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OpenMP home page: www.openmp.org 

OpenMP user’s group: www.compunity.org 

 

Books 
“Using OpenMP”, Chapman 

“Parallel Programming in OpenMP”, Chandra 

 

NERSC (or other supercomputing center)                                    
web pages 

Web in general (e.g., google) 



OpenMP is a parallel programming model for multicore architectures 
with shared memory. 

In this talk, a “node” is some processing unit where all the cores can 
access the same memory without parallel communication 
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NERSC franklin node 
(and perhaps your laptop) 
-4 cores per processor 
-1 processor per node 
-8 GB memory per node 

M 

OLCF jaguar node 
-6 cores per processor 
-2 processors per node 
-16 GB memory per node 

NERSC hopper node* 
-12 cores per processor 
-2 processors per node 
-32 or 64 GB memory per node 

*On hopper, a NUMA (non-uniform memory access) node is 6 cores on one half of a processor 



Note: For some architectures, due to latency, a core will access 
memory slower if not directly connected to it 
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OLCF jaguar node 
-6 cores per processor 
-2 processors per node 
-16 GB memory per node 

NERSC hopper node 
-12 cores per processor 
-2 processors per node 
-32 or 64 GB memory per node 



Here we assume a finite-volume, block-structured 
approach to parallelism. 

Using pure MPI, we assign each block of data to a core. 
Each block of data has ghost cells.  We use MPI parallel 
communication to fill ghost cells. 



Say you have four grids.  In a pure MPI approach you 
would assign each grid to a core. 
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Say you have four grids.  In a pure MPI approach you 
would assign each grid to a core. 

Instead, assign a single, larger block of data to a node 
rather than a core … 
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NERSC franklin node 
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Say you have four grids.  In a pure MPI approach you 
would assign each grid to a core. 

Instead, assign a single, larger block of data to a node 
rather than a core … 

… and then spawn a thread on each core to 
simultaneously work on the data 



 

A master thread spawns a team of threads, then closes 
the threads when the loop is done 

Master 
Thread 

Parallel Regions 

ijk work loop ijk work loop ijk work loop 



We implement OpenMP at the loop level.  Let’s say we 
had a work loop (Fortran90) 

A single core performs work on this grid. 
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NERSC franklin node 

! simple work loop 

 

do j=1,8 

   do i=1,8 

      “do work” 

   end do 

end do 



Add “omp directives”, which look like comments, but with the 
correct flags, the compiler will recognize them. 

For PGI compilers (PrgEnv-pgi), we will compile with “ftn –mp=nonuma”, 
as documented on the NERSC web site:                      
www.nersc.gov/users/computational-systems/hopper/programming/compiling-codes/ 
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NERSC franklin node 

! simple work loop 

!$omp parallel do private(j,i) 

do j=1,8 

   do i=1,8 

      “do work” 

   end do 

end do 

!$omp end parallel do 



The OpenMP directives we add to our code basically 
tell each thread/core to do the following: 
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NERSC franklin node 

do j=1,2 

   do i=1,8 

      “do work” 

   end do 

end do 

do j=3,4 

   do i=1,8 

      “do work” 

   end do 

end do 

do j=5,6 

   do i=1,8 

      “do work” 

   end do 

end do 

do j=7,8 

   do i=1,8 

      “do work” 

   end do 

end do 

! simple work loop 

!$omp parallel do private(j,i) 

do j=1,8 

   do i=1,8 

      “do work” 

   end do 

end do 

!$omp end parallel do 

break up the first  
“do” loop encountered 



The OpenMP directives we add to our code basically 
tell each thread/core to do the following: 

! simple work loop 

!$omp parallel do private(j,i) 

do j=0,7 

   do i=0,7 

      “do work” 

   end do 

end do 

!$omp end parallel do 

“private” means each thread gets 
its own, uninitialized copy 

“j” is optional, i.e., private by 
default 

Order not important – I tend to list 
things in the order they appear 

do j=1,2 

   do i=1,8 

      “do work” 

   end do 

end do 

do j=3,4 

   do i=1,8 

      “do work” 

   end do 

end do 

do j=5,6 

   do i=1,8 

      “do work” 

   end do 

end do 

do j=7,8 

   do i=1,8 

      “do work” 

   end do 

end do 



On hopper, copy the contents of  
/project/projectdirs/training/HIPACC_2011/nonaka/OpenMP_tutorial/ 
to your home directory or scratch space on hopper 

 

Files: 
OpenMP_tutorial_part1.f90 

OpenMP_tutorial_part2.f90 

OpenMP_tutorial_part3.f90 

hopper.run 

hopper_6threads.run 

hopper_12threads.run 

hopper_24threads.run 

hopper_6threads_ann.run 



Compile and run without threads 
“ftn OpenMP_tutorial_part1.f90” 

“qsub hopper.run” 

 

Add OpenMP directive to ijk loop 

 

Compile and run with threads 
“ftn –mp=nonuma OpenMP_tutorial_part1.f90” 

“qsub hopper_6threads.run” 

“qsub hopper_12threads.run” 

“qsub hopper_24threads.run” 

 

Compare solution and run time between all four runs. 



In this previous cartoon, each core is still doing work 
on exactly 8 computational grid cells, so what’s the 
advantage? 

Since memory is shared within a node, we can assign a 
large grid to a node, rather than more smaller grids to 
individual cores 

Allows for fewer, larger grids.                                                     
So how does this help us? 
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NERSC franklin node 



How does having fewer, larger grids help performance? 
Fewer ghost cells, so less overall memory used in your 
program 

Less memory overhead to keep track of grid structure and 
parallel communication patterns 

Fewer MPI processes, which speeds up parallel 
communication 

Communicating fewer, larger blocks of ghost cell data, which 
speeds up parallel communication 

Depending on your problem, some advantages are 
more important than others. 

Complex reaction networks: memory limited 

Linear Solvers: parallel communication limited 



 

 

 

In CASTRO and MAESTRO, our bottleneck for 
performance has been parallel communication time, 
and not memory usage (so far), so we have focused 
more on using threads for scalability. 







 

 

Since you can “thread” your code incrementally (i.e., 
add OpenMP directives to one loop at a time), you can 
test to make sure your results stay identical after 
“threading” any one loop. 

 

You can also measure the performance gains (speed of 
execution) due to threading that one loop. 



It takes a finite amount of time for your code to spawn and 
close threads at runtime, so you will not always see a speed 
boost. 

Example: Running CASTRO with only hydro and reactions for 
smallish problems (a few thousand cores) and 6 threads only 
speeds up by a factor of 3 as compared to pure MPI with 1/6th the 
total number of cores. 

You will (generally) be able to run faster given the same number 
of cores using threads if your problem uses linear solvers (Poisson 
gravity, Elliptic pressure/projection solves) and you have more 
than 1,000 MPI processes since communication is so time-
intensive. 

Sometimes you will have to run with threads and take a 
performance hit if memory is of concern. 

Sometimes you will have to run with threads and take an 
efficiency hit if you just want the code to run faster. 



If you are doing very little work within your i,j,k loop 
(like simply doing a copy or adding two numbers), 
threads can actually slow down your program since 
they take some time to spawn and close. 

Also applies if your grid is small – there just isn’t that much 
floating point work to do. 



The number of threads you use for optimal performance is 
architecture-dependent. 

Rule of thumb: try not to make a thread reach for memory it’s not 
directly connected to 
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NERSC franklin node 
(and perhaps your laptop) 
-4 cores per processor 
-1 processor per node 
-8 GB memory per node 

M 

OLCF jaguar node 
-6 cores per processor 
-2 processors per node 
-16 GB memory per node 

NERSC hopper node 
-12 cores per processor 
-2 processors per node 
-32 or 64 GB memory per node 



Compile and run without threads 

 

Add OpenMP directive to ijk loop 

Compile and run with 6, 12, and 24 threads 
Compare run times between all four runs 

 

Add more work to the loop (uncomment the line I put in there) 

Compile and run with 6, 12, and 24 threads 
Compare run times between these three runs 

 

Add even more work to the loop (uncomment the line I put in 
there) 

Compile and run with 6, 12, and 24 threads 
Compare run times between these three runs 



In an OpenMP do loop, all 
variables are considered 
“shared” unless you explicitly 
label them as “private”. 

Shared means all threads 
access the same copy of the 
variable owned by the master 
thread 

Private means each thread gets 
its own uninitialized copy 

In this example both “y” and 
“z” are private, whereas “x” is 
shared. 

integer i,j 

double precision a(1:8,1:8) 

double precision x,y,z 

 

x = 10.0d0 

 

! initialize “a” 

!$omp parallel do private(j,i,y,z) 

do j=1,8 

   do i=1,8 

 

      y = x*(i+j) 

      z = i*j 

      a(i,j) = y + z       

 

   end do 

end do 

!$omp end parallel do 



 

Special syntax for 
reductions (sum, 
minimum, maximum) 

 

Need to give sum, 
minval, and maxval 
initial values or else it 
will begin with the 
default values of 

sum: 0.0 

minval: 0.0 

maxval: 1.0 

integer i,j 

double precision a(1:8,1:8) 

double precision sum, minval, maxval 

 

minval = HUGE 

maxval = -HUGE 

 

! assume “a” has been initialized 

!$omp parallel do private(j,i) reduction(+:sum) & 

!$omp reduction(min:minval) reduction(max:maxval) 

do j=1,8 

   do i=1,8 

 

      sum = sum + a(i,j) 

      minval = min(minval,a(i,j)) 

      maxval = max(maxval,a(i,j)) 

 

   end do 

end do 

!$omp end parallel do 



Compile and run without threads 

 

Add OpenMP directive to each ijk loop 

Compile and run with 6, 12, and 24 threads 
Compare solution and run times between all four runs 

 

See what happens if you “mess up”.  Try running the 
following with threads, and see what happens to the 
answer. 

In the second ijk loop, don’t make var1 and/or var2 private 

In the third ijk loop, make x private 

In the fourth ijk loop, either make sum, minval, and/or maxval 
private, or don’t include them in the OpenMP directive at all 



These tutorials cover everything you need to know 
about threading the hydro codes you wrote this week. 

 

These tutorial cover 99% of what we needed to know 
to put OpenMP into CASTRO and MAESTRO. 

Time permitting, I’ll show you some examples of the two 
other OpenMP directives we used 

The IF clause 

THREADPRIVATE for common blocks in EOS and reaction 
networks 

Time permitting, I’ll introduce some other OpenMP 
directives including 

FIRSTPRIVATE, LASTPRIVATE, SINGLE 



Thread the advance_2d.f90 subroutine from Ann’s hydro 
code example 
/project/projectdirs/training/HIPACC_2011/almgren/BoxLibTest 

To build, “module swap PrgEnv-pgi PrvEnv-gnu”, then      
“make USE_OMP=TRUE”.  You will get an executable with a 
new name. 

Run with 6 threads per MPI process (i.e., 6 times as many 
cores) and see how performance compares to pure MPI 

Using some of the principles we discussed today, there are 
several optimizations within advance_2d.f90 that can make 
the threaded version of the code run about 7-8% faster.  See if 
you can find them. 

Try threading some routines in your hydro code to compare 
performance (make sure to check the answer remains the 
same)! 


