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Algorithms for multiphysics applications containing a broad 
range of time scales 

Example is high fidelity simulations of low Mach number 
reacting flow 

Detailed chemistry and transport (10s – 100s of species) 

Lean hydrogen flame on a laboratory-scale low-swirl burner 

Advection, diffusion, and reaction 
processes 

Reactions very stiff compared to 
advection 

Low Mach number formulation 
exploits separation of scales, 
allowing for advective CFL time 
step condition. 

BoxLib software framework for 
parallel, block-structured AMR 
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velocity density 

stress tensor 

perturbational  pressure 

incorporates local compressibility 
effects due to reactions and diffusion 

Velocity update from conservation of momentum 

Divergence constraint found by differentiating equation of state along 
particle paths 

Thermodynamic update from conservation of mass and energy 

(½U)t =¡r¢ (½UU)¡r¼+r¢ ¿

species “m” mass fraction 

enthalpy 

species “m” 
production rate 

transport coefficients 
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Transport coefficients highly nonlinear 

Diffusion and (particularly) reactions stiff compared to 
advection - computationally expensive 

Diffusion requires implicit treatment on advective time scales 
Crank-Nicolson – requires linear solves, multigrid 

Reactions use VODE software package 
Variable-coefficient, Adams-Moulton / Backward Differentiation 
Formula (BDF) stiff ODE solver 

Adaptively subdivide time step to respect stiffest chemistry; requires 
many Jacobian, equation of state, and reaction rate evaluations 



Fractional step scheme 
Advance solution and project velocity back onto constraint – 
variable coefficient elliptic PDE, multigrid 

Strang splitting for thermodynamic variable advance 
Reactions: Δt/2 

Advection-Diffusion: Δt (Godunov integration for advection) 

Reactions: Δt/2 

Strang splitting is robust… 
… but inherently second-order 

… and can suffer from large splitting error 



Implicit method of lines (MOL) and/or implicit-explicit 
(IMEX) Runge-Kutta strategies 

Computationally expensive – very large linear systems coupling all 
thermodynamic variables in every cell 

Spectral deferred corrections (SDC) 
MOL strategy introduced by Dutt, Greengard, and Rokhlin for 
ODEs 

Semi-implicit (SISDC) and multi-implicit (MISDC) extensions for 
PDEs with multiple time scales (Minion, Layton, Bourlioux) 

Advantages of SDC methods 
Each process discretized individually using well-suited numerical 
method 

Able to dramatically reduce splitting error 

Extendable to higher-order temporal integration 



The basic idea is take an approximate (or lower order) solution 
and iteratively solve correction equations to improve the 
solution 

The correction equations use low-order numerical discretizations and 
are relatively easy to solve 

To derive correction equations,                                                       
first consider an ODE: 
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The solution can be                                                              
represented as an integral: 

Given an approximate, or guess at the solution,            , we 
define the residual: 

Now define the error,  
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Combining the residual and error equations gives 

 

 
The idea behind SDC algorithms is to evaluate the integral in the 
residual,     , using high-order numerical quadrature, and a simple 
discretization (e.g., forward or backward Euler) for the remaining 
integral 

If we define an iterative update,                                         it is 
straightforward to derive the correction equation 

 

 
The first integral uses a simple discretization and the second is 
evaluated using high-order quadrature 

Each iteration of the correction equation will increase the order 
of the method by 1, up to order of the numerical quadrature 

E
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Compute advection using iteratively lagged reaction source term 

 

 
Update solution by correcting diffusion with a backward Euler 
discretization 

 

 

 

 
Use VODE to integrate reactions using updated advection-diffusion 
source terms 
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Compute advection using time-lagged reaction source term 

 

 
Advance solution with Crank-Nicolson diffusion and time-lagged 
reaction source term 

 

 

 

 
Use VODE to integrate reactions using updated advection-diffusion 
source terms 



Underlying projection methodology is second-order, so we 
only need 1 correction iteration for overall second-order 
accuracy 

Second-order numerical quadrature – time-centered piecewise 
constant representations of advection and diffusion 

Advection – we already have this since Godunov integrator returns 
time-centered fluxes 

Diffusion – midpoint rule; average diffusion contribution from 
beginning and end of time step 

Computational requirements - both Strang splitting and 
MISDC require: 

2 calls to VODE to advance (1 + nspecies) reaction equations 

2 * (1 + nspecies) advection-diffusion linear solves 

Efficiency of Strang splitting vs. MISDC all comes down to how 
much work VODE requires since everything else is comparable 

We will explore this in the results discussion 



Premixed hydrogen flame (1D) 
GRI-Mech reaction network without carbon chemistry 

9 species, 27 reactions 

1.2 cm domain 

Initial profile obtained from CHEMKIN-III library (PREMIX code) 

“Fuel state” = H2 + O2 + N2 

Most abundant product is H20 

Flame propagates at approximately 15 cm/s 

We divide the domain into 256, 512, and 1024 cells and run 
to 2 ms using Δt = 25, 12, and 6.5 μs (fixed CFL) 

We compare each simulation to a very high resolution 
simulation (2048 cells) computed with the same CFL 



Variable Error-256 Rate Error-512 Rate Error-1024 

U 1.03E-01 4.10 6.05E-03 0.00 6.04E-03 

ρ 1.82E-07 2.01 4.51E-08 2.00 1.13E-08 

ρh 6.19E+02 1.38 2.38E+02 1.71 7.27E+01 

Y(H2) 1.36E-06 1.40 5.17E-07 1.20 2.25E-07 

Y(O2) 3.42E-05 1.79 9.91E-06 1.46 3.60E-06 

Y(H2O) 3.22E-05 1.74 9.66E-06 1.56 3.27E-06 

Y(N2) 4.50E-06 1.25 1.90E-06 1.49 6.73E-07 

Variable Error-256 Rate Error-512 Rate Error-1024 

U 2.87E-02 1.81 8.19E-03 2.05 1.98E-03 

ρ 4.82E-08 2.01 1.20E-08 2.20 2.60E-09 

ρh 6.75E+01 1.89 1.82E+01 2.12 4.18E+00 

Y(H2) 3.31E-07 1.96 8.50E-08 2.15 1.91E-08 

Y(O2) 1.08E-05 1.97 2.78E-06 2.17 6.18E-07 

Y(H2O) 1.07E-05 1.96 2.74E-06 2.17 6.11E-07 

Y(N2) 1.38E-06 1.97 3.52E-07 2.05 7.99E-08 
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Premixed methane flame (1D) 
GRI-Mech reaction network – even stiffer, and more detailed 
chemistry 

53 species, 325 reactions 

1.2 cm domain 

Initial conditions obtained from CHEMKIN-III library (PREMIX 
code) 

“Fuel state” = N2 + O2 + CH4 

Most abundant products are H20 and CO2 

Flame propagates at approximately 19 cm/s 

We divide the domain into 256, 512, and 1024 cells.  Run to 
1 ms using Δt = 12.5, 6.25, and 3.125 μs (fixed CFL). 

We compare each simulation to a very high resolution 
simulation (2048 cells) computed with the same CFL. 



Variable Error-256 Rate Error-512 Rate Error-1024 

U 8.74E-01 2.50 1.55E-01 3.10 1.81E-02 

ρ 2.48E-07 2.45 4.55E-08 2.82 6.47E-09 

ρh 6.45E+02 2.50 1.59E+02 1.97 4.08E+01 

Y(O2) 7.41E-05 2.41 1.39E-05 2.37 2.69E-06 

Y(H20) 4.54E-05 2.45 8.32E-06 2.75 1.24E-06 

Y(CH4) 2.02E-05 2.34 3.99E-06 2.50 7.07E-07 

Y(CO2) 4.57E-05 2.47 8.25E-06 1.79 2.38E-06 

Y(N2) 5.11E-06 1.83 1.44E-06 1.97 3.66E-07 

Variable Error-256 Rate Error-512 Rate Error-1024 

U 1.33E-01 1.85 3.68E-02 2.03 8.99E-03 

ρ 4.74E-08 2.08 1.12E-08 2.23 2.39E-09 

ρh 1.17E+01 2.08 2.77E+01 2.22 5.96E+00 

Y(O2) 1.29E-05 2.03 3.17E-06 2.21 6.86E-07 

Y(H20) 7.35E-06 2.01 1.82E-06 2.17 4.05E-07 

Y(CH4) 3.49E-06 2.04 8.47E-07 2.22 1.81E-07 

Y(CO2) 9.32E-06 2.01 2.31E-06 2.21 4.99E-07 

Y(N2) 1.06E-06 2.01 2.63E-07 2.22 5.65E-08 
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Consider the methane flame example with 256 cells 
We count total right-hand-side evaluations by VODE in all 
chemistry solves over all cells in one time step, including those 
used for Jacobian evaluations 

Strang - 48,536 evaluations 

MISDC - 9,803 evaluations 

Thus, MISDC is actually more efficient due to the reduced 
time in VODE chemistry solves 

Why is MISDC chemistry “easier”? 
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O2 evolution over 1 time step in one particular cell 

individual dots represent right-
hand-side evaluations by VODE 

discontinuity between Strang 
curves represents the change in 
solution due to the advection-

diffusion step 



CH2OH evolution over 1 time step in the same cell 



We have developed a new thermodynamic advancement 
strategy for our low Mach number combustion simulations 

Use ideas from spectral deferred corrections to provide 
better coupling between advection, diffusion, and 
reactions 

More efficient and accurate than Strang splitting for 
nonlinear diffusion and detailed chemical kinetics 
characteristic of realistic  combustion applications 

Future directions 
Improved coupling for velocity/projection 

Higher-order discretization 
Suitable for many-core architectures due to reduced communication 
and memory per flop 

General framework for coupling different physical processes in a 
multiphysics simulation 


