by
Z, i.e., Z ← {z1, . . . , zn0

}.
4: Set n← n0.
5: Fit the surrogate model sn(·) to the data.
6: while Stopping criterion not met (n < nmax) do
7: Determine znew as follows
8: if c-Step then
9: Update the c-Step iteration counter Ic ← Ic + 1.

10: Use the coordinate search strategy described in Algorithm 4.
11: Update c-Step, t-Step, and l-Step if necessary.
12: Update n← n+ 1, Z ← Z ∪ znew.
13: else if t-Step then
14: Use the target value search strategy described in Algorithm 5.
15: Update c-Step and t-Step if necessary.
16: Update n← n+ 1, Z ← Z ∪ znew.
17: else if l-Step (for MISO-CSTV-local only) then
18: Use the local search strategy described in Algorithm 6.
19: Update c-Step and l-Step if necessary.
20: Update n ← n + nl, Z ← Z ∪ Zl, where nl denotes the number

of function evaluations done by the local search and Zl denotes the set of
points evaluated during the local search.

21: end if
22: Update the surrogate model with the new data.
23: end while

selected variables of the best point found so far (zbest). Each candidate point
is initially set equal to zbest and a uniform random number υi ∼ U(0, 1) is
drawn for each variable i = 1, . . . , d. If υi < q(n) (the perturbation probability
computed in Step 2), we add a random perturbation to that variable. If no
variable is selected for perturbation, one variable is selected for perturbation
at random.

We compute two scores for each candidate point. First, we use the surrogate
surface to predict the objective function values of the candidate points
(Step 4). We scale the values to [0,1] where low predicted objective function
values will have a score Ss close to zero and large values will have a value Ss
close to one. Secondly, we compute the distance of each candidate point to the
set Z (Step 5) and scale these values to [0,1] such that points far away from
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Algorithm 4 c-Step (Coordinate Search Step)

1: Determine the best point found so far: zbest = arg min{f(z), z ∈ Z},
fbest = f(zbest).

2: Determine the probability qn = q(n) of perturbing each variable of zbest.
3: Create a set of N candidate points by perturbing each variable of

zbest with probability qn by adding σρ for continuous variables and
sgn(ρ) max{1, |σρ|} for integer variables. If no variable is selected for per-
turbation by using probability qn, randomly select one variable.

4: Use the surrogate model sn to predict the objective function values at the
candidate points. Scale the predicted values to the interval [0, 1] (surrogate
model score, Ss).

5: Compute the distance of each candidate point to the set Z and scale the
values to [0,1] (distance score, Sd).

6: Compute the weighted sum of the two scores, St = wsSs + wdSd, where
wd ∈ W and ws = 1− wd. Select the candidate point with the best score
(lowest value) as new evaluation point (znew).

7: Do the expensive function evaluation fnew = f(znew).
8: if fbest < fnew (no improvement found) then
9: Update counters Ccf ← Ccf + 1, Ccs ← 0.

10: if Ccf > T cf then
11: if Ccr > T cr then
12: Set c-Step ← false, t-Step ← true, reset Ccr ← 0, Ccf ← 0.
13: end if
14: else
15: Update Ccr ← Ccr + 1, σ ← max{σl, σ/2}, Ccf ← 0.
16: end if
17: else
18: Update fbest ← fnew, zbest ← znew. Update Ccs ← Ccs + 1, Ccf ← 0.
19: if Ccs > T cs then
20: Update σ ← min{σu, 2σ}. Update Ccs ← 0.
21: end if
22: end if

Z (points in relatively unexplored regions of the variable domain) obtain a
value Sd close to zero, and points that are close to Z obtain a score Sd close
to one.

We compute a weighted sum of both scores in Step 6. The weights ws and wd
for the surrogate surface criterion and the distance criterion, respectively, are
adjusted in a cycling manner, i.e., in each iteration, wd is selected as

wd =

{
W[k] if k ≡ Ic mod |W| > 0

W[|W|] otherwise
, (7)
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where | · | denotes the cardinality of a set and W[j] denotes the jth element of
W (see input 9). The candidate point with the lowest total score St is selected
for evaluation. With large values for ws, preference is given to candidates that
have low predicted objective function values. In this case the search tends to
be more local since low predicted objective function values are likely to be in
the vicinity of zbest. For large values of wd, preference is given to points that
are in rather unexplored regions of the variable domain (global search). By
repeatedly cycling through the weight pattern W, a repeated transition from
local to global search is achieved, and thus the algorithm is able to escape
from local minima (Regis and Shoemaker, 2007).

The computationally expensive objective function is evaluated at the newly
selected point (fnew = f(znew)) in Step 7 and depending on whether or not
fnew is better than fbest, the counters Ccf , C

c
s , and Ccr are updated as well as

fbest (see Steps 8-22). The c-Step ends when the threshold of failed improve-
ment trials T cf has been reached T cr times and the perturbation radius σ has
been decreased T cr times (Steps 11-13).

4.2.2 t-Step: Target Value Search

The t-Step is described in Algorithm 5 and has three different cases (Steps 2-
17) in which an auxiliary optimization problem is solved to determine the
next sample point (see also (Holmström, 2008a, Algorithm RBF)). We use
the same notation as Gutmann (2001) and Holmström (2008a) for minimizing
the bumpiness measure. Throughout the t-Step, we have to solve one of the
following computationally cheap auxiliary minimization problems depending
on the type g of the target value step the algorithm is currently in. The step
type g is defined by

g =

{
G[k] if k ≡ Ctg mod |G| > 0

G[|G|] otherwise
. (8)

In the ”Inf-Step” (Steps 2-3), we select as new evaluation point

znew = arg min
z∈D

µn(z), (9)

where µn(z) corresponds to the (n + 1)th value of v when solving the aug-
mented linear system [

Φz Pz
PTz 0

]
v =

0n1
0d

 , (10)

where 0n and 0d denote vectors with n and d zeros, respectively, and

Φz =

[
Φ φz
φTz 0

]
,Pz =

[
P
zT 1

]
, and (φz)i = φ(‖z− zi‖), i = 1, . . . , n. (11)
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Algorithm 5 t-Step (Target Value Search Step)

1: Select sample stage g ∈ G.
2: if g=0 (Inf-Step) then
3: Use MI-GA to solve (9) and obtain znew.
4: else if 1 ≤ g ≤ P (Cycle step - global search) then
5: Use MI-GA to solve (12) and obtain (zs, ss).
6: Set wg ← (1− g/|G|)2.
7: Define the target value t← ss − wg(max{f(zi), zi ∈ Z} − ss).
8: Use MI-GA to solve (13) and obtain znew.
9: else (Cycle step - local search)

10: Use MI-GA to solve (12) and obtain (zs, ss).
11: if ss < fbest − 10−6|fbest| then
12: Set znew ← zs.
13: else
14: Define the target value t← fbest − 10−2|fbest|.
15: Use MI-GA to solve (13) and obtain znew.
16: end if
17: end if
18: if ‖znew − zi‖ ≤ δ for any i ∈ {1, . . . . , n} then
19: repeat Randomly select a new point znew from D.
20: until ‖znew − zi‖ > δ for all i ∈ {1, . . . . , n}.
21: end if
22: Do the expensive function evaluation fnew = f(znew).
23: if fbest < fnew (no improvement found) then
24: Update Ctf ← Ctf + 1, Cts ← 0.

25: if Ctf > T tf then

26: Set t-Step ← false, c-Step ← true, reset Ctf ← 0.
27: end if
28: else
29: Update fbest ← fnew, zbest ← znew. Update Cts ← Cts + 1, Ctf ← 0.
30: end if
31: Update Ctg ← Ctg + 1.

In the ”Cycle step - global search” (Steps 4-8), the goal is to first find the
minimum point of the surrogate surface (Step 5):

zs = arg min
z∈D

sn(z), (12)

and we denote ss = sn(zs). Based on the value of ss and a target value t that
is computed based on the pattern G (Steps 6-7), we determine

znew = arg min
z∈D

µn(z) [sn(z)− t]2 , (13)

where µn(z) is defined as for (9).
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In the ”Cycle step - local search” (Steps 13-16), we first find the minimum
of the surrogate surface by solving (12) (Step 10). If the value ss = sn(zs) is
a relative improvement of fbest of at least 10−6, we use the minimum point
of the surrogate surface as new evaluation point (Steps 11-12). Otherwise,
we define a target value that corresponds to a 1% improvement of the best
function value found so far and we solve (13) (Steps 14-15).

For each of the three cases, if the newly determined point znew is closer than
the threshold distance δ to an already evaluated point, we repeatedly uniformly
select a random point from D until the selected point has a distance larger
than δ to the set of already evaluated points Z (Steps 18-20). When generating
the random point, we ensure that the integrality constraints are satisfied. We
do the computationally expensive function evaluation at the newly selected
point (Step 22). If the new function value is not an improvement of fbest, we
update the fail and success counters Ctf and Cts, respectively (Steps 23-24). If
the fail counter exceeds the threshold of allowable failed improvement trials,
we leave the t-Step and go back to the c-Step (Steps 25-26). If we found an
improvement of the best solution encountered so far, we update fbest, C

t
s, and

Ctf (Steps 28-30).

4.2.3 l-Step: Local Search

The local search step is only used in MISO-CSTV-local. While MISO-CSTV
alternates only between the c-Step and the t-Step until the maximum number
of function evaluations has been reached, MISO-CSTV-local enters a local
search phase whenever the sequence < c-Step, t-Step, c-Step > did not lead
to any improvement. The goal of the local search step is to further improve
the accuracy of the best solution found so far. Thus, during the local search
we only consider the continuous variables.

In general, if |M | denotes all possible combinations of integer variable values
for a given problem, then there is for each such combination a global mini-
mum with respect to the continuous variables. During the c- and t-Step we
determined the best point found so far zbest by searching over the integer and
continuous variables. In the local search we now try to improve the objec-
tive function value by fixing the integer variables of zbest and doing a local
optimization only with respect to the continuous variables:

zl = arg min
z∈D
{f(z|zι), zι = zbest,ι∀ι ∈ I}, (14)

where I denotes the indices of the integer variables and zbest,ι denotes the
ιth variable of z. Hence, we will be able to find at least a local minimum
associated with the integer variables of zbest. If the best objective function
value fl = f(zl) found by the local search is better than fbest, we update the
best solution found so far (Steps 3-4). If the budget of allowed function values
has not been used up during the l-Step, we go back to the c-Step (Step 6).
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Algorithm 6 l-Step (Local Search Step)

1: Fix the integer variables of zbest.
2: Use a local search algorithm on the true objective function starting from

the best solution found so far to solve (14) and obtain (zl, fl) (the best
solution found by the local search).

3: if fl < fbest (improvement found) then
4: Update fbest ← fl, zbest ← zl.
5: end if
6: Set c-Step ← true, l-Step ← false, t-Step ← false.

We consider two options of local search algorithms in the l-Step for searching
on the true objective function, namely the MATLAB built-in optimizer fmin-
con that numerically computes derivatives and the derivative-free algorithm
ORBIT (Wild et al, 2007) that uses a cubic radial basis function surrogate
model. In the latter case, after ORBIT has finished, we use fmincon in an at-
tempt to further improve the solution. The incentive behind using first ORBIT
and then fmincon is that ORBIT might be able to find a better starting guess
for fmincon and hence fewer expensive function evaluations may be needed in
the fmincon stage. We call the algorithm that uses fmincon only for the local
search MISO-CSTV-l(f) and the algorithm that uses ORBIT we call MISO-
CSTV-l(o).

5 Numerical Experiments

5.1 Experimental Setup

Algorithms for computationally expensive black-box optimization problems
with integrality constraints are scarce. In the numerical experiments we
compare the performance of the MISO algorithms introduced in Section 4 to
SO-MI (Müller, 2014; Müller et al, 2013b), NOMAD (Nonlinear Optimization
by Mesh Adaptive Direct Search) (Le Digabel, 2011), and MATLAB’s genetic
algorithm (GA). We include GA because it is a widely used algorithm for
mixed-integer black-box problems, but we do not expect it to perform very
well for computationally expensive problems where only few hundred function
evaluations are allowable.

We use a cubic RBF model in SO-MI as done in Müller et al (2013b).
Note that SO-MI is contained in MATSuMoTo (MATLAB Surrogate Model
Toolbox (Müller, 2014)) and can in general be used with any other surrogate
model. NOMAD is a mesh-adaptive direct search method developed for
computationally expensive black-box optimization problems and is applicable
to mixed-integer problems. We use NOMAD version 3.6.2 in the numerical
experiments with the setting VNS 0.75 (variable neighborhood search method
in an attempt to escape from local minima), which is contained in the OPTI
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Toolbox v2.05 (Currie and Wilson, 2012).

The goal of this paper is to develop efficient algorithms that are able to find
near optimal solutions for computationally expensive optimization problems
within very few function evaluations. We limit the number of allowed function
evaluations to 500 for all test problems since in practice often only few
hundred function evaluations are allowable. We compare the algorithms based
on the best objective function value found after an equal number of function
evaluations. In practice, the computational expense is caused majorly by
the objective function evaluations and the computational overhead of the
optimization algorithms themselves is in comparison negligible. We do 20
trials with each algorithm for each problem in order to average out the
random component.

In order to facilitate a fair comparison, all algorithms use the same initial
experimental design for the same trial of the same problem. NOMAD starts
the systematic search from the best point contained in the initial design.
For the genetic algorithm, we give the best point from the initial design as
partial initial population. The remaining individuals in the initial population
are generated with default MATLAB settings. We use a population size of
20. We cannot use all points from the initial experimental design as starting
population since the number of points in the initial design depends on the
number of variables (2(d+ 1)) and is generally not equal to 20.

5.2 Test Problems

We compared the algorithms on ten numerically inexpensive test problems,
four problems arising in reliability redundancy engineering, and a problem
arising in the optimal design of truss structures. For the computationally
cheap test problems, we know the analytical description of the objective
function, but we treat the problems as black-boxes in order to examine the
efficiency of the algorithms for problems with different characteristics such
as multimodality, convexity, and binary problems. The test problems have
been derived from benchmark problems that are often used in continuous
global optimization and we impose integer constraints for some of the variables.

In reliability-redundancy optimization, the goal is to maximize the reliability
of a system (the mean time to failure) given restrictions on, for example, the
total costs and weight of the system. A system consists of several components.
Each component of type j has the reliability rj . There are different system
configurations such as, for example, the bridge network or the series-parallel
system shown in Figure 1.
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(a) Bridge network with five compo-
nents.

(b) Series parallel system with five com-
ponents.

Fig. 1: Examples of system configurations in reliability redundancy
optimization

There are two possibilities to increase the reliability of a system. We
can either increase each component’s reliability rj (continuous variables)
or we can add redundancy by adding a component of type j (integer
variables). The component costs increase exponentially after rj exceeds
a certain threshold, and thus it may be cheaper to include components
of lower reliability but to have several backup components. Hence, there
is a trade-off between increasing component reliability and adding redundancy.

The second application problem we consider arises in optimal design. The
goal is to minimize the weight of a truss dome subject to a displacement
constraint. The dome consists of tubular members whose lengths (continuous
variables) and wall thicknesses (integer variables, production restrictions do
not allow arbitrary wall thicknesses) are the decision variables. The nodal
displacement under loading is computed by a finite element analysis. The
structure consists of 24 elements (24 integer variables) and the location of 7
nodes can be adjusted (7 continuous variables).

Table 1 gives an overview over the test problems we use for comparing the
algorithms. The table shows the problem number (column ”ID”), the number
of integer variables (column ”d1”), the number of continuous variables (col-
umn ”d2”), and the variable ranges. Problems 1-10 are the computationally
cheap test problems. Problems 11-14 are the reliability redundancy optimiza-
tion problems, and problem 15 is the structural optimization problem.

5.3 Numerical Results and Discussion

At this point we want to note that the computational effort of MISO-EI
is considerably larger than that of all other algorithms (as observed also
by Müller and Shoemaker (2014)). MISO-EI needs on average 500 times more
computation time than MISO-CSTV-l(f) (more than 120 hours versus 0.2
hours). Since MISO-EI does not appear to be efficient, we only examined
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Table 1: Test problems for algorithm comparison.

ID d1 d2 Variable range

1 5 7 {−1, 3}5 × [−1, 3]7

2 4 4 {−10, 10}4 × [−10, 10]4

3 2 3 {−100, 100}2 × [−100, 100]3

4 2 3 {0, 10}2 × [0, 10]× [0, 1]2

5 5 5 {3, 9}5 × [3, 9]5

6 6 9 {−15, 30}6 × [−15, 30]9

7 1 1 {−5, 10} × [0, 15]
8 10 5 {−15, 30}10 × [−15, 30]5

9 1 2 {0, 1} × [0, 1]2

10 30 30 {−15, 30}30 × [−15, 30]30

11 5 5 {1, 10}5 × [0.5, 0.999999]5

12 4 4 {1, 10}4 × [0.5, 0.999999]4

13 5 5 {1, 10}5 × [0.5, 0.999999]5

14 5 5 {1, 10}5 × [0.5, 0.999999]5

15 24 7 {1, 10}24 × [0, 1000]7

its performance for the first five test problems. The results are summarized
in Table 2 where the average best solution over 20 trials found by each
algorithm is shown. The results for these test problems show that MISO-EI
is not very promising and performs worst for two of the problems. Based on
these preliminary results and the computational cost of MISO-EI, we decided
to not use MISO-EI for the remaining problems and we do not include it in
the following comparison.

For the remaining algorithms we summarize the results of the numeri-
cal experiments in form of data and performance profiles as suggested
by Moré and Wild (2009). We use the MATLAB codes provided on
http://www.mcs.anl.gov/~more/dfo/ for creating Figures 2 and 3. We
create the profile plots based on the average objective function value found
over all 20 trials by each algorithm.

Denote in the following the set of problems and the set of algorithms in the
comparison by P and A, respectively. Let lγ,a, where γ ∈ P and a ∈ A, be the
used performance measure. Then the performance ratio is defined as (Moré
and Wild, 2009)

rγ,a =
lγ,a

min{lγ,a : a ∈ A}
. (15)

The performance profile of algorithm a ∈ A shows the fraction of problems
where the performance ratio is at most α:

ρa(α) =
1

|P|
size{γ ∈ P : rγ,a ≤ α}. (16)
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Table 2: Comparison of the best objective function value found by MISO-EI
(expected improvement sampling) for test problems 1-5 to all other

algorithms.

Problem ID 1 2 3 4 5
Algorithm

MISO-CS -9.8457 0.0128 -484.2190 -0.4978 -43.1015
MISO-CSTV-l(f) -11.2390 0.0005 -506.6590 -0.5000 -43.1343
MISO-CSTV-l(o) -11.1453 0.0004 -503.6524 -0.5000 -43.1343
MISO-CSTV -11.1931 0.0046 -504.9472 -0.4996 -43.1235
MISO-TV -7.9072 0.0764 -473.4385 -0.4999 -43.1328
MISO-SM -10.5764 0.0100 -418.3756 -0.5000 -43.1325
MISO-RS -7.4715 6.7507 -409.0911 0.5099 -39.1662
MISO-EI -5.6389 4.1557 -331.2325 -0.4991 -43.1256
SO-MI -8.1837 0.0222 -474.1491 -0.5000 -43.1343
GA -8.0020 15.8860 -477.0198 -0.2990 -40.5000
NOMAD -11.3336 0.0001 -477.3689 -0.5000 -43.1343

Here |P| denotes the cardinality of the set P. High values for ρa(α) are better.
The performance profile reflects how well an algorithm performs relative to the
other algorithms. Data profiles on the other hand show the raw data. They
illustrate the percentage of problems solved for a given tolerance τ within a
given number of simplex gradient estimates κ = n/(d + 1), where n denotes
the number of function evaluations. If lγ,a denotes the number of function
evaluations needed to satisfy a convergence test with tolerance τ , then the
percentage of problems that can be solved within κ simplex gradient estimates
is defined as

δa(κ) =
1

|P|
size{γ ∈ P :

lγ,a
dγ + 1

≤ κ}, (17)

where dγ denotes the dimension of problem γ ∈ P.

Figure 2 shows data profiles for all algorithms for two levels of accuracy,
namely τ = 10−1 and τ = 10−3. In practice, one is often satisfied with an
accuracy of τ = 10−3 since the simulation models themselves are approxima-
tions of physical phenomena and therefore inaccurate. For reasons of space
considerations, we abbreviate the algorithms following the MISO framework
by their sampling strategy in Figures 2 and 3. For example, CSTV stands for
MISO-CSTV, SM stands for MISO-SM, etc.

For both accuracy levels, we observe that except for GA all algorithms
perform initially (up to 10 simplex gradient estimates) similarly. However,
for τ = 10−1, after about 10 simplex gradient estimates, we can see that
MISO-CSTV, MISO-CSTV-l(o), and MISO-CSTV-l(f) outperform the other
algorithms. In fact, there is no difference between the performance of MISO-
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CSTV, MISO-CSTV-l(o), and MISO-CSTV-l(f). Similarly, for the accuracy
τ = 10−3, MISO-CSTV-l(o) and MISO-CSTV-l(f) find better solutions than
the other algorithms. MISO-CSTV-l(o) and MISO-CSTV-l(f) perform better
than MISO-CSTV, which shows that the local search leads to higher-accuracy
solutions. GA is able to outperform MISO-TV and MISO-SM after about
25 simplex gradient estimates for the accuracy level τ = 10−1. If solutions
of higher accuracy are required, for example τ = 10−3, we can see that GA
performs worst among all algorithms.

The performance profiles in Figure 3 show similar results. MISO-CSTV,
MISO-CSTV-l(o), and MISO-CSTV-l(f) perform equally well for τ = 10−1,
whereas MISO-CSTV-l(f) performs better than all other algorithms for
τ = 10−3. Figure 3(b) shows, for example, that for the performance
ratio of α = 4 there is a performance difference between NOMAD and
MISO-CSTV-l(f) of about 20%, which means that for 20% of the problems,
NOMAD needs four times as many function evaluations to reach the same
accuracy as MISO-CSTV-l(f).

In summary, the results of the numerical experiments show that the MISO
algorithms that combine coordinate search with target value and local search
(MISO-CSTV, MISO-CSTV-l(o), MISO-CSTV-l(f)) perform better than
the algorithms that use only one sampling method (MISO-SM, MISO-RS,
MISO-TV). We can also see that, similar to the results for continuous
problems reported in Regis and Shoemaker (2013), the coordinate search
strategy (MISO-CS), which only perturbs a fraction of the variables of the
best point found so far for creating candidate points, performs better than
the random strategy (MISO-RS), which perturbs all variables of the best
point found so far. In comparison to our previous algorithm SO-MI, the
results show that MISO-CSTV, MISO-CSTV-l(o), and MISO-CSTV-l(f) are
an improvement.

The comparison of MISO-CSTV-l(f) and MISO-CSTV-l(o) shows that for the
low accuracy τ = 10−1 both versions perform equally well. For the higher
accuracy τ = 10−3, MISO-CSTV-l(f) performs slightly better, indicating that
for our approach of fixing the integer variables and locally searching for im-
provements only with respect to the continuous variables, a derivative-free
local search does not have an advantage over immediately using a local search
that numerically computes derivatives.

6 Conclusions

The goal of this paper was to introduce the MISO (Mixed-Integer Surrogate
Optimization) framework, a new algorithm framework for solving compu-
tationally expensive black-box optimization problems with mixed-integer
variables that may have large ranges and are not restricted to binary values.
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(a) Data profile for accuracy level τ = 10−1.

(b) Data profile for accuracy level τ = 10−3.

Fig. 2: Data profiles. Both figures share the same legend. The algorithms
following the MISO framework are abbreviated with their sampling

strategies.

The MISO framework ensures that by generation all sample points satisfy
the integer constraints, and thus no computationally expensive function
evaluations are wasted by evaluating points that do not satisfy the integer
constraints. This is a great advantage over algorithms that are based on
solving relaxed subproblems such as branch and bound methods, especially
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(a) Performance profile for accuracy level τ = 10−1.

(b) Performance profile for accuracy level τ = 10−3.

Fig. 3: Performance profiles. Both figures share the same legend. The
algorithms following the MISO framework are abbreviated with their

sampling strategies.

for black-box simulations that crash when integer variables take on real values.

We used the MISO framework in combination with several well-known
sampling strategies from the continuous optimization literature that we
modified for mixed-integer problems such as Gutmann’s target value strat-
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egy (Gutmann, 2001), DYCORS (Regis and Shoemaker, 2013), SRBF (Regis
and Shoemaker, 2007), expected improvement (Forrester et al, 2008), and
SO-M-s (Müller and Shoemaker, 2014). We also introduced two new MISO
algorithms, namely MISO-CSTV that combines a dynamic coordinate search
with a target value strategy, and MISO-CSTV-local that uses in addition a
local search to further improve the solution accuracy.

We compared MISO in numerical experiments to our previous algorithm
SO-MI (Müller et al, 2013b), NOMAD (Le Digabel, 2011), and MATLAB’s
genetic algorithm. The numerical comparison on ten benchmark problems,
four application problems arising in reliability optimization, and one struc-
tural optimization application shows that the MISO algorithms that use
combinations of sampling strategies, namely MISO-CSTV and MISO-CSTV-
local, find improved solutions much more efficiently than all other algorithms.
Hence, MISO is a promising approach to solving computationally expensive
mixed-integer black-box optimization problems.

Finally, we want to remark that we can develop a framework similar to MISO
for pure integer problems where the integer variables have large ranges and
are not restricted to binary values only. For the random sampling methods
such as the coordinate search strategy, one has to guarantee that all candidate
points are integer. For sampling strategies that solve an auxiliary optimization
problem on the surrogate surface, one has to choose a subsolver that is able
to address pure integer global optimization problems (for example, genetic
algorithms or, depending on the range of the variables, complete enumeration
may be possible). This, however, will be the topic of future research.
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