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Motivation: Type Ia Supernovae 



• Using modern telescopes, Type Ia supernova light curves 
can now be observed several hundred times per year: 

– Spectra contains silicon, lacks hydrogen 

– Peak powered by radioactive decay of nickel 



Type Ia Supernovae are Distance Indicators 

• Observation: SNe Ia light curves have the same shape, differing only 
by the decay rate of the light cure. 

• Fact: The relative brightness and the decay rate of the light curves 
are related in a calculable manner: wider = brighter. 

• Conclusion: By observing the peak luminosity and decay rate, we can 
determine the distance to the host galaxy. 



Type Ia Supernovae are Speed Indicators 

 

• Due to the observed redshift, we 
know the speed at which the host 
galaxy is moving away from us. 

– Led to discovery of the acceleration 
of the expansion of the universe 
(1998) 

 

• We require a better theoretical 
understanding of SNe Ia!!! 

– Use computation to validate theory 



The Phases of Type Ia Supernovae 

A white dwarf accretes 
matter from a binary 
companion over millions 
of years. 

Smoldering phase 
characterized by subsonic 

convection and gradual 
temperature rise lasts 

hundreds of years. 

Flame (possibly) 
transitions to a 
detonation, causing the 
star to explode within two 
seconds. 

The resulting event is 
visible from Earth for 

weeks to months. 
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Each Phase has Different Computational 
Requirements 



Computing the Convective Phase 

• We are particularly interested in the last few hours of 
convection preceding ignition. 
– Low Mach number regime; M = U/c is O(10-2) 

– Long-time integration infeasible using fully compressible approach 

– We wish to use MAESTRO to determine the initial conditions for the 
detonation / explosion phase for CASTRO 

• Previous studies have artificially seeded hot ignition points into their 
initial conditions 

MAESTRO 
(CCSE) 



MAESTRO: Low Mach Number Astrophysics 
 - Algorithmic Details 



What is MAESTRO? 

• MAESTRO is a massively parallel, finite volume, 
adaptive mesh refinement (AMR) code for low Mach 
number astrophysical flows (Fortran90 BoxLib). 

• Equation set derived using low Mach number 
asymptotics 

– Looks similar to the standard equations of compressible 
flow, but sound waves have been analytically removed 

• Enables time steps constrained by the fluid velocity CFL, not 
the sound speed CFL: 

 

 

• Low Mach time step is a factor of 1/M larger, enabling long-
time integration 
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MAESTRO Features 

• No acoustic waves 
– Allows for large time steps 

• Retain local compressibility effects 
– Reactions, thermal diffusion, and external heating 

• Highly stratified atmospheres 
– Density and pressure span many orders of magnitude 

– Time dependent: captures expansion 

• General equation of state 

• Model full spherical stars 

• AMR 

• Scales scientific production jobs to 100K cores 



MAESTRO Equation Set 

• Using low Mach number asymptotics, the pressure can be 
decomposed into a base state and perturbational component: 

 

 

 

• We define a base state density, ρ0, that represents the 
average density as a function of radius and time. 
– Base state pressure is determined by hydrostatic equilibrium: 

 

 

 

• Key point: by replacing p with p0 everywhere except the 
momentum equation, we analytically remove acoustic waves 
from our system. 

p(x; t) = p0(r; t) + ¼(x; t);
¼

p0
= O(M2)

rp0(r; t) =¡½0(r; t)jgj
gravity 



MAESTRO Equation Set 

• Conservation of mass, momentum, and energy: 

• System is closed with an equation of state linking ρ, Xk, h, and p0, which 
are to remain in thermodynamic equilibrium. 
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MAESTRO Equation Set 

• Equation of state is expressed as a divergence constraint, derived by 
integrating the equation of state along particle paths: 

 
 

 

 

– “S” captures local compressibility effects due to thermal diffusion, 
compositional changes, reaction and external heating. 

– β0(r,t) is a density-like variable that captures expansion due to stratification 
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• Conservation of mass, momentum, and energy: 
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MAESTRO Equation Set 
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expansion of atmosphere due to 
large-scale heating 

expansion of atmosphere due to 
large-scale convection 

• Conservation of mass, momentum, and energy: 

• Base state density evolves subject to its own evolution equation 

– w0(r,t) is the average outward velocity at a given radius 
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Summary of Algorithmic Approach 

• MAESTRO is a “12-step program” 

– Predictor-corrector approach: advance solution using low order 
approximation for “S”, then update “S” and re-advance solution 

• Strang splitting to couple the advection, diffusion, and 
reactions in a second-order projection method framework 
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Summary of Algorithmic Approach 

• Advection uses second-order Godunov integrator 

• Reactions computed with VODE stiff ODE integrator 

• Thermal diffusion treated semi-implicitly (multigrid) 

• Divergence constraint and pressure update uses projection 
method, requiring a variable-coefficient elliptic solve (multigrid) 
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Base State Mapping 

• What makes MAESTRO unique is the incorporation of 
a time-dependent, one-dimensional base state. 

– Evolve base state using 1D Godunov integrator 

– Frequent mapping from 1D to 3D and vice versa 

@(½Xk)

@t
= ¡r ¢ (½Xku) + ½ _!k

@(½u)

@t
= ¡r ¢ (½uu)¡r¼ ¡ (½¡ ½0)g

@(½h)

@t
= ¡r ¢ (½hu) + Dp0

Dt
+r ¢ kthrT + ½H

r¢ (¯0u) = ¯0S



Base State Mapping 

• Visually, here is how the base state is related to the full state 

 

 

 

 

 

 

 

 

• Note that for spherical problems, there is no direct alignment 
between the 1D base state array and the full state.  

“planar” problems “spherical” problems 



Spherical “Fill” Operator 

• For spherical problems, mapping from the base state to the full state can 
be done using quadratic interpolation. 
– We define a “fill” operator. 

 

 

 

 

 

 

 
• The base state grid spacing must be chosen to be smaller than the full 

state grid spacing. 

– We have discovered that Δr = (1/5) Δx gives sufficient accuracy in our 
mapping tests 

circles represent base state 
“cell-centers” 

square represents Cartesian 
cell-center 



“Average” Operator 

• Mapping from the full state to the base state requires more 
care. 

– We define an “average” operator. 

 
– Computing the average is 

straightforward for planar problems 
since there is direct alignment between 
the Cartesian grid and the base state. 
 

 
– Spherical problems are more 

complicated since there is no 
direct alignment. 



Spherical Average Operator 

• Simply averaging the cell values that directly map to a particular 
radial bin is not accurate enough. 

– As a test, we map a 1D Gaussian profile onto a 3843 domain, and then 
“average” the Cartesian grid state onto a 1D array. 

– Plot below shows the relative error is O(10-4) – not accurate enough. 

 



Spherical Average Operator 

• We note that every Cartesian cell center must be at a radius rm from               
the center of the star (m is an integer): 

rm =¢x
p
0:75+ 2m



• Procedure: 
1. Create an itemized list (an 

irregularly spaced radial array) 
with every possible distance a 
Cartesian cell center could map 
to. 

Hit Count Chart for a 3843 Domain 

rm =¢x
p
0:75+ 2m

• We note that every Cartesian cell center must be at a radius rm from               
the center of the star (m is an integer): 



Spherical Average Operator 

rm =¢x
p
0:75+ 2m

• Procedure: 
1. Create an itemized list (an 

irregularly spaced radial array) 
with every possible distance a 
Cartesian cell center could map 
to. 

2. Collect the average over all 
Cartesian cell values that map 
into each itemized list index. 

3. Quadratic interpolation from the 
itemized list onto the base state 
array. 

• We note that every Cartesian cell center must be at a radius rm from               
the center of the star (m is an integer): 



Spherical Average Operator 

• Our new averaging procedure gives a relative error of at most O(10-8). 



Adaptive Mesh Refinement 

 

• Incorporate AMR using established techniques 

– Advance each level independently and synchronize fluxes, 
velocities, and pressure at coarse-fine interfaces 

 

• For the full star problem, we need to consider our 
tagging criteria 

– Burning occurs in center of the star, driving convection in 
the inner part of the star. 

– We expect ignition point(s) to be near the center of the 
star 



Adaptive Mesh Refinement 

• 5000 km3 domain 

• 5763 resolution 

– 1728 · 483 grids 

– 8.7 km resolution 
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Adaptive Mesh Refinement 
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Adaptive Mesh Refinement 

• 5000 km3 domain 

• 5763 resolution 

– 1728 · 483 grids 

– 8.7 km resolution 

• 11523 resolution 

– 1831 grids 

• 23043 resolution 

– 2449 grids 

• 46083 resolution 

– 7072 grids 

– 1.1 km resolution 

 



Adaptive Mesh Refinement 

• 5000 km3 domain 

• 5763 resolution 

– 1728 · 483 grids 

– 8.7 km resolution 

• 11523 resolution 

– 1831 grids 

• 23043 resolution 

– 2449 grids 

• 46083 resolution 

– 7053 grids 

– 1.1 km resolution 

 



AMR Average Operator 

• Primary new difficulty it the average operator - base state mapping 
from 3D to 1D 

 
– The planar average operator is still 

straightforward 
 

 
– The spherical average operator 

becomes more complicated 

Note that the 1D radial array still has a 
constant spacing of Δr = (1/5) Δxfinest 



• Compute an itemized list for each level of refinement 

 

 

• When computing the average, select interpolation points from only one 
list, which is chosen by determining the list with the largest minimum hit 
count over the proposed interpolation points.  

– Merging the lists together into a “master list” causes large spikes in relative 
error near coarse-fine interfaces. 

 

 

• We performed our average test using                                                               
the following 3-level AMR grid structure: 

– The relative error was still O(10-8). 

 

AMR Spherical Average Operator 

rlm =¢xl
p
0:75+ 2m



Parallelization Strategy 

 

 

 

• We have recently adopted a hierarchical 
programming model, using a hybrid MPI/OpenMP 
approach to parallelization. 



MPI Parallel Implementation 

node 

core core core core core core 

node 

core core core core core core 

• Each grid is assigned to a core 
• Cores communicate each other using MPI 

– In this example, we require 12 MPI processes. 

• Divide solution 
domain into grids 



Hybrid MPI/OpenMP Parallel Implementation 

node 

core core core core core core 

node 

core core core core core core 

• Each grid is assigned to a node 
– Spawn a thread on each core to work on the grids simultaneously 

• Nodes communicate each other using MPI 
– In this example, we require 2 MPI processes. 

• Divide solution 
domain into fewer, 
larger grids 



Advantages of Hybrid Parallel Implementation 

 

 

• Fewer MPI processes lead to reduced 
communication time 

– Especially important in communication-intensive multigrid 

 

• Fewer grids leads to reduced memory overhead 
requirements 



MAESTRO Strong Scaling 



MAESTRO Weak Scaling 

• Weak scaling results for a 2-level Type Ia supernovae 
simulation. 



CASTRO Weak Scaling 

• Using weak scaling, CASTRO compressible code scales to 
200,000+ cores for the full white dwarf problem 



MAESTRO: Low Mach Number Astrophysics 
 - Scientific Results 



White Dwarf Convection 

• We have already performed several moderate-
resolution simulations up to ignition with AMR. (up 
to 4.3km resolution) 

 

• Some key results 

– Obtained 2+ hours of convective patterns leading to 
ignition 

– Determined likely ignition radii 



White Dwarf Convection 

Edge of Star 
density = 10-4 g/cc 

Center of Star 
density = 2.6 x 109 g/cc 
Temperature = 6.25 x 108 K 

5000 km 

• Initial conditions 

– 1D KEPLER model mapped 
onto Cartesian grid 

– Random velocity 
perturbation added to 
prevent initial nuclear 
runaway 

 

– We examine the convection 
in a non-rotating and slowly 
rotating (1.5% Keplerian) 
white dwarf. 

 



White Dwarf Convection 

• Red / Blue = outward / inward radial velocity 

• Yellow / Green = contours of increasing burning rate 

t = 0, non-rotating t = 0, rotating 



White Dwarf Convection 

t = 1 hour, non-rotating t = 1 hour, rotating 

• Red / Blue = outward / inward radial velocity 

• Yellow / Green = contours of increasing burning rate 



White Dwarf Convection 

t = 1.25 hours, non-rotating t = 1.25 hours, rotating 

• Red / Blue = outward / inward radial velocity 

• Yellow / Green = contours of increasing burning rate 



White Dwarf Convection 

t = 2.25 hours, non-rotating t = 2.75 hours, rotating 

• Red / Blue = outward / inward radial velocity 

• Yellow / Green = contours of increasing burning rate 



WD Convection: Long-Time Behavior 

• Maximum temperature and Mach number over time. 



WD Convection: Ignition 

• Last few seconds preceding ignition 

Non-rotating Rotating 



WD Convection: Ignition 

• Examining the radius of 
the hot spot over the last 
few minutes indicates 
ignition radius of 50-70 
km off-center is favored. 



WD Convection: Ignition 

• Histograms of ignition conditions over the final 200 seconds 
– (Left) Temperature and location of peak hot spot 

– (Right) Radial velocity and location of peak hot spot 



MAESTRO: Low Mach Number Astrophysics 
 - Transition to Compressible Framework 



CASTRO Overview 

• CASTRO is a massively parallel, finite volume, general 
compressible AMR hydrodynamics solver for 
astrophysical phenomena. (C++/Fortran90 BoxLib) 

 

 

 

 

 

•  Compressible equations of motion 
– Explicit time evolution 

– Gravity can be computed with a Poisson solve (requires 
multigrid) or a monopole approximation (no multigrid) 
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MAESTRO to CASTRO Transition 

• MAESTRO and CASTRO both use the BoxLib software 
libraries 

– Datasets compatible; we are able to initialize a CASTRO 
simulation from MAESTRO data. 

 

• But there are still unresolved issues.   

– One of these issues is the role of pressure. 

• How does MAESTRO p0 + π compare to the CASTRO 
pressure? 

• What about higher-order terms in Mach number we ignored 
in the derivation of the MAESTRO equations? 



MAESTRO to CASTRO Transition 

 
• Study the effects of using a 

MAESTRO dataset to initialize a 
CASTRO simulation 
– Different initialization algorithms 
– Mach number dependency 
– EOS dependency 

 
 

• Test problem description 
– Gamma-law gas, terrestrial 

conditions 
– Subsonic inflow jet with lower 

density 

 

stationary gas 
ρ = 10-3 
p = 106 

M = 0.01 M = 0.01 

M = 0.1 

inflow jet 
ρ = 5 x 10-4 
p = 106 

1 cm 



Density evolution MAESTRO pressure evolution CASTRO pressure evolution 

We restart the simulation in 
CASTRO with this profile 

CASTRO pressure after initializing 
with e = e(ρ,p0) 

CASTRO pressure after initializing 
with e = e(ρ,p0+π) 



Future Work 

• End-to-end Simulations using CASTRO and SEDONA 

– Currently running 2 km zone simulations in MAESTRO 
(current results at 4 km; ultimate goal is 1 km zone 
simulations) for CASTRO initial conditions. 

• More accurate asymptotic models to explore higher-
order behavior in Mach number 

• Higher-order discretizations in space and time. 

• Implementation strategies for multicore architectures 

• Support scientific efforts of our growing user base. 

– AMR for Type I X-Ray Bursts (Chris Malone, Stony Brook) 

– Convection in Massive Stars (Candace Gilet, LBL/UCB) 


