
PARALLEL-IN-TIME MAGNUS INTEGRATORS

B. T. KRULL AND M. L. MINION ∗

Abstract. Magnus integrators are a subset of geometric integration methods for the numerical
solution of ordinary differential equations that conserve certain invariants in the numerical solution.
This paper explores temporal parallelism of Magnus integrators, particularly in the context of
nonlinear problems. The approach combines the concurrent computation of matrix commutators and
exponentials within a time step with a pipelined iteration applied to multiple time steps in parallel.
The accuracy and efficiency of time parallel Magnus methods up to order six are highlighted through
numerical examples and demonstrate that significant parallel speedup is possible compared to serial
methods.

Key words. Ordinary differential equations, nonlinear ordinary differential equations, Magnus
expansions, isospectral flows, Lax pairs, parallel-in-time

AMS subject classifications. 34L30, 65L05, 65Y05

1. Introduction. The solution of ordinary differential equations (ODEs) is a
well established field with applications across the spectrum of scientific disciplines.
Numerical methods date back at least to Euler’s work in 1768 [5], and the accuracy,
stability, and efficiency of various methods is well studied (see for example Refs. [8, 9]).
In more recent years, the study of specialized numerical methods for ODEs that
preserve certain mathematical properties of the numerical solution has seen increased
interest. Examples include methods for Hamiltonian systems that numerically conserve
invariants of the true dynamical system such as the energy or angular momentum.
More generally, the true solution of an ODE poised in N -dimensional space may reside
for all time on a manifold M of dimension d < N , and the goal is to devise a method
for which the numerical solution will also remain on M. Such methods are referred
to in general as geometric integrators. The interested reader is encouraged to consult
Ref. [7] for a comprehensive introduction to the subject.

As a concrete example, consider the ODE given by

(1.1)
d

dt
Y (t) = F (Y ), Y (0) = Y0,

where Y and F (Y ) are both N ×N matrices. Depending on the form of F , certain
properties of the initial condition Y0 may be preserved for all time, such as the
determinant, orthogonality, idempotency, or the spectrum of eigenvalues. In general,
standard numerical methods such as linear multistep or Runge-Kutta methods will
not produce solutions that conserve such properties [16].

Magnus integrators are a subset of geometric integrators based on the expansion
proposed by Wilhelm Magnus in 1954. The Magnus expansion is closely tied to
the concept of Lie groups and algebras due to the presence of matrix commutators,
also known as Lie brackets. The discussion concerning solutions to Eq. (1.1) can
in fact be generalized to differential equations on Lie groups (see e.g. Ref. [12]),
however in this work we strictly use matrix valued solutions. Magnus integrators can
also be viewed as a type of exponential integrator (see e.g. Ref. [11] for a review)
since they require that the matrix exponential be evaluated. The comprehensive
review of the Magnus expansion and applications by Blanes, et. al. [1] provides

∗Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
Berkeley, CA, 94720.

1



2 Krull and Minion

a description of several physical applications to which the Magnus expansion has
been applied including nuclear, atomic, and molecular dynamics; nuclear magnetic
resonance; quantum field theory and high energy physics; electromagnetism; optics;
geometric control of mechanical systems; and the search for periodic orbits.

In general, numerical Magnus integrators are constructed by applying quadrature
rules of suitable order to a truncation of the Magnus expansion. The review [12] presents
various types of Magnus integrators up to sixth-order, and methods of order up to eight
are considered in Ref. [2]. As the order increases, the number of commutator terms
required in the Magnus expansion grows quickly, hence in these papers and others, a
detailed discussion of how to minimize the number of commutators required for a given
order is presented. So called commutator-free Magnus integrators (e.g. Refs. [3, 18])
have also been proposed that replace the need to compute matrix commutators with
additional matrix exponentials. This can reduce the total computational cost of
the method depending on the relative cost of computing commutators versus matrix
exponentials. In this paper, an additional avenue for reducing the time to solution for
Magnus integrators is investigated, namely parallelization in time.

The study of parallel numerical methods for ODEs dates back at least to Nievergelt
in 1964 [17], and the field has seen an increase in activity in the last 15 years. (See
Ref. [6] for a recent review.) The standard classification of parallel methods for ODEs
includes parallelism across the method, across the problem, and across the time steps
[4]. In this work we demonstrate the utility of parallelization across both the method
and the time steps for Magnus integrators for both linear and nonlinear equations.
Special attention is paid to schemes for solving nonlinear differential equations for
isospectral flow problems, although the methodology that is described can be applied
more generally.

The remainder of this paper is organized as follows. Section 2 presents the
mathematical background behind the Magnus expansion and Magnus integrators
followed by some specific Magnus integrators based on Gaussian collocation in section 3.
The parallelization strategies for these integrators is presented in section 4. Numerical
results comparing the efficiency of different parallel methods is presented in section 5
using the Toda lattice as the prototypical numerical example. The results demonstrate
that significant parallel speedup over serial methods is possible and show that parallel
higher-order methods are superior in terms of accuracy and time to solution compared
to lower-order methods.

2. Mathematical Preliminaries. In this section, a review of the mathematics
behind the construction of Magnus integrators for both linear and nonlinear problems
is reviewed.

2.1. Matrix Calculus and Differential Equations. Given a constant matrix
A ∈ FN×N , where F can be either R or C, the exponential of A is defined by the power
series

(2.1) eA =

∞∑
n=0

An

n!
.

Given the time-dependent vector y(t) ∈ FN , the solution to the differential equation

(2.2) y′(t) = Ay(t), y(0) = y0

is given by

(2.3) y(t) = eAty0.



Parallel in Time Magnus Integrators 3

This is easily shown by differentiating the power series definition (2.1) of the exponential
on the right hand side term-by-term to give

(2.4)
d

dt
eAt = AeAt.

Now consider the more general case of a time-dependent matrix A(t). Again
differentiating definition (2.1) term-by-term and using the product rule yields
(2.5)
d

dt
eA(t) = A′(t)+

A(t)A′(t) +A′(t)A(t)

2!
+
A(t)′A(t)2 +A(t)A′(t)A(t) +A′(t)A(t)2

3!
. . .

The right hand side of (2.5) can be rearranged to give

(2.6)
d

dt
eA(t) = dexpA(t)(A

′(t))eA(t),

where the operator on the right is defined by

(2.7) dexpA(t)(A
′(t)) = A′(t) +

[A(t), A′(t)]

2!
+

[A(t), [A(t), A′(t)]]

3!
. . . ,

and brackets [·, ·] denote the matrix commutator [X,Y ] = XY − Y X.
Now consider the linear system of ODEs

(2.8) y′(t) = A(t)y(t), y(0) = y0.

To find a solution, suppose that it can be written in the form

(2.9) y(t) = eΩ(t)y0

for some matrix Ω(t). Using Eq. (2.6), Ω(t) satisfies

(2.10) dexpΩ(t)(Ω
′(t)) = A(t), Ω(0) = 0.

The same formal derivation can be applied to a nonlinear system of equations

(2.11) y′(t) = A(y(t), t)y(t), y(0) = y0.

Again, if the solution to this equation is to take the form of Eq. (2.9), then Ω(t)
satisfies

(2.12) dexpΩ(t)(Ω
′(t)) = A(y(t), t), Ω(0) = 0.

In the next section, methods for finding Ω(t) are considered.

2.2. Magnus Expansion. In 1954, Magnus introduced an explicit expression
for the solution of Eq. (2.8), which is reviewed here. The first step is the inversion of
the operator dexpΩ(t), which gives a differential equation for Ω(t)

(2.13) Ω′(t) =

∞∑
n=0

Bn
n!

adnΩ(t)(A(t)), Ω(0) = 0,

where the Bn are the Bernoulli numbers and

(2.14) adkΩ(A) = [Ω, adk−1
Ω A], adΩ(A) = ΩA−AΩ, ad0

Ω(A) = A.



4 Krull and Minion

Next, a Picard-type iteration is applied to Eq. (2.13)

(2.15) Ωk+1(t) =

∫ t

0

∞∑
n=0

Bn
n!

adnΩk(t)(A(t)).

Collecting terms in Eq. (2.15) yields an infinite series for Ω(t)

(2.16) Ω(t) = Ω(1)(t) + Ω(2)(t) + Ω(3)(t) + . . . ,

where

(2.17) Ω(1)(t) =

∫ t

0

dτA(τ)

(2.18) Ω(2)(t) =
1

2

∫ t

0

dτ2

∫ τ2

0

dτ1[A(τ2), A(τ1)]

(2.19)

Ω(3)(t) =
1

6

∫ t

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1[A(τ3), [A(τ2), A(τ1)]] + [[A(τ3), A(τ2)], A(τ1)]

Ω(4)(t) =
1

12

∫ t

0

dτ4

∫ τ4

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1 [[[A(τ4), A(τ3)], A(τ2)] , A(τ1)]

+ [A(τ4), [[A(τ3), A(τ2)], A(τ1)]]

+ [A(τ4), [A(τ3), [A(τ2), A(τ1)]]]

+ [A(τ3), [A(τ2), [A(τ1), A(τ4)]]] .(2.20)

Each subsequent term in the series contains an additional integration operator, com-
mutators of one higher order, as well as an increasing number of commutator terms.
The reader is referred to the original work of Magnus [14] or the extensive review [1]
for further details. To summarize, the Magnus expansion gives an explicit formula for
the solution of the linear equation given by Eq. (2.8) in the form of the exponential of
a matrix defined by an infinite series given by Eq. (2.16).

2.3. The Magnus Expansion for Nonlinear Problems. The same formal
procedure used in the last section to construct the solution to the linear problem
Eq. (2.8) can also be applied to the nonlinear system Eq. (2.11). One can still represent
the solution in terms of the exponential of the function Ω(t), and the only difference
is that in the Magnus expansion terms given above in Eqs. (2.17)-(2.20), the terms
A(τ) must be replaced with A(y(τ), τ), which by the definition of the solution is
A(eΩ(τ)y0, τ). Although this may appear at first a small change in notation, the
implication is quite important. For the nonlinear problem, the Magnus expansion
does not give an explicit formula for the function Ω(t) as in the linear case. Instead,
the result is an equation for Ω(t) involving an infinite expansion of terms containing
integrals of commutators dependent on Ω(t). The central insight of this paper is that
this equation for Ω(t) can be solved efficiently by a fixed point iteration that is readily
amenable to parallelization in the time direction.



Parallel in Time Magnus Integrators 5

2.4. Isospectral Flows. A special type of matrix differential equation for which
the eigenvalues of the solution are independent of time is called isospectral flow.
Problems of this form exist in application domains including electronic structure, wave
dynamics, and linear algebra. Isospectral flow is often associated with the concept of a
Lax pair: two matrices or operators dependent on time that satisfy the Lax equation

(2.21) Y ′(t) = [A(Y, t), Y ], Y (0) = Y0,

where Y (t), A(Y, t) ∈ FN×N .
It is straightforward to show that the solution to Eq. (2.21) can be written in the

form of the transformation

(2.22) Y (t) = (eΩ(t))Y0(eΩ(t))−1,

where Ω(t) is defined by the Magnus expansion. Since the form of Y (t) takes on a
similarity transformation, the eigenvalues of Y (t) do not change in time, hence the
term isospectral. In the special case where A is Hermitian (or self-adjoint) and Y
is skew-Hermitian (or skew-adjoint), the exponential eΩ(t) is unitary, which reduces
Eq. (2.22) to

(2.23) Y (t) = (eΩ(t))Y0(eΩ(t))†.

3. Numerical Methods Based on the Magnus Expansion. In this section,
the process for constructing numerical methods for differential equations based on the
Magnus expansion is discussed. In general, numerical methods are constructed by
designing appropriate quadrature rules for the Magnus expansion truncated to a given
order. The presentation here is focused on collocation type schemes based on Gaussian
quadrature rules. As proved in Ref. [13], quadrature rules for the terms in the Magnus
expansion based on s Gauss-Legendre quadrature nodes are sufficient for constructing
a method of order 2s. Here, methods of order two, four, and six are considered
using both Gauss-Legendre and Gauss-Lobatto quadrature nodes. These methods
correspond to quadrature rules applied to one, two, and four terms, respectively, in
Eq. (2.16).

Considerable attention in the literature on Magnus integrators is devoted to de-
signing methods requiring the minimum number of function evaluations and matrix
commutators for a given order of accuracy [13, 1, 12]. In the context of time paral-
lelization, the manner in which the cost of commutators and function evaluations are
counted must reflect the fact that much of the work can be done in parallel, and the
minimum parallel cost is not necessarily achieved by a direct parallelization of the
serial method with the fewest number of commutators.

Methods for linear equations are discussed first, followed by a discussion of
additional considerations for nonlinear problems in section 3.3.

3.1. Quadrature Rules for the Magnus Expansion. In this section, the spe-
cific types of quadrature rules used in the numerical methods are described. Quadrature
rules based on Gauss-Lobatto or Gauss-Legendre quadrature rules using either two or
three quadrature nodes are considered here. Table 1 lists the specific nodes used for
each choice as well as the accompanying classical weights. For a method of a given
order, each term in the truncated Magnus expansion must be approximated using the
function values Am = A(tm) (or Am = A(y(tm), tm) for nonlinear problems) at the
quadrature nodes tm corresponding to the quadrature nodes scaled to the time step



6 Krull and Minion

Name Order Nodes q(1)

Lob-2 2 0, 1 1
2 ,

1
2

Lob-3 4 0, 1
2 , 1 1

6 ,
4
6 ,

1
6

Leg-3 6 1
2 −

1
2

√
3
5 ,

1
2 ,

1
2 + 1

2

√
3
5

5
18 ,

8
18 ,

5
18

Table 1
Quadrature nodes and weights for Gauss-Legendre and Gauss-Lobatto rules.

interval [tn, tn+1]. For the schemes described below, the same quadrature nodes are
used at each term in the expansion in Eq. (2.16).

First consider the approximation to the first term of the expansion Ω(1)(t) on
the interval [tn, tn+1] with ∆t = tn+1 − tn. Approximating the integral by Gaussian
quadrature gives

(3.1) Ω(1)(tn+1) =

∫ tn+1

tn

A(t) dt ≈ ∆t

M∑
j=1

q
(1)
j Aj = Ω

(1)
n+1,

where M is the number of quadrature nodes. This is classical quadrature, and the

well-known coefficients q
(1)
j are given for completeness in Table 1.

In order to obtain a fourth-order method, the second term in the Magnus expansion
must be included. Applying a quadrature rule to the double integral yields a general

form for Ω
(2)
n+1

(3.2) Ω
(2)
n+1 = ∆t2

M∑
i=1

M∑
j=1

q
(2)
i,j [Ai, Aj ].

The simplest approximation to Ω
(2)
n+1 sufficient for fourth-order accuracy requires the

calculation of only a single commutator term

(3.3) Ω
(2)−1
n+1 = ∆t2q(2)−1[A1, A3],

with q(2)−1 = 1/12. The method denoted Lob-4-1 (where the 1 denotes one commutator
term) uses this approximation. To compute Ω(2) to the accuracy required for a
sixth order method, three nodes can be used and it is necessary to compute three
commutators

(3.4) Ω
(2)−3
n+1 = q

(2)−3
1 [A1, A2] + q

(2)−3
2 [A1, A3] + q

(2)−3
3 [A2, A3]

with the values
(3.5)

q
(2)−3
j = [−7.1721913818656e−2,−3.5860956909328e−2,−7.1721913818656e−2] .

Despite the increased computational cost of two additional commutators, in a parallel
implementation all three commutators can be computed simultaneously.

To achieve sixth-order accuracy, the first four terms of the Magnus expansion
must be included. The sixth-order method denoted Leg-6 approximates the Ω(3) term
using three Gauss-Legendre nodes following the discussion in Ref. [12]. Specifically,

Ω
(3)
n+1 = ∆t3([q

(3)
1,1A1 + q

(3)
1,2A2 + q

(3)
1,3A3, [A1, A2]]+

[q
(3)
2,1A1 + q

(3)
2,2A2 + q

(3)
2,3A3, [A1, A3]]+

[q
(3)
3,1A1 + q

(3)
3,2A2 + q

(3)
3,3A3, [A2, A3]]).(3.6)



Parallel in Time Magnus Integrators 7

The values of the coefficients q
(3)
i,j are the same as those in Ref. [12], and in matrix

form are
(3.7)

q(3) =

3.4538506760729e−3 −5.5849500293944e−3 −7.1281599059377e−3
1.6534391534391e−3 0.0 −1.6534391534391e−3
7.1281599059377e−3 5.5849500293945e−3 −3.4538506760729e−3

 .
Exploiting the linear property of commutators ([A,X] + [A, Y ] = [A,X + Y ]) allows
one to combine terms that share the same inner single commutator and reduce the
number of commutators from nine to three. Note that the single commutator terms,

i.e. [A1, A2], are computed during the formation of the Ω
(2)
n+1 term and need not be

computed again.
The fourth term in the Magnus expansion can be approximated using a low-order

quadrature for a sixth-order method. Following the discussion in Ref. [2], the fourth
term is approximated by

(3.8) Ω
(4)
n+1 = ∆t4q(4)[B0, [B0, [B0, B1]]],

where q(4) = 1/60 and

(3.9) Bi = ∆t

3∑
j=1

q
(1)
j (tj − 0.5)iAj

with q
(1)
j given in the last row of Table 1.

In section 5, numerical examples are presented for five different Magnus integrators.
Table 2 lists the specific discretization of each term included for a given method. The
overall order of each method is determined either by the number of terms used in the
expansion, or the order of the quadrature rules. For example, the methods Leg-2, Leg-
4-3, and Leg-6 use the same quadrature nodes, but differ in the number of terms used
in the expansion, while Lob-2 and Leg-2 use different nodes, but are both second-order
because only one term in the expansion is used.

Name Order Nodes Ω

Lob-2 2 Lob-2 Ω(1)

Leg-2 2 Leg-3 Ω(1)

Lob-4-1 4 Lob-3 Ω(1) + Ω(2)−1

Leg-4-3 4 Leg-3 Ω(1) + Ω(2)−3

Leg-6 6 Leg-3 Ω(1) + Ω(2)−3 + Ω(3) + Ω(4)

Table 2
Description of the numerical schemes.

3.2. The Matrix Exponential and Solution Update. Once all of the quadra-
ture approximations are applied and the value of Ωn+1 is computed, the solution can
be updated by

(3.10) yn+1 = eΩn+1yn.

There are many approaches to computing the product of a matrix exponential and a
vector of the form eAy [15], some of which explicitly compute the term eA and some



8 Krull and Minion

which only approximate the product eAy. The choice of method is problem dependent
and does not affect the discussion of time parallelism of the methods. In the numerical
examples presented here, the scaling-and-squaring method from [10] is used to form
the matrix exponential explicitly.

3.3. Considerations for Nonlinear ODEs. Consider now problems of the
form

(3.11) y′ = A(y, t)y

where non-linearity is introduced through the y-dependence of A. The terms in
the Magnus expansion approximations introduced above now depend on the solu-
tion through Am, and cannot simply be evaluated. The numerical solution at each
quadrature node will be denoted ym and is computed by

(3.12) ym = eΩmyn,

where Ωm is an approximation to the Magnus expansion on the interval [tn, tm]. The
construction of Ωm is discussed below.

A simple fixed-point Picard-type iteration is used to simultaneously solve for the
values Ωm and ym. The iterative scheme is initialized by setting yk=1

m = yn at each
node m, where k denotes the iteration. The solution at each quadrature node is
updated by

(3.13) yk+1
m = eΩk

myn.

Then Ωk+1
m is computed using values A(yk+1

m , tm) as described below.
To compute Ωkm, the process for constructing the quadrature rules in section 3.1

needs to be applied to each quadrature node. Evaluating the values A(ykm, tm) at
each node tm is straight-forward but needs to be performed each iteration. In all
cases considered here, the same matrix commutators are used for each quadrature
rule, so computing the commutators is also identical to the linear case. The significant
difference is that a quadrature rule for each term in the Magnus expansion must be
computed for each interval [tn, tm] rather then just [tn, tn+1] as in the linear case. The
coefficients for each of the terms are included in Appendix A.

Once each Ωk
m is computed, the matrix exponential can be computed for each

node, and a new solution is obtained at each node by Eq. (3.13). The solution is
considered converged when the maximum absolute value of the residual

(3.14) Rkm = eΩk
myn − ykm = yk+1

m − ykm
is less than a predefined tolerance. In a traditional implementation of this iteration
using Gauss-Legendre nodes, it is not necessary to compute the values Ωkn+1 and yn+1

at the end of the time step during the iterations; however, when pipelining of iterations
is employed as discussed in the next section, yn+1 is computed each iteration to update
the initial condition for the next time step.

3.4. Considerations for Isospectral Flows. Consider now problems of the
form of Eq. (2.21). The procedure for constructing Magnus integrators follows exactly
that laid out in the previous section except that the solution is defined at quadrature
nodes by

(3.15) Y k+1
m = eΩk

mYne
−Ωk

m ,

and likewise for the computation of Y k+1
n+1 from Ωkn+1.



Parallel in Time Magnus Integrators 9

4. Parallelization in Time for Magnus Integrators. In this section, we
investigate the theoretical computational cost of the Magnus integrators introduced in
the previous section in both serial and parallel settings. We consider both parallelization
across the method and parallelization across time. In the following discussion, it is
assumed that arbitrarily many processors are available for a given problem and the
cost of communication between processors is ignored. It is also assumed that the
matrix exponential is formed explicitly as is done for the the numerical results given
in Section 5.

4.1. The Linear Case. First consider linear problems where A(t) does not
depend on the solution y. For each of the N time steps, the following tasks must be
performed:

L1. Evaluate Am = A(tm) for each quadrature node tm
L2. Compute commutators necessary for each term in the truncated Magnus

expansion
L3. Apply quadrature rules to compute Ω(tn+1)
L4. Form the exponential of Ω(tn+1)
L5. Compute the solution yn+1 from yn by matrix multiplication

Denote by CA the computational cost of computing A(t) for a given time. Then if M
quadrature nodes are used, L1 has a computational cost of MCA. Next let np denote
the number of commutators required to compute the pth term in the Magnus expansion
and CC the cost of computing one commutator. Assuming that each commutator
in the p+ 1 term can be formed with one additional commutator applied to a term
from term p, the total number of commutators to compute is simply n1 + . . . nP .
Denoting this sum by NC , the cost of L2 is NCCC . Task L3 requires only that a
linear combination of the terms computed in L2 be computed. We can denote this cost
by NCCL, where CL is the cost of adding a term in the linear combination. Denote
by CE the cost of the matrix exponential, and hence the cost of L4 is CE . Likewise
denote by CM the cost of multiplying the solution by a matrix which corresponds to
the cost of task L5. Putting these together, the serial cost for N time steps is

(4.1) CS = N(MCA +NC(CC + CL) + CE + CM ).

Now consider the parallelization of the method for the linear problem across the
step. In task L1, each function evaluation can be done concurrently, so that the cost
is reduced from MCA to CA. For task L2, all the commutators of a given order can
be computed concurrently, so that cost is reduced from NCCC to PCC . Task L3 can
be done with cost log2(NC)CL, and the cost of task L4 and L5 remains the same.

Next consider the cost when both parallelization across the method and across
time is employed. Given sufficient processors, tasks L1-L4 can all be computed on all
time steps concurrently. Only task L5 must be done serially so that the total cost
using both forms of parallelism becomes

(4.2) CP = CA + PCC + log2(NC)CL + CE +NCM .

Clearly this is a significant reduction in computational cost. If the cost of computing
the commutators and matrix exponential (L2 and L4) dominate the other terms, the
theoretical parallel speedup approaches N .

An important point to make about this counting is that the cost per step when
using parallelization across the step depends very little on the number of quadrature
nodes or commutators used in each term since only the cost of task L3 depends on



10 Krull and Minion

these factors. Hence higher-order methods are only modestly more expensive per
step than lower-order methods and there is less benefit from reducing the number of
commutators required in each term of the Magnus expansion since multiple terms can
be computed in parallel. Furthermore, for a given accuracy, higher-order methods will
require fewer time steps (i.e. smaller N).

4.2. The Nonlinear Case. For nonlinear problems, the theoretical accounting
of cost must be modified somewhat. Since we are using an iterative procedure to
compute Ω(tm), the following steps must be done for each iteration in each time step:

N1. Evaluate A(ykm, tm) for each quadrature node tm
N2. Compute commutators necessary for each term in the truncated Magnus

expansion
N3. Apply quadrature rules to compute Ωkm at each quadrature node tm
N4. Form exponential of Ωkm at each quadrature node tm.
N5. Compute yk+1

m at each quadrature node by matrix multiplication by Ωkm.
The main difference between these tasks and the linear case is that N2-N5 are done
for each quadrature node instead of only once. For simplicity, the serial cost of these
steps will be assumed to be M times that of the linear case. Hence, denoting by KS

the number of iterations required for each step in a serial implementation, the serial
cost for the nonlinear Magnus method iteration becomes

(4.3) CS = NKSM(CA +NC(CC + CL) + CE + CM ).

As will be shown below, the number of iterations required for convergence KS depends
on ∆t in a nontrivial way.

If we allow parallelization across the method, the tasks above can all be computed
concurrently at each quadrature node, and hence the cost of each iteration for the
nonlinear method is essentially that of one step in the linear case using parallelization
across the method.

(4.4) CI = CA + PCC + log2(NC)CL + CE + CM .

The speedup across the method is bounded by M .
Now consider parallelization across the steps. The simplest way that this can be

accomplished is to pipeline the iterations. We first divide the N time steps into blocks
of size NP with each step in a block assigned to a group of processors indexed by np.
At each time step np for each iteration k, the initial condition is assigned the final
value from iteration k − 1 of the time step np − 1. For each block, NP − 1 pipelined
iterations are required before the last processor has a consistent initial condition. After
this initialization step, assume KP additional iterations are needed for convergence
on every time step in the block. As in the serial case KP depends in general on the
time step ∆t and now also on NP , increasing as NP increases and decreasing at ∆t
decreases. Furthermore KP ≥ KS .

The parallel cost on each block will be (NP − 1 +KP )CI compared to (NPKS)CI

when no parallelization across time steps is applied (i.e. NP = 1). The potential
speedup from parallelization across time is then

(4.5) S =
NPKS

NP − 1 +KP
=

KS

1 + (KP − 1)/NP
.

Clearly the speedup is bounded by the number of serial iterations required and the
best speedup will occur when the quantity KP /NP remains small as NP increases.
This ratio will be investigated in the numerical examples.



Parallel in Time Magnus Integrators 11

5. Numerical Examples. In this section, the performance of the different
Magnus integrators introduced in section 3 is examined in both serial and parallel
settings. After a description of the test problem used, serial results demonstrating the
relative accuracy and efficiency of the various methods are presented. Then, in section
5.4, some preliminary results on parallelization of the methods are included.

5.1. Test Case: The Periodic Toda Lattice. The numerical methods will
be evaluated on the test problem of a d-particle periodic Toda lattice [19], a one-
dimensional chain whose dynamics are governed by nonlinear nearest-neighbor in-
teractions. The equations of motion are a Hamiltonian system for positions qj and
momenta pj (assuming unit masses)

q′j = pj(5.1)

p′j = e−(qj−qj−1) − e−(qj+1−qj).(5.2)

In order to cast the dynamics in terms of a Lax pair, one uses the Flaschka change of
variables

αj =
1

2
e−(qj+1−qj)/2(5.3)

βj =
1

2
pj ,(5.4)

which leads to definitions of Y and A
(5.5)

Y =



β1 α1 0 . . . αd

α1 β2 α2
. . .

...

0 α2
. . .

. . . 0
...

. . .
. . .

. . . αd−1

αd . . . 0 αd−1 βd


, A(Y ) =



0 −α1 0 . . . αd

α1 0 −α2
. . .

...

0 α2
. . .

. . . 0
...

. . .
. . .

. . . −αd−1

−αd . . . 0 αd−1 0


.

The numerical example considered here is an 11-particle periodic Toda lattice
taken from Ref. [20] with the initial conditions

q(0) = [0, . . . , 0]T

pj(0) =

{
4, 1 ≤ j ≤ 4,

0, j ≥ 5.
(5.6)

The periodic Toda lattice is not asymptotically free and has considerably complicated
motion. Figure 1 shows the position and momenta of the 11 particles up to tfinal = 10.0.

5.2. Simulation parameters. The following numerical experiments are all per-
formed on this 11-particle periodic Toda lattice with initial conditions as in Eq. (5.6)
and a fixed tfinal = 10.0. A Picard iteration tolerance of 10−12 is used on the maximum
absolute value of the residual at the end of the timestep. The reference solution is
taken as the Leg-6 method with ∆t = 2−15tfinal or 32768 steps. The reported error
is defined as the matrix 2-norm of the absolute value of the difference between the
solution in question and the reference solution.



12 Krull and Minion

Fig. 1. Symmetric periodic 11-particle Toda lattice solutions with initial conditions as in
Eq. (5.6).

The methods have been implemented using the libpfasst 1 library. Communication
between pipelined iterations is done in libpfasst using MPI, and the variable NP
corresponding to the number of parallel steps is also the number of MPI ranks. For
parallelization across the method, OpenMP is used to parallelize the steps in the
nonlinear iteration. All timing results were performed on a single compute node of
NERSC’s Cray XC30 supercomputer, Edison, which contains 24 hardware cores and
64 GB of memory.

5.3. Serial Results. We first perform convergence tests to examine the error
with respect to ∆t for different Magnus methods. Figure 2 shows the behavior for
each method summarized in Table 2. Each method displays the proper convergence
rate for a range of ∆t. For the second-order methods, note that the error for Leg-2
is significantly smaller than that of Lob-2, which implies the dominant error term
for Lob-2 is due to the quadrature rule as opposed to the truncation of the Magnus
expansion. The Leg-2 method requires more serial work in this case due to the use
of three quadrature nodes instead of two. The difference between the fourth-order
methods is less significant. Leg-4-3 is more accurate than Lob-4-1 (with a higher serial
cost), but since the main difference between the two methods is how the second term
in the Magnus expansion is treated, the difference between the two is smaller than
for the second-order methods. Leg-6 is clearly more accurate than the other methods.
Note that only about nine significant digits of accuracy is attainable for this problem
using double precision due to the sensitivity of the solution to perturbations.

To better demonstrate the relative computational cost of each method, Figure 3
shows the total serial wall-time versus number of steps for the experiment above. As
expected, Lob-2 is the method with the shortest time to solution. Lob-4-1, the simplest
fourth-order method that can be constructed, is actually less expensive than the second-
order Leg-2 scheme despite the fact that Lob-4-1 requires a matrix commutator. For
the small problem size used here, the matrix commutators are relatively inexpensive,
and the fact that matrix exponentials must be computed at three internal quadrature
nodes for Leg-2 more than makes up for the lack of commutator terms. Leg-4-3 and
Leg-6 are unsurprisingly the most expensive in serial.

Note that the cost of the methods displayed in Figure 3 does not grow exactly
linearly with the number of time steps. This is due to the fact that the number of

1libpfasst is available at https://bitbucket.org/berkeleylab/libpfasst.

https://bitbucket.org/berkeleylab/libpfasst


Parallel in Time Magnus Integrators 13

Fig. 2. Error at tfinal = 10.0 versus ∆t for the Toda lattice test case.

Fig. 3. Total wall-time for the solution for the Toda lattice test case for fixed tfinal = 10.0.

Picard iterations needed to converge to the tolerance depends on the time step ∆t.
Figure 4 shows the average number of iterations over all time steps for each method as
a function of ∆t. Note the higher-order methods require moderately fewer iterations
than lower-order methods, and as the time step gets larger, the number of iterations
required for convergence grows rapidly.

The three figures provided above demonstrate that it is not necessarily trivial to
choose a method and time step that will provide a solution to a given accuracy with



14 Krull and Minion

Fig. 4. Average number of iterations as a function of ∆t for serial methods on the Toda lattice
test case.

the least computational effort. To illustrate this, Figure 5 shows the accuracy versus
wall-clock time for the Toda lattice test. Reading from left to right for a given accuracy
shows in increasing order, the methods with the fastest time-to-solution. While Lob-2
is by far the cheapest method, it only the fastest method for simulations where the
error is O(1). Lob-4-1 is the most efficient for error tolerances to about 10−6, after
which Leg-6 becomes the most efficient. For an error of about 10−6, Leg-6 and Lob-4-1
are more than an order of magnitude more efficient than the second order methods.

5.4. Parallel in Time Results. In this section, the relative performance of
parallel Magnus integrators is explored. We first consider the speedup due to paral-
lelization over time steps by pipelining the Picard iterations. As discussed in Section 4,
the theoretical speedup from pipelining is bounded by the number of serial iterations
required for the method and depends on how the total number of parallel iterations
required to reach convergence grows as the number of time parallel steps is increased.
As in the serial case, the number of iterations required depends on the time step
but now depends also on the number of parallel time steps in the pipeline. Figure 6
demonstrates this dependence for the Toda lattice test using method Leg-6 by plotting
the average number of iterations required for convergence for different ∆t and parallel
steps, denoted by NP . As in the serial case, the number of iterations required decreases
with decreasing ∆t and here it also increases for fixed ∆t as NP increases.

A second way to display the convergence behavior of the pipelined iteration is to
plot the residual after each iteration for each time rank. Figure 7 shows this data for
the Leg-6 method using a time step of ∆t = 10/128 in the top panel and ∆t = 10/1024
in the bottom panel for 16 parallel time steps. As discussed in section 4.2, the speedup
achievable from pipelining depends on the ratio KP /NP . In this example it is clear
that KP /NP is decreasing for large NP as more pipelined time steps are used.

The nontrivial dependence of the parallel iterates on both ∆t and NP makes it
difficult to predict which method with which parameters will minimize the time to



Parallel in Time Magnus Integrators 15

Fig. 5. Error versus time to solution for the serial Toda lattice test case. Each point on a line,
read from top to bottom, represents a two-fold increase in the number of steps.

Fig. 6. Average number of pipelined iterations to reach residual of 10−12 for the parallel Toda
lattice test case using the Leg-6 method.

solution for a given accuracy. As in the serial case, it is instructive to consider the
accuracy versus wall-clock for different methods with different number of time-parallel
steps. Figure 8 displays this information for each of the methods with increasing
number of processors. Across a single method, e.g. Leg-6, there’s an optimal value
of parallelization due to the fact that the increased number of iterations required in
the pipeline algorithm starts to cost more than it gains. It is also likely for this test



16 Krull and Minion

Fig. 7. Residual convergence for each processor in a 16 MPI task simulation using the second-
order Legendre method Leg-6 with 128 steps (above) and 1024 steps (below). Every reoccurrence of a
given color is another 6 iterations.

case that the small problem size implies that communication latency is not negligible.
Nevertheless, it is again clear that higher-order parallel method gives a shorter time
to solution than lower-order alternatives. The second order methods are only less
expensive than the higher-order methods when no digits of accuracy are computed.

Finally, we present preliminary results using parallelization across the method
and across time steps. Figure 9 shows the error versus time to solution for the serial
implementation and time- and method-parallel methods. The particular configuration
of Np = 8 and 3 OpenMP threads uses the entirety of 1 hardware node on NERSC’s



Parallel in Time Magnus Integrators 17

Fig. 8. Error versus time to solution for an 11-particle periodic Toda lattice example. Each color
represents a different method and each marker represents a different number of time-parallel steps,
Np = 1, 2, 4, 8, 16. Closed circles represent the serial computation, open circles Np = 2, triangles
Np = 4, squares Np = 8, and pentagons Np = 16.

Edison Cray XC30 supercomputer with no hyperthreading. The additional parallel
across method provides an additional factor of at best two using simple OpenMP
parallel do loops over nodes. Using both types of parallelism in this context gives
up to a factor of 4.7 in the overall compute time compared to serial methods using
24 total processors. Note that compared to serial second-order methods, the parallel
sixth-order method can compute a solution in less time with more than four orders of
magnitude lower error.

6. Discussion. Much of the initial work on Magnus integrators is focused on
linear problems where only a single evaluation of the Magnus expansion is required
for each time step. In contrast, this paper explores the accuracy and cost of Magnus
integrators applied to nonlinear problems. Nonlinear Magnus methods require solving
an implicit equation involving the Magnus expansion to obtain the solution in each
timestep, and the methods proposed here use a simple fixed point iteration for this
solution that can be readily parallelized in time.

One conclusion presented here is that in both the linear and nonlinear case,
straight-forward parallelization across the method is possible, leading to higher-order
methods with only marginally higher computational cost than lower-order methods.
This is complimentary to previous efforts in the literature where considerable effort is
placed on reducing the complexity of each of the terms in regards to the number of
commutators required.

The second level of parallelism described in this work, namely parallelization
across the time steps through pipelined iterations, can further decrease the overall



18 Krull and Minion

Fig. 9. Error versus time to solution for an 11-particle periodic Toda lattice example. Solid
markers indicate serial calculations and open markers indicate time- and method-parallel runs with 8
MPI tasks and 3 OpenMP threads.

time-to-solution for nonlinear problems. There is a non-trivial relationship between
the number of pipelined time steps, the time step size, and the number of iterations
required for convergence of the iteration, hence it is not easy to predict a priori which
choice of parameters will lead to the shortest wall clock time given a desired level
of accuracy. Nevertheless, for the test case considered here, in most situations, the
parallel sixth-order methods require the least computation time and are far superior
to serial second-order methods.

It is important to note that the results here are preliminary and were performed
on a single test case. In general, the possible parallel speedup attainable for a given
problem will depend on the sensitivity of the problem to perturbations, the relative
cost of the operations such as computing commutators or the matrix exponential, and
the ratio of computation to communication costs. In future work, the authors will
use this parallel methodology to investigate real-time electronic dynamics, where the
calculation of the right-hand side values is more expensive than both commutators
and matrix exponentials.

7. Acknowledgments. The work here was supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied
Mathematics program under contract number DE-AC02005CH11231. Part of the
simulations were performed using resources of the National Energy Research Scientific
Computing Center (NERSC), a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-



Parallel in Time Magnus Integrators 19

05CH11231.

Appendix A. Quadrature Rules for Intermediate Nodes. The necessary
weights for implementing each of the methods Lob-4-1, Leg-2, Leg-4-3, and Leg-6 for
nonlinear problems are presented here. For Lob-2, no additional rules are necessary.

For the computation of the single integrals in the first Magnus term, the necessary
rules take the form

(A.1) Ω(1)
m = ∆t

M∑
j=1

q
(1)
m,jAj ,

and the coefficients q
(1)
m,j correspond to the classical collocation schemes (see e.g. [9])

For Lob-3, only one additional rule is needed at the midpoint t2,

(A.2) q
(1)
2,j =

[
5

24
,

1

3
,− 1

24

]
.

For Leg-3, rules for each node are required, and the q
(1)
m,j are given by

(A.3) q
(1)
m,j =

 5
36

2
9 −

√
15

15
5
36 −

√
15

30
5
36 +

√
15

24
2
9

5
36 −

√
15

24
5
36 +

√
15

30
2
9 +

√
15

15
5
36

 .
For the second term Ω(2) there are two versions described in the linear case by

Eqs. (3.3) and (3.4). In the first case, only one additional coefficient is needed, namely

q
(2)−1
2 = 1/48. In the second case, we have

(A.4) Ω(2)−3
m = q

(2)−3
m,1 [A1, A2] + q

(2)−3
m,2 [A1, A3] + q

(2)−3
m,3 [A2, A3],

with the values of q
(2)−3
m,j given by

(A.5)

q
(2)−3
m,j =

−7.0825623244174e−4 −3.5291589565775e−2 −7.8891497044705e−2
2.0142743933468e−4 4.4826196136660e−3 −1.8131905893999e−2
−2.6081558162830e−6 −5.6936734355286e−4 −3.5152700676886e−2


The third term takes the form

Ω(3)
m =[q

(3)
m,1,1A1 + q

(3)
m,1,2A2 + q

(3)
m,1,3A3, [A1, A2]]+

[q
(3)
m,2,1A1 + q

(3)
m,2,2A2 + q

(3)
m,2,3A3, [A1, A3]]+

[q
(3)
m,3,1A1 + q

(3)
m,3,2A2 + q

(3)
m,3,3A3, [A2, A3]].(A.6)

with
(A.7)

q
(3)
1,i,j =

 1.4667828928181e−6 −2.5468454487434e−6 7.1885579589404e−7
−3.0653702506833e−7 6.9623363228690e−7 −1.9684558120029e−7
−2.2622163607144e−8 −2.7279719400850e−9 8.5484354192049e−10


(A.8)

q
(3)
2,i,j =

 1.0401143365317e−3 −1.7143302808715e−3 1.9808827525182e−4
−6.9105495969459e−5 2.9054016014502e−4 −3.4658846939476e−5

9.2451884893203e−5 1.2595057164957e−5 −2.4709074423914e−6





20 Krull and Minion

(A.9)

q
(3)
3,i,j =

4.1482959753609e−3 −6.3874218931689e−3 −3.5942319108173e−3
9.9737811032708e−4 1.2415302375576e−4 −3.8059754231607e−4
3.7183849345731e−3 1.6935142950568e−3 −1.0604085845381e−3

 .
Finally, for the fourth term, Ω

(4)
m is computed as in Eqs. (3.8) and (3.9), with

q(4) = 1/60 and q
(1)
j in (3.9) replaced with q

(1)
m,j from Eq. (A.3).



Parallel in Time Magnus Integrators 21

REFERENCES

[1] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, The Magnus expansion and some of its
applications, Physics Reports, 470 (2009), pp. 151–238.

[2] S. Blanes, F. Casas, and J. Ros, Improved High Order Integrators Based On The Magnus
Expansion, Bit, 40 (2000), pp. 434–450.

[3] S. Blanes and P. C. Moan, Fourth-and sixth-order commutator-free Magnus integrators
for linear and non-linear dynamical systems, Applied Numerical Mathematics, 56 (2006),
pp. 1519–1537.

[4] K. Burrage, Parallel methods for ODEs, Advances in Computational Mathematics, 7 (1997),
pp. 1–3.

[5] L. Euler, Institutiones calculi integralis, no. v. 2, Acad. Imper. scientiarum, 1768.
[6] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time

Domain Decomposition Methods, T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, eds.,
Cham, 2015, Springer International Publishing, pp. 69–113.

[7] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration : structure-preserving
algorithms for ordinary differential equations, Springer, 2006.

[8] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations I. nonstiff
problems, Mathematics and Computers in Simulation, 29 (1987), p. 447.

[9] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II : Stiff and Differential-
Algebraic Problems, Springer Berlin Heidelberg, 1991.

[10] N. J. Higham, The Scaling and Squaring Method for the Matrix Exponential Revisited, SIAM
Journal on Matrix Analysis and Applications, 26 (2005), pp. 1179–1193.

[11] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 19 (2010),
pp. 209–286.

[12] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie-group methods, Acta
Numerica, (2000), pp. 215–365.

[13] A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups,
Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 357 (1999),
pp. 983–1019.

[14] W. Magnus, On the exponential solution of differential equations for a linear operator, Com-
munications on pure and applied . . . , VII (1954), pp. 649–673.

[15] C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Years Later, SIAM Review, 45 (2003), pp. 3–49.

[16] H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 357 (1999),
pp. 957–981.

[17] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Communications
of the ACM, (1964), pp. 731–733.

[18] M. Thalhammer, A fourth-order commutator-free exponential integrator for nonautonomous
differential equations, SIAM J. Numer. Anal., 44 (2006), pp. 851—-864 (elect.

[19] M. Toda, Vibration of a chain with nonlinear interaction, Journal of the Physical Society of
Japan, 22 (1967), pp. 431–436.

[20] A. Zanna, Numerical solution of isospectral flows, PhD thesis, University of Cambridge, 1998.


	Introduction
	Mathematical Preliminaries
	Matrix Calculus and Differential Equations
	Magnus Expansion
	The Magnus Expansion for Nonlinear Problems
	Isospectral Flows

	Numerical Methods Based on the Magnus Expansion
	Quadrature Rules for the Magnus Expansion
	The Matrix Exponential and Solution Update
	Considerations for Nonlinear ODEs
	Considerations for Isospectral Flows

	Parallelization in Time for Magnus Integrators
	The Linear Case
	The Nonlinear Case

	Numerical Examples
	Test Case: The Periodic Toda Lattice
	Simulation parameters
	Serial Results
	Parallel in Time Results

	Discussion
	Acknowledgments
	Appendix A. Quadrature Rules for Intermediate Nodes
	References

