A Deferred Correction Strategy for Advection-Diffusion-Reaction Systems with Complex Chemistry

Andy Nonaka Lawrence Berkeley National Laboratory October 18, 2011

Collaborators

Lawrence Berkeley National Laboratory

- John Bell
- Marc Day
- Candace Gilet
- Ann Almgren
- UNC Chapel Hill
 - Michael Minion

Overview

- Algorithms for multiphysics applications containing a broad range of time scales
- Example is high fidelity simulations of low Mach number reacting flow
 - Detailed chemistry and transport (10s 100s of species)
 - Advection, diffusion, and reaction processes
 - Reactions very stiff compared to advection
 - Low Mach number formulation exploits separation of scales, allowing for advective CFL time step condition.
 - BoxLib software framework for parallel, block-structured AMR

Lean hydrogen flame on a laboratory-scale low-swirl burner

Model Equations

Velocity update from conservation of momentum

$$(\rho U)_t = -\nabla \cdot (\rho U U) - \nabla \pi + \nabla \cdot \tau$$

Divergence constraint found by differentiating equation of state along particle paths

$$\nabla \cdot U = S \longleftarrow$$

incorporates local compressibility ffects due to reactions and diffusion

• Thermodynamic update from conservation of mass and energy species "m" mass fraction $(\rho Y_m)_t = -\nabla \cdot (U\rho Y_m) + \nabla \cdot \rho \mathcal{D}_m \nabla Y_m + \dot{\omega}_m$ production

$$(\rho h)_t = -\nabla \cdot (U\rho h) + \nabla \cdot \frac{\lambda}{c_p} \nabla h + \sum_m \nabla \cdot h_m \left(\rho h \right)$$

transport coefficients

Model Equations

- Transport coefficients highly nonlinear
- Diffusion and (particularly) reactions stiff compared to advection computationally expensive
 - Diffusion requires implicit treatment on advective time scales
 - Crank-Nicolson requires linear solves, multigrid
 - Reactions use VODE software package
 - Variable-coefficient, Adams-Moulton / Backward Differentiation Formula (BDF) stiff ODE solver
 - Adaptively subdivide time step to respect stiffest chemistry; requires many Jacobian, equation of state, and reaction rate evaluations

$$(\rho Y_m)_t = -\nabla \cdot (U\rho Y_m) + \nabla \cdot \rho \mathcal{D}_m \nabla Y_m + \dot{\omega}_m$$

$$(\rho h)_t = -\nabla \cdot (U\rho h) + \nabla \cdot \frac{\lambda}{c_p} \nabla h + \sum_m \nabla \cdot h_m \left(\rho \mathcal{D}_m - \frac{\lambda}{c_p}\right) \nabla Y_m$$

 $\phi_t = A + D + R$

Current Approach

- Fractional step scheme
 - Advance solution and project velocity back onto constraint variable coefficient elliptic PDE, multigrid
- Strang splitting for thermodynamic variable advance
 - Reactions: Δt/2
 - Advection-Diffusion: Δt (Godunov integration for advection)
 - Reactions: Δt/2
- Strang splitting is robust...
 - ... but inherently second-order
 - ... and can suffer from large splitting error

Alternative Strategies

- Implicit method of lines (MOL) and/or implicit-explicit (IMEX) Runge-Kutta strategies
 - Computationally expensive very large linear systems coupling all thermodynamic variables in every cell
- Spectral deferred corrections (SDC)
 - MOL strategy introduced by Dutt, Greengard, and Rokhlin for ODEs
 - Semi-implicit (SISDC) and multi-implicit (MISDC) extensions for PDEs with multiple time scales (Minion, Layton, Bourlioux)
 - Advantages of SDC methods
 - Each process discretized individually using well-suited numerical method
 - Able to dramatically reduce splitting error
 - Extendable to higher-order temporal integration

Spectral Deferred Corrections (SDC)

- The basic idea is take an approximate (or lower order) solution and iteratively solve correction equations to improve the solution
 - The correction equations use low-order numerical discretizations and are relatively easy to solve
- To derive correction equations, first consider an ODE:

$$\phi_t = F(t, \phi(t)), \quad \phi(t^n) \equiv \phi^n$$

The solution can be represented as an integral: $\phi(t)$

$$\phi(t) = \phi^n + \int_{t^n}^t F(\phi) \ d\tau$$

Given an approximate, or guess at the solution, $\phi^{(k)}(t)$, we define the residual:

$$E(t,\phi^{(k)}) = \phi^n + \int_{t^n}^t F(\phi^{(k)}) \, d\tau - \phi^{(k)}(t)$$

Now define the error, $\,\,\delta^{(k)}(t)=\phi(t)-\phi^{(k)}(t)$

Spectral Deferred Corrections

- Combining the residual and error equations gives $\delta^{(k)}(t) = \int_{t^n}^t \left[F(\phi^{(k)} + \delta^{(k)}) - F(\phi^{(k)}) \right] d\tau + E(t, \phi^{(k)})$
 - The idea behind SDC algorithms is to evaluate the integral in the residual, *E*, using high-order numerical quadrature, and a simple discretization (e.g., forward or backward Euler) for the remaining integral
- If we define an iterative update, $\phi^{(k+1)} = \phi^{(k)} + \delta^{(k)}$ it is straightforward to derive the correction equation

$$\phi^{(k+1)}(t) = \phi^n + \int_{t^n}^t \left[F(\phi^{(k+1)}) - F(\phi^{(k)}) \right] d\tau + \int_{t^n}^t F(\phi^{(k)}) \ d\tau$$

- The first integral uses a simple discretization and the second is evaluated using high-order quadrature
- Each iteration of the correction equation will increase the order of the method by 1, up to order of the numerical quadrature

MISDC Correction Equations

- Compute advection using iteratively lagged reaction source term $A^{n+1/2,(k+1)} = A(\phi^n, D^n, R^{(k)})$
- Update solution by correcting diffusion with a backward Euler discretization

$$\phi_{\rm AD}^{n+1,(k+1)} = \phi^n + \Delta t \left(A^{n+1/2,(k+1)} - A^{n+1/2,(k)} \right) + \Delta t \left[D(\phi_{\rm AD}^{n+1,(k+1)}) - D(\phi^{n+1,(k)}) \right] + \int_{t^n}^{t^{n+1}} \left[A^{(k)} + D^{(k)} + R^{(k)} \right] d\tau$$

Use VODE to integrate reactions using updated advection-diffusion source terms

$$\phi_t = R^{(k+1)} + \left(A^{n+1/2,(k+1)} - A^{n+1/2,(k)}\right) \\ + \left[D(\phi_{\text{AD}}^{n+1,(k+1)}) - D(\phi^{n+1,(k)})\right] + A^{(k)} + D^{(k)}$$

MISDC Predictor

Compute advection using time-lagged reaction source term $A^{n+1/2,(0)} = A(\phi^n, D^n, R^{n-1,(k_{\max})})$

Advance solution with Crank-Nicolson diffusion and time-lagged reaction source term

$$\phi_{\rm AD}^{n+1,(0)} = \phi^n + \Delta t A^{n+1/2,(0)} + \frac{\Delta t}{2} \left[D(\phi_{\rm AD}^{n+1,(0)}) + D(\phi^n) \right] + \int_{t^{n-1}}^{t^n} R^{(k_{\rm max})} d\tau$$

Use VODE to integrate reactions using updated advection-diffusion source terms

$$\phi_t = R^{(0)} + A^{n+1/2,(0)} + \frac{\Delta t}{2} \left[D(\phi_{\text{AD}}^{n+1,(0)}) + D(\phi^n) \right]$$

MISDC Algorithm

- Underlying projection methodology is second-order, so we only need 1 correction iteration for overall second-order accuracy
 - Second-order numerical quadrature time-centered piecewise constant representations of advection and diffusion
 - Advection we already have this since Godunov integrator returns time-centered fluxes
 - Diffusion midpoint rule; average diffusion contribution from beginning and end of time step
- Computational requirements both Strang splitting and MISDC require:
 - 2 calls to VODE to advance (1 + nspecies) reaction equations
 - 2 * (1 + nspecies) advection-diffusion linear solves
 - Efficiency of Strang splitting vs. MISDC all comes down to how much work VODE requires since everything else is comparable
 - We will explore this in the results discussion

Test Problem – Hydrogen Flame

- Premixed hydrogen flame (1D)
 - GRI-Mech reaction network without carbon chemistry
 - 9 species, 27 reactions
 - 1.2 cm domain
 - Initial profile obtained from CHEMKIN-III library (PREMIX code)
 - "Fuel state" = $H_2 + O_2 + N_2$
 - Most abundant product is H₂0
 - Flame propagates at approximately 15 cm/s
- We divide the domain into 256, 512, and 1024 cells and run to 2 ms using Δt = 25, 12, and 6.5 µs (fixed CFL)
- We compare each simulation to a very high resolution simulation (2048 cells) computed with the same CFL

ing B	
olitt	
g Sp	
tran	
S	

MISDC

Variable	Error-256	Rate	Error-512	Rate	Error-1024
U	2.87E-02	1.81	8.19E-03	2.05	1.98E-03
ρ	4.82E-08	2.01	1.20E-08	2.20	2.60E-09
ρh	6.75E+01	1.89	1.82E+01	2.12	4.18E+00
Y(H ₂)	3.31E-07	1.96	8.50E-08	2.15	1.91E-08
Y(O ₂)	1.08E-05	1.97	2.78E-06	2.17	6.18E-07
Y(H ₂ O)	1.07E-05	1.96	2.74E-06	2.17	6.11E-07
Y(N ₂)	1.38E-06	1.97	3.52E-07	2.05	7.99E-08

Variable	Error-256	Rate	Error-512	Rate	Error-1024
U	1.03E-01	4.10	6.05E-03	0.00	6.04E-03
ρ	1.82E-07	2.01	4.51E-08	2.00	1.13E-08
ρh	6.19E+02	1.38	2.38E+02	1.71	7.27E+01
Y(H ₂)	1.36E-06	1.40	5.17E-07	1.20	2.25E-07
Y(O ₂)	3.42E-05	1.79	9.91E-06	1.46	3.60E-06
Y(H ₂ O)	3.22E-05	1.74	9.66E-06	1.56	3.27E-06
Y(N ₂)	4.50E-06	1.25	1.90E-06	1.49	6.73E-07

Test Problem – Methane Flame

Premixed methane flame (1D)

- GRI-Mech reaction network even stiffer, and more detailed chemistry
 - 53 species, 325 reactions
- 1.2 cm domain
- Initial conditions obtained from CHEMKIN-III library (PREMIX code)
- "Fuel state" = $N_2 + O_2 + CH_4$
- Most abundant products are H₂0 and CO₂
- Flame propagates at approximately 19 cm/s
- We divide the domain into 256, 512, and 1024 cells. Run to 1 ms using Δt = 12.5, 6.25, and 3.125 µs (fixed CFL).
- We compare each simulation to a very high resolution simulation (2048 cells) computed with the same CFL.

Strang Splitting

MISDC

Variable	Error-256	Rate	Error-512	Rate	Error-1024
U	1.33E-01	1.85	3.68E-02	2.03	8.99E-03
ρ	4.74E-08	2.08	1.12E-08	2.23	2.39E-09
ρh	1.17E+01	2.08	2.77E+01	2.22	5.96E+00
Y(O ₂)	1.29E-05	2.03	3.17E-06	2.21	6.86E-07
Y(H ₂ 0)	7.35E-06	2.01	1.82E-06	2.17	4.05E-07
Y(CH ₄)	3.49E-06	2.04	8.47E-07	2.22	1.81E-07
Y(CO ₂)	9.32E-06	2.01	2.31E-06	2.21	4.99E-07
Y(N ₂)	1.06E-06	2.01	2.63E-07	2.22	5.65E-08
Variable	Error-256	Rate	Error-512	Rate	Error-1024
U	8.74E-01	2.50	1.55E-01	3.10	1.81E-02
	2 405 07	2.45		2.02	C 475 00

Variable	Error-256	Rate	Error-512	Rate	Error-1024
U	8.74E-01	2.50	1.55E-01	3.10	1.81E-02
ρ	2.48E-07	2.45	4.55E-08	2.82	6.47E-09
ρh	6.45E+02	2.50	1.59E+02	1.97	4.08E+01
Y(O ₂)	7.41E-05	2.41	1.39E-05	2.37	2.69E-06
Y(H ₂ 0)	4.54E-05	2.45	8.32E-06	2.75	1.24E-06
Y(CH ₄)	2.02E-05	2.34	3.99E-06	2.50	7.07E-07
Y(CO ₂)	4.57E-05	2.47	8.25E-06	1.79	2.38E-06
Y(N ₂)	5.11E-06	1.83	1.44E-06	1.97	3.66E-07

Computational Efficiency

- Consider the methane flame example with 256 cells
 - We count total right-hand-side evaluations by VODE in all chemistry solves over all cells in one time step, including those used for Jacobian evaluations
 - Strang 48,536 evaluations
 - MISDC 9,803 evaluations
- Thus, MISDC is actually more efficient due to the reduced time in VODE chemistry solves
 - Why is MISDC chemistry "easier"?

$$(\rho Y_m)_t = -\nabla \cdot (U\rho Y_m) + \nabla \cdot \rho \mathcal{D}_m \nabla Y_m + \dot{\omega}_m$$
$$(\rho h)_t = -\nabla \cdot (U\rho h) + \nabla \cdot \frac{\lambda}{c_p} \nabla h + \sum_m \nabla \cdot h_m \left(\rho \mathcal{D}_m - \frac{\lambda}{c_p}\right) \nabla Y_m$$

 $\phi_t = A + D + R$

O₂ evolution over 1 time step in one particular cell

CH₂OH evolution over 1 time step in the same cell

Summary

- We have developed a new thermodynamic advancement strategy for our low Mach number combustion simulations
- Use ideas from spectral deferred corrections to provide better coupling between advection, diffusion, and reactions
- More efficient and accurate than Strang splitting for nonlinear diffusion and detailed chemical kinetics characteristic of realistic combustion applications
- Future directions
 - Improved coupling for velocity/projection
 - Higher-order discretization
 - Suitable for many-core architectures due to reduced communication and memory per flop
 - General framework for coupling different physical processes in a multiphysics simulation