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We present a new thermodynamic coupling strategy for complex reacting flow in a
low Mach number framework. In such flows, the advection, diffusion and reaction
processes span a broad range of time scales. In order to reduce splitting errors inherent
in Strang splitting approaches, we couple the processes with a multi-implicit spectral
deferred correction strategy. Our iterative scheme uses a series of relatively simple
correction equations to reduce the error in the solution. The new method retains the
efficiencies of Strang splitting compared to a traditional method-of-lines approach in
that each process is discretised sequentially using a numerical method well suited for its
particular time scale. We demonstrate that the overall scheme is second-order accurate
and provides increased accuracy with less computational work compared to Strang
splitting for terrestrial and astrophysical flames. The overall framework also sets the
stage for higher-order coupling strategies.

Keywords: low Mach number combustion; spectral deferred corrections; Strang
splitting; flame simulations; detailed chemistry and kinetics

1. Introduction

In many reacting flows with complex chemistry and transport there is a wide disparity in
time scales associated with the advection, diffusion and reaction (ADR) processes. In such
stiff systems, the reaction and diffusion processes often occur on much faster time scales
than advection, complicating any efforts at numerical simulation. Numerical coupling of
these processes is particularly difficult for low Mach number methods where we would like
the time step to be based on the (relatively) slow advection process. In such simulations,
special care must be taken to couple advection properly with the faster reaction and diffusion
processes.

One successful coupling approach for low Mach number simulations is operator split-
ting [1, 2], and in particular Strang splitting [3]. In operator-split methods, the equation
system is divided arbitrarily into components that share specific mathematical or numerical
characteristics. Discretisations are then developed for each of the components in isolation
using numerical methods that can be more optimally engineered. The complete system is
evolved in time by applying the separate discretisations in an iterative or sequential fash-
ion. The Strang-splitting algorithm in particular defines a symmetric multi-stage operator
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1054 A. Nonaka et al.

sequence that achieves second-order accuracy in time. Schemes of even higher order are
possible, but require special properties of the system, such as time reversibility (see [4] for
a more complete discussion of splitting schemes and their application).

From an implementation point of view, Strang splitting is attractive for the combustion
system because algorithms constructed for each of the numerical components, complex
in their own right, can be coupled together without significant modification. For example,
Najm and Knio [5] present a Strang-split algorithm for the low Mach number reacting flow
equations that combines a second-order Adams–Bashforth for advection, a time-explicit
Runge–Kutta–Chebyshev scheme for diffusion, and the variable-order BDF scheme in
VODE [6] for stiff ODEs describing chemical reactions. Based on a similar strategy, Day
and Bell [7] develop an alternative approach that uses a second-order Godunov advection
scheme, semi-implicit (Crank–Nicolson) diffusion, and VODE for reactions and demon-
strate second-order accuracy in an adaptive mesh refinement framework. Bell et al. [8]
extend this work to the astrophysical regime to perform low Mach number simulations
of nuclear flames in a white dwarf environment, which demonstrates that the approach is
robust even when the reaction rates are extremely sensitive to temperature (scaling with
∼ T 23), and the system satisfies a non-ideal equation of state.

Unfortunately, it is well-documented that operator-splitting approaches can suffer from
significant errors and/or order-reduction [3,9,10] if the system components are coupled
together on a time scale that is much larger than the scales of the fastest relevant physical
processes. The errors due to the splitting method are often detrimental to flame simulations
in a low Mach number framework where one wants to use time steps governed by an advec-
tive CFL condition. Such errors can lead to incorrect flame propagation speeds, numerically
extinguished flames, etc., unless the integration time step is dramatically reduced. Thus,
in such cases, one loses the inherent advantage of a low Mach number approach since the
time step must become significantly smaller than the advective CFL limit. Recent work by
Duarte et al. and Descombes et al. [11–13] use high-order (fourth-order or better) discreti-
sations for each process along with an error estimation technique to adapt the time steps
dynamically to a desired error tolerance by estimating and controlling splitting error. The
use of high-order process discretisations ensures that the individual process errors do not
enhance the splitting error. In these methods, the splitting time steps are often much smaller
than the advective CFL limit since they are first based on an explicit diffusion stability
limit, with the further possibility of time step restriction due to the error control technique.
Here we specifically aim to reduce/eliminate splitting error for a time step governed by the
advective CFL condition.

Alternative to operator splitting algorithms are method-of-lines (MOL) approaches.
With MOL, the spatial discretisations of all processes are written formally as functions
of time, and an ODE integrator is used to propagate the full system forward. Since all
processes are treated together, the MOL integration of a stiff system must ultimately
respect the fastest time scales exhibited by the system. Owing to the stiffness of the systems
under consideration, a fully explicit MOL approach would be prohibitively expensive. A
fully implicit MOL approach eliminates splitting errors, but results in a large system of
coupled nonlinear equations that are much more computationally expensive than the simpler
systems appearing in Strang splitting algorithms (e.g. [7]). Semi-implicit methods where,
for example, advection is treated explicitly and reactions are evaluated implicitly, can be
problematic for different reasons, depending on how diffusion is treated [14,15]. If diffusion
is explicit, the system is subject to a more restrictive diffusive time step constraint, whereas
if diffusion is implicit, one must solve a large system of coupled nonlinear equations due to
the state-dependent transport coefficients. One class of semi-implicit algorithms based on
Runge–Kutta methods [15–18], has been used with success for reacting gas dynamics, but
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Combustion Theory and Modelling 1055

they are difficult to construct for orders greater than four and are difficult to generalise to
the case of more than two time scales. Semi-implicit Runge–Kutta methods also preclude
the user from using specialised methods for individual processes.

In this paper, we present a new MOL coupling strategy for ADR systems in a low
Mach number framework that uses a multi-implicit spectral deferred corrections (MISDC)
strategy. Generally, spectral deferred correction (SDC) algorithms are a class of numerical
methods that represent the solution as an integral in time and iteratively solve a series
of correction equations designed to reduce both the integration and splitting error. The
correction equations are typically formed using a low-order time-integration scheme, but
are applied iteratively to construct schemes of arbitrarily high accuracy. Spectral deferred
corrections are introduced in Dutt et al. [19] for ODEs where the integration of the ODE,
as well as the associated correction equations, is done using forward or backward Euler
discretisations. Minion [20] introduces a semi-implicit version (SISDC) for ODEs with stiff
and non-stiff processes, such as advection–diffusion systems. The correction equations
for the non-stiff terms are discretised explicitly, whereas the stiff term corrections are
treated implicitly. Bourlioux et al. [21] introduce an MISDC approach for PDEs with ADR
processes where advection terms are evaluated explicitly, reaction and diffusion terms
treated implicitly, and different time steps are used for each process. Layton and Minion
[22] introduce a conservative formulation of the MISDC approach for one-dimensional
reacting compressible gas dynamics. Other successful applications of SDC include zero-
Mach number gas dynamics [23], and the incompressible Navier–Stokes equations [24,25].

Here, ideas from these approaches, particularly from [21,22], are used to develop a new
MISDC algorithm for iteratively coupling ADR processes in the finite-volume, Cartesian
grid, second-order projection method framework from [7]. The MISDC algorithm is used
to advance the thermodynamic variables in time; thus the time-advancement algorithm
for the velocity and dynamic pressure remain consistent with the second-order projection
methodology. One particular advantage of our new algorithm is that, similar to Strang
splitting, each process is discretised sequentially using a numerical method well-suited for
its time scale. However, unlike Strang splitting, when discretising one process we include
the effects of all other processes as source terms. The correction equations ensure that
the distinct processes are coupled correctly, and thus, the overall algorithm is designed to
eliminate splitting error. The correction equations themselves are slightly modified versions
of the individual process discretisations, and thus are straightforward to solve using existing
methods.

This paper is organised as follows. In Section 2, we review the low Mach number
equation set used for combustion simulations. In Section 3 we review general SDC theory,
outline our new MISDC coupling strategy, and review the Strang splitting algorithm from
[7]. In Section 4 we describe our new MISDC algorithm and the original Strang splitting
algorithm in full detail. We then comment on the computational requirements of each
algorithm and discuss the extension to nuclear flames in astrophysical environments. In
Section 5 we demonstrate that our algorithm is able to handle stiff detailed kinetics coupled
with nonlinear diffusion as well as strong nonlinear reactions, all with reduced error and
increased computational efficiency as compared to Strang splitting. Finally, in Section 6,
we summarise our results and discuss future extensions.

2. Low Mach number equation set

In the low Mach number regime, the characteristic fluid velocity is small compared to the
sound speed, and the effect of acoustic wave propagation is unimportant to the overall dy-
namics of the system. In a low Mach number numerical method, acoustic wave propagation
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1056 A. Nonaka et al.

is mathematically removed from the equations of motion, allowing for a time step based on
an advective CFL condition,

max
i,d

|Ud |�t

�xd

≤ σ ; 0 ≤ σ ≤ 1, (1)

where σ is the advective CFL number, the maximum is taken over all grid cells and in
all directions, �xd is the grid spacing, and Ud is the fluid velocity in spatial direction d.
In this paper, we use the low Mach number equation set from Day and Bell [7], which
is based on the model for low Mach number combustion introduced by Rehm and Baum
[26] and rigorously derived from a low Mach number asymptotic analysis by Majda and
Sethian [27]. The equations are a system of PDEs with ADR processes constrained by an
equation of state in the form of a divergence constraint on the velocity, which is derived
by differentiating the equation of state in the Lagrangian frame of the moving fluid. In
our equations, the total pressure is decomposed into a constant thermodynamic pressure
(we only consider open containers in non-gravitationally stratified environments) and a
perturbational pressure, i.e. p(x, t) = p0 + π (x, t), such that π/p0 = O(M2). Here, M is
the Mach number, a dimensionless quantity defined as the ratio of the characteristic fluid
velocity over the characteristic sound speed. By constraining the thermodynamics with p0

rather than p, sound waves are analytically eliminated from our system while retaining
local compressibility effects due to reactions and thermal diffusion. Thus, the time step is
constrained by an advective CFL condition rather than an acoustic CFL condition, leading
to a ∼1/M increase in the allowable time step over an explicit, fully compressible method.

It is helpful to think of the low Mach number equations as an ADR system for thermo-
dynamic variables coupled to an equation for a velocity field that is subject to a divergence
constraint. Using the notation in [7], the evolution equations for the thermodynamic vari-
ables are instantiations of species and energy conservation:

∂(ρYm)

∂t
= −∇ · (UρYm) + ∇ · ρDm∇Ym + ω̇m, (2)

∂(ρh)

∂t
= −∇ · (Uρh) + ∇ · λ

cp

∇h +
∑
m

∇ · hm

(
ρDm − λ

cp

)
∇Ym, (3)

where ρ is the density, Ym is the mass fraction of species m, U is the velocity, Dm(Ym, T )
are the species mixture-averaged diffusion coefficients, T is the temperature, ω̇m is the
production rate for ρYm due to chemical reactions, h = ∑

m Ymhm is the enthalpy with
hm(T ) the enthalpy of species m, λ(Ym, T ) is the thermal conductivity, and cp(Ym, T ) =∑

m Ym dhm/dT . Our definition of enthalpy includes the standard enthalpy of formation, so
there is no net change to h due to reactions. We note that in the case of unity Lewis number
(Le = 1), ρDm = λ/cp for all m, and therefore the terms in Equation (3) proportional to
∇Ym are zero. These evolution equations are supplemented by an equation of state,

p0 = ρRT
∑
m

Ym

Wm

, (4)

where R is the universal gas constant and Wm is the molecular weight of species m. Neither
species diffusion nor reactions redistribute the total mass; hence, we have

∑
m Dm∇Ym = 0

and
∑

m ω̇m = 0. Summing the species equations and noting that
∑

m Ym = 1, we see that
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Combustion Theory and Modelling 1057

Equation (2) implies the continuity equation,

∂ρ

∂t
= −∇ · (Uρ). (5)

As noted in [7], numerical discretisations of �̃m ≡ ρDm∇Ym will not in general satisfy∑
m �̃m = 0. To conserve mass, these fluxes must be modified so that they sum to zero. We

use the ‘conservation diffusion velocity’ approach described in [7] to correct �̃m, denoting
the new result as �m. In both the Strang splitting and MISDC algorithms described in this
paper, whenever �̃m is explicitly evaluated, we ‘conservatively correct’ the fluxes. Also,
whenever �̃m is evaluated implicitly (as is done in the implicit diffusion discretisations for
Ym), we first solve the implicit system, conservatively correct �̃m, and then modify the
time-advanced values of Ym to be consistent with the corrected fluxes. These modifications
will be noted in the algorithm descriptions below.

The energy equation (3) can also be expressed in terms of temperature,

ρcp

DT

Dt
= ∇ · λ∇T +

∑
m

ρDm∇Ym · ∇hm −
∑
m

ω̇mhm. (6)

In the Strang splitting algorithm, we will discretise this equation to advance temperature as
part of the thermodynamic variable advance.

The evolution equation for velocity is a form of conservation of momentum:

ρ
DU

Dt
= −∇π + ∇ · τ, (7)

with stress tensor

τ = μ

[
∇U + (∇U )T − 2

3
I(∇ · U )

]
, (8)

where μ(Ym, T ) is the viscosity and I is the identity tensor.
The low Mach number constraint is represented as a divergence constraint on the

velocity field, derived by differentiating the equation of state along particle paths:

∇ · U = S, (9)

where S is a complex function of the thermodynamic variables, and accounts for local com-
pressibility effects due to reaction heating, compositional changes, and thermal diffusion.
See Equation (7) in [7] for the full form of S.

Since the divergence constraint is a linearisation of the equation of state, the thermo-
dynamic variables ρ, Ym and h will not remain in thermodynamic equilibrium with p0.
To address this issue while maintaining conservation, we use the ‘volume discrepancy’
approach from [7,28,29], where we add a correction term to the divergence constraint that
adjusts the velocity field to prevent the solution from drifting from the equation of state,

∇ · U = Ŝ ≡ S + f

γpeos

(
peos − p0

�t
+ U · ∇peos

)
, (10)
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1058 A. Nonaka et al.

where f is a constant satisfying f < 1.0 (f = 0.3 in this paper), γ is the local ratio of
specific heats, and peos = p(ρ, h, Ym) is computed using the equation of state.

3. Algorithmic overview

In this section, we briefly review versions of the SDC method and give an overview of
our new MISDC time-advancement strategy. We also give an overview of the original
Strang splitting algorithm. Both algorithms will be described in full detail in Section 4. Our
objective here is to use the ideas from other SDC-based approaches to couple advection,
diffusion and reaction in a low Mach number reacting flow model. We will only apply
this iterative correction scheme to the time-advancement of the thermodynamic variables.
The underlying projection methodology and the time-advancement of the velocity and
perturbational pressure will remain unchanged from [7]. Consequently, unlike much of the
previous work on SDC that focuses on higher-order temporal integration, the goal here is
to introduce better coupling between processes. We want to construct an algorithm that
can reuse the algorithmic components of a Strang splitting algorithm, in particular the use
of high-accuracy integration of the chemical kinetics to treat potential stiffness in detailed
chemical mechanisms.

3.1. SDC overview

SDC methods for ODEs are introduced in Dutt et al. [19]. The basic idea of SDC is to write
the solution of an ODE

φt = F (t, φ(t)), t ∈ [tn, tn+1
]

; (11)

φ(tn) = φn, (12)

as an integral,

φ(t) = φn +
∫ t

tn
F (φ) dτ, (13)

where we suppress explicit dependence of F and φ on t for notational simplicity. Given an
approximation φ(k)(t) to φ(t), one can then define a residual,

E
(
t, φ(k)

) = φn +
∫ t

tn
F
(
φ(k)

)
dτ − φ(k)(t). (14)

Defining the error as δ(k)(t) = φ(t) − φ(k)(t), one can then show that

δ(k)(t) =
∫ t

tn

[
F
(
φ(k) + δ(k)

)− F
(
φ(k)

)]
dτ + E

(
t, φ(k)

)
. (15)

In SDC algorithms, the integral in Equation (14) is evaluated with a higher-order quadrature
rule. By using a low-order discretisation of the integral in Equation (15) one can construct
an iterative scheme that improves the overall order of accuracy of the approximation by one
per iteration, up to the order of accuracy of the underlying quadrature rule used to evaluate
the integral in Equation (14). Specifically, if we let φ(k) represent the current approximation
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Combustion Theory and Modelling 1059

and define φ(k+1) = φ(k) + δ(k) to be the iterative update, then combining Equations (14)
and (15) results in an update equation,

φ(k+1)(t) = φn +
∫ t

tn

[
F
(
φ(k+1)

)− F
(
φ(k)

)]
dτ +

∫ t

tn
F
(
φ(k)

)
dτ, (16)

where a low-order discretisation (e.g. forward or backward Euler) is used for the first integral
and a higher-order quadrature is used to evaluate the second integral. For our reacting flow
model, the underlying projection methodology for the time-advancement of velocity is
second-order, so we require the use of second-order (or higher) numerical quadrature for
the second integral.

3.2. MISDC correction equations

Bourlioux et al. [21] and Layton and Minion [22] introduce a variant of SDC, referred to
as MISDC, in which F is decomposed into distinct processes, each treated separately and
on its own time scale. Here, we write

φt = F ≡ A(φ) + D(φ) + R(φ) (17)

to refer to advection, diffusion and reaction processes. For this construction we assume that
we are given an approximate solution φ(k) that we want to improve. The construction of
φ(0) to initialise the iterations is discussed in Section 3.3. Using the ideas in [21, 22], we
want to develop a series of correction equations to update φ(k) that uses relatively simple
second-order discretisations of A(φ) and D(φ) but a high-accuracy treatment of R(φ). In
our approach, A(φ(k)) is piecewise-constant over each time step, and is evaluated using a
second-order Godunov procedure (see [30] for full details on the Godunov procedure; we
use this same procedure in both the MISDC and Strang splitting algorithms in this paper).
The Godunov procedure computes a time-centred advection term at tn+1/2, and incorporates
an explicit diffusion source term and an iteratively lagged reaction source term, i.e.

A
(
φ(k)

) ≡ An+1/2,(k) = A
(
φn,D(φn), I (k−1)

R

)
, (18)

where I
(k−1)
R is the effective contribution due to reactions from the previous iteration, i.e.

I
(k−1)
R = 1

tn+1 − tn

∫ tn+1

tn
R
(
φ(k−1)

)
dτ. (19)

The evaluation of I
(k−1)
R is computed from a high-accuracy integration of the reaction

kinetics equations augmented with representation of advection and diffusion using VODE.
Details of this procedure are given below. We also represent D(φ(k)) as piecewise-constant
over the time step, found by using a midpoint rule,

D
(
φ(k)

) = 1

2

[
D(φn) + D

(
φn+1,(k)

)]
. (20)

In the spirit of MISDC, we will solve correction equations for the individual processes
in Equation (17) sequentially. In our approach, we begin by discretising Equation (16), but
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1060 A. Nonaka et al.

only including the advection and diffusion terms in the correction integral,

φ
(k+1)
AD (t) = φn +

∫ t

tn

[
A
(
φ(k+1)

)− A
(
φ(k)

)+ D
(
φ(k+1)

)
− D

(
φ(k)

)]
dτ +

∫ t

tn
F
(
φ(k)

)
dτ. (21)

Thus, φ
(k+1)
AD (t) represents an updated approximation of the solution after correcting the

advection and diffusion terms only. For the first integral, we use an explicit update for the
advection term and a backward Euler discretisation for the diffusion term. For the second
integral, we represent F in terms of A, D and R and use the definition of A(φ(k)), D(φ(k))
and I

(k−1)
R to obtain a discretisation of Equation (21) for φ

n+1,(k+1)
AD :

φ
n+1,(k+1)
AD = φn + �t

[
An+1/2,(k+1) − An+1/2,(k) + D

(
φ

n+1,(k+1)
AD

)
− D

(
φn+1,(k)

)]
+�t

{
An+1/2,(k) + 1

2

[
D (φn) + D

(
φn+1,(k)

)]+ I
(k)
R

}
, (22)

where I
(k)
R is defined using Equation (19). This equation simplifies to the following backward

Euler type linear system, with the right-hand side consisting of known quantities:

(I − �tD)φn+1,(k+1)
AD = φn + �t

{
An+1/2,(k+1) + 1

2

[
D(φn) − D

(
φn+1,(k)

)]+ I
(k)
R

}
. (23)

After computing φ
n+1,(k+1)
AD , we complete the update by solving a correction equation for

the reaction term. Standard MISDC approaches would formulate the reaction correction
equation as

φ(k+1)(t) = φn +
∫ t

tn

[
An+1/2,(k+1) − An+1/2,(k) + D

(
φ

n+1,(k+1)
AD

)
− D

(
φn+1,(k)

)]
dτ

+
∫ t

tn

[
R
(
φ(k+1)

)− R
(
φ(k)

)]
dτ +

∫ t

tn
F (φ(k)) dτ (24)

and use a backward Euler type discretisation for the integral of the reaction terms. Here,
to address stiffness issues with detailed chemical kinetics, we will instead formulate the
correction equation for the reaction as an ODE, which will be approximated using the
VODE package. In particular, by differentiating Equation (24) we obtain

φ
(k+1)
t =

[
An+1/2,(k+1) − An+1/2,(k) + D

(
φ

n+1,(k+1)
AD

)
− D

(
φn+1,(k)

)]
+ [R (φ(k+1)

)− R
(
φ(k)

)]+
{
An+1/2,(k) + 1

2

[
D(φn) + D

(
φn+1,(k)

)]+ R
(
φ(k)

)}
= R

(
φ(k+1)

)+ An+1/2,(k+1) + D
(
φ

n+1,(k+1)
AD

)
+ 1

2

[
D(φn) − D

(
φn+1,(k)

)]
︸ ︷︷ ︸

F
(k+1)
AD

, (25)
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Combustion Theory and Modelling 1061

which we then integrate with VODE to advance φn over �t to obtain φn+1,(k+1). We note
that, from the integration, we can easily evaluate the I

(k+1)
R that is needed for the next

iteration,

I
(k+1)
R = φn+1,(k+1) − φn

�t
− F

(k+1)
AD . (26)

3.3. MISDC predictor

In the MISDC predictor step we need to compute φn+1,(0). The predictor only needs to
supply a reasonable guess at the solution since the subsequent correction equations will
reduce the error to the desired order of accuracy. We choose a predictor that has a similar
form to the correction equations. We begin by using a second-order Godunov procedure
to compute a time-centred advection term, using an explicit diffusion source term and
time-lagged reaction source terms,

A
(
φ(0)

) ≡ An+1/2,(0) = A
(
φn, D(φn), I lagged

R

)
, (27)

where I
lagged
R ≡ I

(kmax)
R from the previous time step. We then solve an advection–diffusion

equation using a Crank–Nicolson discretisation for diffusion, including the reaction source
term,

φ
n+1,(0)
AD − φn

�t
= An+1/2,(0) + 1

2

[
D(φn) + D

(
φ

n+1,(0)
AD

)]
+ I

lagged
R . (28)

Finally, we use VODE to discretise the reaction term and advance φn over �t to obtain
φn+1,(0) using

φ
(0)
t = R

(
φ(0)

)+ An+1/2,(0) + 1

2

[
D(φn) + D

(
φ

n+1,(0)
AD

)]
︸ ︷︷ ︸

F
(0)
AD

, (29)

and define I
(0)
R for use in the first MISDC corrector iteration as

I
(0)
R = φn+1,(0) − φn

�t
− F

(0)
AD. (30)

3.4. Overview of Strang splitting algorithm

For comparison purposes, we also give an overview of the Strang splitting algorithm
from [7], which is also described in full detail in Section 4. First, we use VODE to advance
the reaction equations by �t/2, ignoring contributions from advection and diffusion. In
particular, we define φ〈1〉 by integrating

φt = R(φ) (31)
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1062 A. Nonaka et al.

from tn to tn + (�t/2) with initial condition φn. Next, as in the MISDC algorithm, we use
a second-order Godunov procedure to compute the advection term at tn+1/2, but here we
ignore the effect of reactions:

A(φ) ≡ An+1/2 = A
(
φ〈1〉, D

(
φ〈1〉)) . (32)

We use a semi-implicit discretisation of diffusion to advance the advection–diffusion equa-
tions by �t :

φ〈2〉 − φ〈1〉

�t
= An+1/2 + 1

2

[
D
(
φ〈1〉)+ D

(
φ〈2〉)] . (33)

The advection–diffusion discretisation uses a more elaborate predictor–corrector approach
in order to account for the state-dependent transport coefficients in a second-order fashion.
Finally, we use VODE to advance the reaction equations by �t/2, ignoring contributions
from advection and diffusion. We define φn+1 by integrating

φt = R(φ) (34)

from tn + (�t/2) to tn+1 with initial condition φ〈2〉.

4. Algorithmic details

In this section we describe the numerical discretisation of the low Mach number model,
with particular emphasis on the time-advancement of the thermodynamic variables. The
overall approach is a second-order projection method with an embedded MISDC strategy
for advancing the thermodynamic variables. We also describe the Strang splitting approach
used in [7], noting that the Strang splitting and MISDC algorithms differ only in the time-
advancement of the thermodynamic variables. The spatial discretisations and the treatment
of velocity, including the projection, are the same in both algorithms.

We use a finite-volume, Cartesian grid approach with constant grid spacing, where U ,
ρ, ρYm, ρh and T represent cell averages, whereas π is defined as point-values on nodes
at half time levels. In summary, we advance the species equation (2), enthalpy equation (3)
and momentum equation (7) in time subject to the constraint equation (10). There are three
major steps in the algorithm, as follows.

Step 1: Compute advection velocities

Use a second-order Godunov procedure to predict a time-centred velocity, UADV,∗, on
cell faces using the cell-centred data at tn and the lagged pressure gradient from tn−1/2. (An
iterative procedure is used to define an initial pressure profile for the algorithm; see [7,30] for
details.) The provisional field, UADV,∗, represents a normal velocity on cell faces analogous
to a MAC-type staggered grid discretisation of the Navier–Stokes equations (see [31], for
example). However, UADV,∗ fails to satisfy the divergence constraint equation (10). We
apply a discrete projection by solving the elliptic equation

DFC→CC 1

ρn
GCC→FCφ = DFC→CCUADV,∗ −

(
Ŝn + �tn

2

Ŝn − Ŝn−1

�tn−1

)
(35)
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Combustion Theory and Modelling 1063

for φ at cell-centres, where DFC→CC represents a cell-centred divergence of face-centred
data, GCC→FC represents a face-centred gradient of cell-centred data, and ρn is computed
on cell faces using arithmetic averaging from neighbouring cell centres. The solution, φ, is
then used to define

UADV = UADV,∗ − 1

ρn
GCC→FCφ. (36)

Thus, UADV is a second-order accurate, staggered grid vector field at tn+1/2 that discretely
satisfies the constraint equation (10), and is used for computing the time-explicit advective
fluxes for U , ρh and ρYm (and advective derivatives for T in the Strang splitting algorithm).

Step 2: Advance thermodynamic variables

Integrate (ρYm, ρh) over the full time step. This is where the primary differences
between the MISDC and Strang splitting algorithms arise. Both algorithms are multi-step
procedures that will be described in Section 4.1.

Step 3: Advance the velocity

Compute Sn+1 from the new-time thermodynamic variables and an estimate of ω̇n+1
m . For

the MISDC algorithm, evaluate ω̇n+1
m directly from the new-time thermodynamic variables.

For the Strang splitting algorithm, we use the average value of ω̇m from each of the
two VODE chemistry integrations during the thermodynamic variable advance. (Note that
results presented in Section 5 will suggest why the integral-averaged production rates might
be the more appropriate option for the Strang algorithm.)

Next, we compute an intermediate cell-centred velocity field, Un+1,∗ using the lagged
pressure gradient, by solving

ρn+1/2
Un+1,∗ − Un

�t
+ (

UADV · ∇U
)n+1/2 = 1

2

(∇ · τn + ∇ · τn+1,∗)− ∇πn−1/2, (37)

where τn+1,∗ = μn+1[∇Un+1,∗ + (∇Un+1,∗)T − (2IŜn+1/3)] and ρn+1/2 = (ρn + ρn+1)/2.
This is a semi-implicit discretisation for U , requiring the use of a linear solver. The time-
centred velocity in the advective derivative, Un+1/2, is computed in the same way as UADV,∗,
but also includes the viscous stress tensor evaluated at tn as a source term in the Godunov
integrator. At this point, the intermediate velocity field Un+1,∗ does not satisfy the constraint
equation (10). Hence, we apply an approximate projection to update the pressure and to
project Un+1,∗ onto the constraint surface. In particular, we solve

LN→Nφ = DCC→N

(
Un+1,∗ + �t

ρn+1/2
GN→CCπn−1/2

)
− Ŝn+1 (38)

for nodal values of φ. Here, LN→N represents a nodal Laplacian of nodal data, computed
using the standard bilinear finite-element approximation to ∇ · (1/ρn+1/2)∇. Also, DCC→N

is a discrete second-order operator that approximates the divergence at nodes from cell-
centred data and GN→CC approximates a cell-centred gradient from nodal data. We compute
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1064 A. Nonaka et al.

nodal values for Ŝn+1 by interpolating the cell-centred values. Finally, we determine the
new-time cell-centred velocity field using

Un+1 = Un+1,∗ − �t

ρn+1/2
GN→CC

(
φ − πn−1/2

)
, (39)

and the new time-centred pressure using πn+1/2 = φ. This completes the description of the
time-advancement algorithm.

4.1. Thermodynamic advance

Here we describe the details of Step 2 for both the MISDC and Strang splitting algorithms,
in which we advance (ρYm, ρh) over the full time step.

MISDC algorithm

The MISDC algorithm uses a MOL integration to advance the PDEs describing the thermo-
dynamic variables given by species equation (2) and enthalpy equation (3). As discussed in
Section 3, we use a first-order in time predictor to compute an estimate of the time-advanced
state, and then iteratively solve correction equations to improve the accuracy of the solution.
There are two steps in the MISDC thermodynamic advance, as follows.

MISDC Step 2A: Predictor

Advance (ρYm, ρh)n → (ρYm, ρh)n+1,(0) by discretising the full ADR system over the
time interval �t using a method that is first-order in time due to the use of time-lagged
thermodynamic coefficients in the implicit treatment of diffusive terms. In this section, we
simplify notation by suppressing the time step index, e.g. (ρYm, ρh)n+1,(k) ≡ (ρYm, ρh)(k).

MISDC Step 2B: Corrector

Iteratively improve the accuracy of (ρYm, ρh)(k), for k ∈ (1, kmax). The final iteration defines
the time-advanced state, (ρYm, ρh)n+1 = (ρYm, ρh)(kmax).

Formally to achieve second-order accuracy, kmax ≥ 1. A larger value of kmax will reduce
the error of the final solution to that of the underlying quadrature scheme used to integrate
Equation (25), but cannot further improve the convergence rate of the method. The details
for MISDC Steps 2A and 2B are as follows.

MISDC algorithm step details

MISDC Step 2A-I

Compute (λ, cp,Dm, hm)n from (Ym, T )n. Compute �̃n
m = ρnDn

m∇Yn
m and conservatively

correct these fluxes as discussed in Section 2 to obtain �n
m. Use a second-order Godunov

integrator to compute time-centred edge states, (ρYm, ρh)n+1/2,(0), with explicitly evalu-
ated diffusion processes and time-lagged reaction processes (i.e. I

lagged
R ) as source terms.

Then, compute the time-advanced density, ρn+1, using a time-explicit discretisation of
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Combustion Theory and Modelling 1065

Equation (5),

ρn+1 − ρn

�t
= −

∑
m

∇ · (UADVρYm

)n+1/2,(0)
. (40)

MISDC Step 2A-II

Compute provisional, time-advanced species mass fractions, Ỹ
(0)
m, AD, using a discretisation

of Equation (2) with lagged transport coefficients and time-lagged reaction source terms,

ρn+1Ỹ
(0)
m, AD − (ρYm)n

�t
= −∇ · (UADVρYm

)n+1/2,(0)

+ 1

2
∇ ·

(
�n

m + ρnDn
m∇Ỹ

(0)
m, AD

)
+ I

lagged
R, ρYm

. (41)

Each of the species equations requires the solution of a linear system for Ỹ
(0)
m, AD.

MISDC Step 2A-III

Compute �
(0)
m, AD, which are conservatively corrected versions of �̃

(0)
m, AD = ρnDn

m∇Ỹ
(0)
m, AD,

and compute updated provisional time-advanced species mass fractions, Y
(0)
m, AD, using

ρn+1Y
(0)
m, AD − (ρYm)n

�t
= −∇ · (UADVρYm

)n+1/2,(0) + 1

2
∇ ·

(
�n

m + �
(0)
m, AD

)
︸ ︷︷ ︸

Q
(0)
ρYm

+I
lagged
R, ρYm

, (42)

where Q
(0)
ρYm

represents an effective contribution of advection–diffusion to the update
of ρYm.

MISDC Step 2A-IV

Compute a provisional, time-advanced enthalpy, h(0)
AD, using a discretisation of Equation (3)

with lagged transport coefficients,

ρn+1h
(0)
AD − (ρh)n

�t
= −∇ · (UADVρh

)n+1/2,(0)

+ 1

2

(
∇ · λn

cn
p

∇hn + ∇ · λn

cn
p

∇h
(0)
AD

)
+1

2

∑
m

∇·
[
hn

m

(
�n

m−λn

cn
p

∇Yn
m

)

+ hn
m

(
�

(0)
m, AD − λn

cn
p

∇Y
(0)
m, AD

)]
. (43)

Note that the enthalpy diffusion term is semi-implicit, requiring the solution of a linear
system for h

(0)
AD. The species enthalpy terms, hm, are also lagged in order to avoid a more
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1066 A. Nonaka et al.

complicated linear system. Once we have computed h
(0)
AD, we define Q

(0)
ρh as the evaluation

of the right-hand side of Equation (43), which represents an effective contribution of
advection–diffusion to the update of ρh.

MISDC Step 2A-V

Use VODE to integrate species equation (2) and enthalpy equation (3) over �t to advance
(ρYm, ρh)n to (ρYm, ρh)(0) using the piecewise-constant advection and diffusion source
terms:

∂(ρYm)

∂t
= Q

(0)
ρYm

+ ω̇m(Ym, T ), (44)

∂(ρh)

∂t
= Q

(0)
ρh. (45)

Note that each evaluation of the right-hand side in the VODE solve requires a call to the
equation of state to obtain T from (Ym, h) before computing ω̇m. After the integration is
complete, we make one final call to the equation of state to compute T (0) from (Ym, h)(0).

MISDC Step 2A-VI

Compute the effect of reactions in the evolution of ρYm (recall that reactions do not affect
ρh) in the VODE integration using

I
(0)
R, ρYm

= (ρYm)(0) − (ρYm)n

�t
− Q

(0)
ρYm

. (46)

This is the end of the predictor. In MISDC Step 2B, we improve upon the most recently
computed time-advanced solution by solving correction equations. We are also able to
compute more accurate estimates of time-advanced thermodynamic coefficients, since we
can use the most recently computed solution. We now describe MISDC Step 2B as if we
are performing an arbitrary number of iterations from k = 0 to kmax − 1. Note that, in this
paper, kmax = 1 unless indicated otherwise, since that is sufficient to match the order of the
underlying second-order projection method framework.

MISDC Step 2B-I

As in Step 2A-MISDC-a, use a second-order Godunov integrator to compute updated
time-centred edge states, (ρYm, ρh)n+1/2,(k+1), but use I

(k)
R rather than I

lagged
R as a source

term in the Godunov integrator.

MISDC Step 2B-II

Compute time-advanced transport coefficients, (λ, cp,Dm, hm)(k), from (Ym, T )(k). Next,

compute �
(k)
m , which are conservatively corrected versions of �̃

(k)
m = ρn+1D(k)

m ∇Y
(k)
m . Then,

compute provisional, time-advanced species mass fractions, Ỹ
(k+1)
m, AD, by solving a backward
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Combustion Theory and Modelling 1067

Euler type correction equation,

ρn+1Ỹ
(k+1)
m, AD − (ρYm)n

�t
= −∇ · (UADVρYm

)n+1/2,(k+1) + ∇ · ρn+1D(k)
m ∇Ỹ

(k+1)
m, AD

+ 1

2
∇ · (�n

m − �(k)
m

)+ I
(k)
R, ρYm

. (47)

Each of the species equations is implicit, requiring the solution of a linear system for Ỹ
(k+1)
m, AD.

MISDC Step 2B-III

Compute �
(k+1)
m, AD, which are conservatively corrected versions of �̃

(k+1)
m, AD = ∇ ·

ρn+1D(k)
m ∇Ỹ

(k+1)
m, AD. Then, similar to MISDC Step 2A-III, define an effective contribution

of advection–diffusion to the update of ρYm,

Q
(k+1)
ρYm

= −∇ · (UADVρYm

)n+1/2,(k+1) + �
(k+1)
m, AD + 1

2
∇ · (�n

m − �(k)
m

)
. (48)

MISDC Step 2B-IV

Compute a provisional, time-advanced enthalpy, h
(k+1)
AD , by solving a backward Euler type

correction equation,

ρn+1h
(k+1)
AD − (ρh)n

�t
= −∇ · (UADVρh)n+1/2,(k+1) + ∇ · λ(k)

c
(k)
p

∇h
(k+1)
AD

+ 1

2

(
∇ · λn

cn
p

∇hn − ∇ · λ(k)

c
(k)
p

∇h(k)

)

+ 1

2

∑
m

∇ ·
[
hn

m

(
�n

m − λn

cn
p

∇Yn
m

)

+ h(k)
m

(
�(k)

m − λ(k)

c
(k)
p

∇Y (k)
m

)]
. (49)

The enthalpy term is implicit, requiring the solution of a linear system for h
(k+1)
AD , whereas

the species enthalpy terms, hm, are discretised with a trapezoidal rule using iteratively
lagged, time-advanced values of hm in order to avoid a more complicated linear system.
Once we have computed h

(k+1)
AD , we define Q

(k+1)
ρh as the evaluation of the right-hand side

of Equation (49), which represents an effective contribution of advection–diffusion to the
update of ρh.

MISDC Step 2B-V

Use VODE to integrate species equation (2) and enthalpy equation (3) over �t to ad-
vance (ρYm, ρh)n to (ρYm, ρh)(k+1) using piecewise-constant advection and diffusion
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1068 A. Nonaka et al.

source terms:

∂(ρYm)

∂t
= Q

(k+1)
ρYm

+ ω̇m(Ym, T ), (50)

∂(ρh)

∂t
= Q

(k+1)
ρh . (51)

After the integration is complete, we make one final call to the equation of state to compute
T (k+1) from (Ym, h)(k+1).

MISDC Step 2B-VI

Compute the effect of reactions in the evolution of ρYm in the VODE integration using

I
(k+1)
R, ρYm

= (ρYm)(k+1) − (ρYm)n

�t
− Q

(k+1)
ρYm

. (52)

If k < kmax − 1, set k = k + 1 and return to MISDC Step 2B-I. Otherwise, the time-
advancement of the thermodynamic variables is complete, and set (ρYm, ρh)n+1 =
(ρYm, ρh)(k+1).

Strang splitting algorithm

The Strang splitting algorithm is used to advance the PDEs describing the thermodynamic
variables given by species equation (2) and enthalpy equation (3). Unlike the MISDC al-
gorithm, the system is divided arbitrarily into ‘reaction’ and ‘advection–diffusion’ compo-
nents, and each is integrated in isolation from the other. The discretisation of the advection–
diffusion component uses a predictor–corrector approach to account for time-advanced
transport coefficients in a second-order manner. There are four steps in the Strang splitting
thermodynamic advance, as follows.

Strang Step 2A: First reaction step

Advance (ρYm, ρh)n → (ρYm, ρh)〈1〉 by integrating the reaction terms over the time interval
�t/2 using VODE.

Strang Step 2B: Advection–diffusion predictor

Advance (ρYm, ρh)〈1〉 → (ρYm, ρh)〈2〉
pred by discretising the advection–diffusion terms over

the time interval �t using time-lagged transport coefficients.

Strang Step 2C: Advection–diffusion corrector

Advance (ρYm, ρh)〈1〉 → (ρYm, ρh)〈2〉 by discretising the advection–diffusion terms over
the time interval �t using time-advanced transport coefficients computed from the solution
of the predictor.
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Combustion Theory and Modelling 1069

Strang Step 2D: Second reaction step

Advance (ρYm, ρh)〈2〉 → (ρYm, ρh)n+1 by integrating the reaction terms over the time
interval �t/2 using VODE.

We now give details for Strang Steps 2A–2D.

Strang algorithm step details

Strang Step 2A

Use VODE to integrate species equation (2) and temperature equation (6) over �t/2
to advance (Ym, T )n to (Ym, T )〈1〉 while ignoring contributions due to advection and
diffusion:

∂Ym

∂t
= 1

ρ
ω̇m(Ym, T ), (53)

∂T

∂t
= − 1

ρcp

∑
m

hmω̇m(Ym, T ). (54)

Strang Step 2B-I

Compute (λ, cp,Dm, hm)〈1〉 from (Ym, T )〈1〉. Compute �̃
〈1〉
m = ρ〈1〉D〈1〉

m ∇Y
〈1〉
m and conserva-

tively correct these fluxes to obtain �
〈1〉
m . Use a second-order Godunov integrator to compute

time-centred edge states, (ρYm, ρh, T )n+1/2, including the explicitly evaluated diffusion pro-
cesses as source terms.

Strang Step 2B-II

Compute the time-advanced density, ρ〈2〉, using a time-explicit discretisation of Equa-
tion (5),

ρ〈2〉 − ρ〈1〉

�t
= −

∑
m

∇ · (UADVρYm

)n+1/2
. (55)

Strang Step 2B-III

Compute a provisional time-advanced temperature, T̃
〈2〉

pred using a Crank–Nicolson discreti-
sation of Equation (6) with lagged transport coefficients and without reaction terms,

(
ρ〈1〉 + ρ〈2〉

2

)
c〈1〉
p

[
T̃

〈2〉
pred − T 〈1〉

�t
+ (

UADV · ∇T
)n+1/2

]

= 1

2

(
∇λ〈1〉∇T 〈1〉 + ∇λ〈1〉∇T̃

〈2〉
pred

)
+
∑
m

�〈1〉
m · ∇h〈1〉

m . (56)

Note that this step involves the solution of a linear system for T̃
〈2〉

pred.
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1070 A. Nonaka et al.

Strang Step 2B-IV

Compute D〈2〉
m, pred from (Y 〈1〉

m , T̃
〈2〉

pred), and then compute provisional time-advanced
species mass fractions, Ỹ

〈2〉
m, pred, using a Crank–Nicolson discretisation of Equation (2)

without reaction terms,

ρ〈2〉Ỹ 〈2〉
m, pred − (ρYm)〈1〉

�t
= −∇ · (UADVρYm

)n+1/2 + 1

2
∇ ·

(
ρ〈2〉D〈2〉

m, pred∇Ỹ
〈2〉
m, pred + �〈1〉

m

)
.

(57)

Each of the species equations requires the solution of a linear system for Ỹ
〈2〉
m, pred.

Strang Step 2B-V

Compute �
〈2〉
m, pred, which are conservatively corrected versions of �̃

〈2〉
m, pred =

ρ〈2〉D〈2〉
m, pred∇Ỹ

〈2〉
m, pred, and compute updated provisional time-advanced species mass frac-

tions, Y
〈2〉
m, pred,

ρ〈2〉Y 〈2〉
m, pred − (ρYm)〈1〉

�t
= −∇ · (UADVρYm

)n+1/2 − 1

2
∇ ·

(
�

〈2〉
m, pred + �〈1〉

m

)
. (58)

Strang Step 2B-VI

Compute (λ, cp, hm)〈2〉
pred from (T̃ , Ym)〈2〉

pred, and then compute a provisional time-advanced
enthalpy, h

〈2〉
pred, using a Crank–Nicolson type discretisation of Equation (3),

ρ〈2〉h〈2〉
pred − (ρh)〈1〉

�t
= −∇ · (UADVρh

)n+1/2

+ 1

2

(
∇ · λ

〈2〉
pred

c
〈2〉
p,pred

∇h
〈2〉
pred + ∇ · λ〈1〉

c
〈1〉
p

∇h〈1〉
)

+ 1

2

∑
m

∇ ·
[
h

〈2〉
m, pred

(
�

〈2〉
m, pred − λ

〈2〉
pred

c
〈2〉
p,pred

∇Y
〈2〉
m, pred

)

+ h〈1〉
m

(
�〈1〉

m − λ〈1〉

c
〈1〉
p

∇Y 〈1〉
m

)]
. (59)

This requires the solution of a linear system for h
〈2〉
pred. In order to avoid a more complicated

linear system, the enthalpy terms multiplying the species fluxes, h
〈2〉
m, pred, are not treated

semi-implicitly, but rather are discretised using a trapezoidal rule with provisional time-
advanced variables.

Strang Step 2B-VII

To complete the advection–diffusion predictor, compute T
〈2〉

pred from (Ym, h)〈2〉
pred by inverting

h = ∑
m Ymhm(T ) using Newton iterations.
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Combustion Theory and Modelling 1071

Strang Step 2C-I

In the corrector, begin by computing new-time fluid properties, (λ, cp,Dm, hm)〈2〉 from

(Ym, h, T )〈2〉
pred. Next, compute revised provisional time-advanced species mass fractions,

Ỹ
〈2〉
m , using the same Crank–Nicolson discretisation as above, but with updated values

of Dm,

ρ〈2〉Ỹ 〈2〉
m − (ρYm)〈1〉

�t
= −∇ · (UADVρYm

)n+1/2 + 1

2
∇ · (ρ〈2〉D〈2〉

m ∇Ỹ 〈2〉
m + �〈1〉

m

)
. (60)

Strang Step 2C-II

Compute �
〈2〉
m , which are conservatively corrected versions of �̃

〈2〉
m = ρ〈2〉D〈2〉

m ∇Ỹ
〈2〉
m . Then,

compute time-advanced species mass fractions, Y
〈2〉
m , using

(ρYm)〈2〉 − (ρYm)〈1〉

�t
= −∇ · (UADVρYm

)n+1/2 + 1

2
∇ · (�〈2〉

m + �〈1〉
m

)
. (61)

Strang Step 2C-III

Compute a final time-advanced enthalpy, h〈2〉, using a Crank–Nicolson like update,

(ρh)〈2〉 − (ρh)〈1〉

�t
= −∇ · (UADVρh

)n+1/2 + 1

2

(
∇ · λ〈2〉

c
〈2〉
p

∇h〈2〉 + ∇ · λ〈1〉

c
〈1〉
p

∇h〈1〉
)

+ 1

2

∑
m

∇ ·
[
h〈2〉

m

(
�〈2〉

m − λ〈2〉

c
〈2〉
p

∇Y 〈2〉
m

)

+ h〈1〉
m

(
�〈1〉

m − λ〈1〉

c
〈1〉
p

∇Y 〈1〉
m

)]
. (62)

Strang Step 2C-IV

Once again, invert the definition of mixture enthalpy to obtain a consistent final time-
advanced temperature, T 〈2〉 = T 〈2〉(h〈2〉, Y 〈2〉

m ). This is the end of the advection–diffusion
step.

Strang Step 2D

Similar to Strang Step 2A, use VODE to integrate species equation (2) and temperature
equation (6) over �t/2 to advance (Ym, T )〈2〉 to (Ym, T )n+1 while ignoring contributions
due to advection and diffusion. The time-advancement of the thermodynamic variables is
now complete.

4.2. Extension to nuclear flames

In Bell et al. [8], the Strang splitting algorithm from [7] is generalised to the nuclear
deflagration regime to study astrophysical flames. In such applications, the reaction rates
can be highly nonlinear functions of temperature (the rate of the C/Mg conversion in white
dwarfs scales with ∼ T 23) and a non-ideal equation of state is required. Even though the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 0

7:
43

 1
8 

D
ec

em
be

r 
20

12
 



1072 A. Nonaka et al.

reaction networks for these types of applications are quite simple relative to the terrestrial
combustion case, an MISDC-type discretisation can be an extremely effective alternative
to Strang splitting, as we will demonstrate in Section 5.

The governing equations for the astrophysical flow examples are presented in detail
in [8], along with the necessary modifications to the Strang splitting algorithm of [7]. In
summary, these flows are subject to a governing model quite similar to that discussed in
Section 2. The effects of viscosity and species diffusion are negligible, so they are omitted
entirely. The thermal conductivity and equation of state are specified via a database of
tabular relationships, but the remaining computational machinery, including linear solvers,
Godunov advection integrator, and ODE evolution schemes, are used in precisely the same
way as in the original low Mach number combustion algorithm. Thus, the few modifications
to the algorithm presented in Section 4.1 are straightforward.

4.3. Computational requirements

Before we assess the computational advantages of the MISDC algorithm over the Strang
splitting scheme, it is useful to review their salient similarities and differences. Both use a
similar formulation for the advection term. Likewise, the linear systems associated with the
discretisation of the diffusion processes differ only in the right-hand-side forcing terms. The
Strang splitting algorithm requires an additional solution of a linear system for temperature,
but in the limit of a large number of species, the work required to solve linear systems is
comparable between the two algorithms. Thus, the primary difference between algorithms
is in the work required to integrate the reaction terms. We will show that the advection–
diffusion source terms present in the MISDC algorithm lead to ODE systems for the reaction
terms that can be integrated to comparable error with far less computational effort. Thus,
the MISDC algorithm will be shown to be far more efficient than Strang splitting.

5. Results

In this section, we compare the performance of MISDC and Strang splitting for four
problems. The first is a one-dimensional premixed terrestrial methane flame. The second
is a one-dimensional premixed terrestrial hydrogen flame. The third is a two-dimensional
premixed, perturbed hydrogen flame. The fourth is a one-dimensional astrophysical nuclear
carbon flame in a white dwarf environment.

In the first two examples, we examine the error and convergence of MISDC and Strang
splitting by performing one-dimensional simulations to a fixed time at various resolutions,
decreasing �x by a factor of two while holding the advective CFL number, σ , constant.
Here we estimate the error by comparing the solution at resolution �x with the solution
computed with resolution �x/2. Specifically, we approximate the L1 error for a simulation
with ncell cells as

L1
ncell

= 1

ncell

ncell∑
i=1

∣∣φi − φc−f
i

∣∣ , (63)

where φc−f is a coarsened version of the solution with twice the resolution, which is
obtained using arithmetic averaging onto a grid with ncell cells. We define the convergence
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Combustion Theory and Modelling 1073

rate between two solutions at adjacent resolutions as

rncell,c/ncell,f = log2

(
L1

ncell,c

L1
ncell,f

)
. (64)

In the third example, we evolve a two-dimensional premixed, perturbed hydrogen flame
and examine how each algorithm captures the dynamics of the resulting cellular burning
structures. In the fourth example, we examine the efficiency and accuracy of each algorithm
for computing the formation and propagation of a one-dimensional nuclear carbon flame
in a white dwarf environment.

5.1. Methane flame

In this example we compare the performance of MISDC and Strang splitting for propagating
a one-dimensional premixed methane flame. The simulations are based on the GRIMech-
3.0 [32] model and associated database, as given in the CHEMKIN-III library [33] format.
The GRIMech-3.0 model consists of 53 species with a 325-step chemical reaction network
for premixed methane combustion, coupled with a parametrised model for transport and
thermodynamic relationships. Several levels of detail are supported in GRIMech-3.0 for the
diffusive transport model; we select the mixture-averaged model for differential diffusion,
which is consistent with the formulation presented earlier, and requires the conservation
diffusion velocity modification discussed above to preserve mass conservation. This exam-
ple is particularly challenging and a relevant test case because of the extremely broad range
of chemical time scales, which range from 10−4 to 10−10 s.

For this example, an unstrained planar flame propagates into a homogeneous methane–
air mixture at a constant speed. Under these conditions the thermal and species profiles
are steady in a frame co-moving with the flame propagation. In the reference frame of
the unburned fuel the solution translates toward the inlet at the unstrained laminar burn-
ing speed, sL. We select a lean fuel composition, Y (O2 : CH4 : N2) = (0.2238 : 0.0392 :
0.7370) at T = 298 K, where sL = 18.957 cm s−1, and work in the frame of the unburned
fuel.

Initial flame profiles are generated for this study in an auxiliary step using a steady
one-dimensional solution computed with the GRIMech-3.0 model using the PREMIX
code [34]. PREMIX incorporates non-uniform grid spacing in one dimension in order to
focus mesh resolution near regions of high curvature in the flame profiles. A numerically
resolved steady PREMIX solution is translated into the frame of the unburned fuel, and
interpolated onto fixed uniform grids using ncell = 256, 512, 1024 and 2048 cells across
the 1.2 cm domain. The boundary conditions upstream of the flame are given by the inlet
gas composition and temperature and an outflow condition is specified at the downstream
boundary. The pressure within the domain is fixed at 1 atm.

The profiles are evolved with both the MISDC and Strang algorithms for 1 ms to allow
the initial data to relax on the coarse grid, and for the flame to propagate a non-trivial
distance through the mesh. The time steps for the four cases are �t = 12.5, 6.25, 3.125
and 1.5625 μs, respectively, corresponding to σ ∼ 0.25. The resulting profiles are averaged
and compared to a reference solution as discussed above in order to evaluate the error and
convergence properties of the integration schemes.
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1074 A. Nonaka et al.

Table 1. Error and convergence rates for a premixed methane flame using MISDC with
σ ∼ 0.25 (top), Strang splitting with σ ∼ 0.25 (middle), and Strang splitting with σ ∼ 0.1
(bottom).

Variable L1
256 r256/512 L1

512 r512/1024 L1
1024

Y (O2) 9.78E−06 1.97 2.49E−06 1.86 6.86E−07
Y (CH4) 2.65E−06 1.99 6.66E−07 1.88 1.81E−07
Y (N2) 8.00E−07 1.95 2.07E−07 1.87 5.65E−08
Y (H2O) 5.53E−06 1.96 1.42E−06 1.81 4.06E−07
Y (CO2) 7.01E−06 1.96 1.81E−06 1.86 4.99E−07
Y (CH2OH) 2.14E−10 1.99 5.39E−11 1.92 1.43E−11
Y (CH2H5) 3.04E−09 2.00 7.60E−10 1.92 2.00E−10
ρ 3.65E−08 2.05 8.83E−09 1.88 2.39E−09
T 8.85E−02 1.97 2.26E−02 1.88 6.17E−03
ρh 8.94E+01 2.04 2.18E+01 1.87 5.98E+00
U 1.02E−01 2.03 2.50E−02 1.83 7.02E−03

Y (O2) 6.29E−05 2.43 1.17E−05 2.11 2.69E−06
Y (CH4) 1.64E−05 2.29 3.34E−06 2.24 7.07E−07
Y (N2) 3.79E−06 1.80 1.09E−06 1.58 3.66E−07
Y (H2O) 3.71E−05 2.35 7.25E−06 2.55 1.24E−06
Y (CO2) 4.09E−05 2.62 6.65E−06 1.48 2.38E−06
Y (CH2OH) 1.70E−09 1.70 5.25E−10 1.69 1.63E−10
Y (CH2H5) 9.67E−09 1.63 3.13E−09 0.50 2.21E−09
ρ 2.05E−07 2.38 3.95E−08 2.61 6.47E−09
T 5.58E−01 2.46 1.01E−01 2.05 2.44E−02
ρh 5.01E+02 2.02 1.23E+02 1.60 4.08E+01
U 7.19E−01 2.39 1.37E−01 2.92 1.81E−02

Y (O2) 1.62E−05 2.04 3.93E−06 1.94 1.02E−06
Y (CH4) 4.50E−06 2.11 1.04E−06 1.99 2.63E−07
Y (N2) 1.26E−06 1.71 3.87E−07 1.84 1.08E−07
Y (H2O) 9.06E−06 2.21 1.96E−06 2.01 4.84E−07
Y (CO2) 1.09E−05 1.79 3.14E−06 1.85 8.69E−07
Y (CH2OH) 4.96E−10 1.74 1.49E−10 1.61 4.85E−11
Y (CH2H5) 6.01E−09 1.43 2.23E−09 1.65 7.12E−10
ρ 5.41E−08 2.25 1.13E−08 2.04 2.76E−09
T 1.42E−01 2.02 3.51E−02 1.94 9.12E−03
ρh 1.37E+02 2.12 3.15E+01 1.99 7.94E+00
U 1.85E−01 2.42 3.46E−02 2.10 8.05E−03

In the top and middle of Table 1, we report measured error norms and convergence
rates using both schemes for ρ, T , ρh, U , the mass fractions of the primary reactants
(O2 and CH4), the primary products (H2O and CO2), and two trace species with relatively
short-time-scale chemical dynamics (CH2OH and CH2H5). For ncell = 512 and 1024, the
MISDC algorithm exhibits convergence rates between 1.81 and 1.92 in every variable. The
Strang splitting algorithm shows more erratic convergence properties, with rates between
0.50 and 2.92 in each variable. We note that for ncell = 1024, MISDC is more accurate
than Strang splitting in every field, with an error reduction factor between 2.6 and 11.4
depending on the variable. However, to make a more meaningful comparison we will
compute error and convergence rates for the Strang splitting example with a smaller value
of σ , so that the method exhibits more uniform convergence (we still use the same values
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Combustion Theory and Modelling 1075

of ncell and compute to the same final time). We report the error norms and convergence
rates for Strang splitting with σ ∼ 0.1 at the bottom of Table 1. For ncell = 1024, the error
for MISDC with σ ∼ 0.25 is lower than the error for Strang splitting with σ ∼ 0.1 in every
variable, with an error reduction factor between 1.1 and 3.6, depending on the variable.
Thus, the MISDC algorithm is able to compute a solution with less error using a larger value
of σ .

5.1.1. Computational effort

Since both the MISDC and Strang splitting algorithms use the same chemical ODE integra-
tor with the same error tolerances, we can compare the overall effort required to complete a
time step for each of the two approaches by simply counting the number of times the right-
hand side for the ODE systems are evaluated over the same time interval. Note that since
we employ a ‘numerical Jacobian’ option, this count includes the evaluations necessary to
form the linearised matrix for the nonlinear systems solved by the integrator.

Taking the ncell = 256, σ ∼ 0.25 simulations with both MISDC and Strang splitting,
we evolve the initial data for five time steps to allow for transient behaviour from the
PREMIX solution to relax. Then, for the next time step, over all 256 zones, we count the
total number of right-hand-side evaluations over all reaction solves. The Strang splitting
algorithm requires 48,522 compared to 9798 for MISDC, which is approximately a factor
of 5 reduction. In the cell that requires the most right-hand-side evaluations by Strang
splitting, corresponding to a location near the middle of the flame, the Strang splitting
algorithm requires 754 evaluations compared to 188 for MISDC, which is approximately a
factor of 4 reduction.

In order to help visualise why the Strang splitting method requires more right-hand-side
evaluations, we present the time evolution of several species in the aforementioned cell near
the middle of the flame. Figures 1–3 illustrate how Y (O2), Y (CH2OH) and Y (C2H5) evolve
over two time steps. We choose O2 to illustrate the evolution of the species with the largest
destruction rate and CH2OH and C2H5 to illustrate two species with relatively short-time-
scale chemical dynamics. The trajectories of the solution over the first Strang splitting half
time step of reaction (Strang Step 2A) are represented by the red dots; the second half
step (Strang Step 2D) are represented by the green dots. The discontinuity between the
red and green trajectories represents the change in solution value due to the advection–
diffusion update in Strang Steps 2B and 2C. The corresponding trajectories of the solution
in the MISDC predictor (MISDC Step 2A-V) are represented by the blue dots, and for the
correction (Strang Step 2B-V) by the pink dots. Each dot indicates the solution value at a
point in time where the right-hand side was evaluated. Thus, the locations where the dots
are more densely packed indicate time ranges where the chemistry integrator performed
more computational work. Focusing on Figures 2 and 3, we see that the change in solution
due to the Strang splitting advection–diffusion step causes steep transients in the solution
trajectory, resulting in very small time steps internal to VODE to resolve this behaviour
properly.

Recall that in the formulation of the Strang splitting algorithm, the reactions are evolved
in the absence of all processes that transport mass and energy across the boundary of each
cell. Thus, over the time step, the total mass density, ρ and mixture enthalpy, h remain
constant even though the temperature of the cell may increase due to reactions. Since
the coupled model does not support acoustic signals, this accumulated energy must be
transported away by the advection–diffusion component of the algorithm over the time step.
The numerical transients exhibited by the Strang splitting scheme reflect the relaxation of
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9.3

9.6

9.9

 0 Δt/2 Δt 3Δt/2 2Δt

Y
(O

2)
 x

 1
0-2

Time

Strang Step 2A
Strang Step 2D

MISDC Step 2A-V
MISDC Step 2B-V

Figure 1. Evolution of Y (O2) over two time steps for the Strang splitting and MISDC algorithms.
Each dot represents a point in time where VODE evaluated the right-hand side. The red and green
trajectories represent the two separate calls to VODE required by the Strang splitting algorithm. The
discontinuity between the red and green trajectories represents the contribution due to advection
and diffusion in Strang Steps 2B and 2C. The blue and pink trajectories represent the predictor and
corrector calls to advance the thermodynamic variables in the MISDC algorithm. (colour online)

this imbalance. Since the MISDC scheme incorporates the advection–diffusion directly,
there is no such accumulation and no resulting short-time-scale transients. The MISDC
solutions more accurately reflect the dynamic interplay between the physical processes
at play.

On a related note, these observations help to justify why the Strang splitting scheme uses
an integral-averaged approximation for the chemical sources in the divergence constraint
evaluation, as discussed in Section 4. For a converged solution, the sum of the two reaction
components from the Strang splitting algorithm must equal the corresponding term in the
MISDC algorithm. However, Figures 1–3 suggest strongly that integral-averaged production
measures are required in order to provide a sufficiently robust estimate of the effect of the
reactions on the divergence constraint over the time step.

Overall, from this example we conclude the following.

� Using σ ∼ 0.25, MISDC provides reduced error compared to Strang splitting.
� MISDC exhibits more uniform second-order convergence than Strang splitting at a

given σ .
� MISDC with σ ∼ 0.25 provides reduced error compared to Strang splitting with

σ ∼ 0.1.
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Strang Step 2A
Strang Step 2D

MISDC Step 2A-V
MISDC Step 2B-V

Figure 2. Same as Figure 1, but for the evolution of Y (CH2OH).(colour online)

 0

3.0

6.0

9.0

 0 Δt/2 Δt 3Δt/2 2Δt
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2H
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 x
 1

0-6

Time

Strang Step 2A
Strang Step 2D

MISDC Step 2A-V
MISDC Step 2B-V

Figure 3. Same as Figure 1, but for the evolution of Y (C2H5).(colour online)
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1078 A. Nonaka et al.

� MISDC requires less computational work per time step, as indicated by the number of
right-hand-side evaluations in the chemistry integrations.

5.2. Hydrogen flame

We next compare the performance of the MISDC algorithm to Strang splitting using a
one-dimensional premixed hydrogen flame. Although quite similar to the configuration
of the first example, the hydrogen system is distinguished by the role that differential
diffusion plays in the flame propagation. Hydrogen atoms created in the primary reaction
zone preferentially diffuse upstream and attack the H2 atoms in the cold region just ahead
of the flame. In the steady flame, the H and H2 profiles are considerably more broad than
other flame radicals, such as HO2 and H2O2. Capturing the detailed dynamics of the flame
requires an accurate representation of these differential diffusion effects.

The physical model for the premixed hydrogen system, consisting of 9 species and 27
reactions, and associated thermodynamic and transport databases were generated for this
case by stripping the carbon species and chemistry from the GRIMech-3.0 distribution.
Similar to the methane flame, the initial conditions are obtained by interpolating from
a frame-shifted, refined steady 827-point, one-dimensional solution computed using the
PREMIX code. For this case, the inlet stream at T = 298 K has composition, Y (H2 : O2 :
N2) = (0.0107 : 0.2304 : 0.7589) so that the unstrained laminar burning speed is sL =
14.869 cm s−1. The initial profile is interpolated onto a 1.2 cm domain with ncell = 256,
512, 1024 and 2048, and evolved for 2 ms to allow the initial data to relax on the coarse
grid, and for the flame to propagate a non-trivial distance through the mesh. The time steps
used in each case are �t = 25, 12.5, 6.25 and 3.125 μs, respectively, corresponding to
σ ∼ 0.25.

In the top and middle of Table 2, we report error and convergence results for both
schemes for ρ, T , ρh, U , the mass fractions of the primary reactants (H2 and O2), the
primary product (H2O), and two trace species with relatively short-time-scale chemical
dynamics (H2O2 and HO2). MISDC exhibits more uniform convergence whereas Strang
splitting deviates significantly from second-order (particularly for U ). Furthermore, in
the ncell = 1024 simulation, the MISDC algorithm is again more accurate than the Strang
splitting algorithm in every field, with an error reduction factor between 3 and 53, depending
on the variable. Next, we test the Strang splitting algorithm using σ ∼ 0.05 and report the
error norms and convergence rates in the bottom of Table 2. Comparing MISDC using
σ ∼ 0.25 with Strang splitting using σ ∼ 0.05, we see that the error is comparable. Strang
splitting performs better by a factor of up to 2.4 in some variables, whereas MISDC performs
better by up to a factor of 4.1 in other variables.

In terms of per-step performance, using the same test described in the methane
flame example, the MISDC algorithm required 6414 right-hand-side evaluations per
time step for the case with ncell = 256, whereas the Strang splitting algorithm required
28,383, a factor of 4.4 more. Similar to the previous example, we conclude that the
MISDC algorithm is considerably more accurate and efficient than the Strang splitting
scheme.

5.3. Two-dimensional hydrogen flame

In this example we evolve a two-dimensional lean premixed, perturbed hydrogen flame
to examine the performance of each algorithm within the cellular burning structures
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Combustion Theory and Modelling 1079

Table 2. Error and convergence rates for a premixed hydrogen flame using MISDC with
σ ∼ 0.25 (top), Strang splitting with σ ∼ 0.25 (middle), and Strang splitting with σ ∼ 0.05
(bottom).

Variable L1
256 r256/512 L1

512 r512/1024 L1
1024

Y (H2) 2.48E−07 1.90 6.64E−08 1.79 1.91E−08
Y (O2) 8.07E−06 1.90 2.16E−06 1.81 6.18E−07
Y (N2) 1.04E−06 1.92 2.73E−07 1.77 7.99E−08
Y (H2O) 7.98E−06 1.90 2.14E−06 1.81 6.11E−07
Y (H2O2) 5.73E−08 2.13 1.31E−08 2.19 2.88E−09
Y (HO2) 4.62E−08 2.09 1.08E−08 2.29 2.22E−09
ρ 3.64E−08 1.95 9.40E−09 1.85 2.60E−09
T 8.13E−02 1.88 2.20E−02 1.79 6.38E−03
ρh 8.13E−02 1.88 2.20E−02 1.79 6.38E−03
U 2.06E−02 1.73 6.22E−03 1.65 1.99E−03

Y (H2) 1.01E−06 1.58 3.38E−07 0.59 2.25E−07
Y (O2) 2.62E−05 1.87 7.16E−06 0.99 3.60E−06
Y (N2) 3.18E−06 1.36 1.24E−06 0.88 6.73E−07
Y (H2O) 2.43E−05 1.81 6.92E−06 1.08 3.27E−06
Y (H2O2) 5.33E−07 0.91 2.83E−07 1.26 1.18E−07
Y (HO2) 3.60E−07 0.51 2.52E−07 1.13 1.15E−07
ρ 1.45E−07 2.07 3.47E−08 1.62 1.13E−08
T 2.97E−01 1.69 9.18E−02 1.13 4.19E−02
ρh 2.97E−01 1.69 9.18E−02 1.13 4.19E−02
U 1.04E−01 3.57 8.72E−03 0.53 6.04E−03

Y (H2) 2.99E−07 1.95 7.74E−08 1.98 1.96E−08
Y (O2) 9.10E−06 2.00 2.27E−06 2.01 5.66E−07
Y (N2) 1.27E−06 1.97 3.25E−07 1.99 8.17E−08
Y (H2O) 8.93E−06 2.00 2.24E−06 2.00 5.59E−07
Y (H2O2) 1.09E−07 1.79 3.13E−08 1.94 8.18E−09
Y (HO2) 9.95E−08 1.59 3.31E−08 1.85 9.17E−09
ρ 3.96E−08 2.01 9.80E−09 2.01 2.44E−09
T 9.81E−02 1.98 2.48E−02 2.00 6.22E−03
ρh 9.81E−02 1.98 2.48E−02 2.00 6.22E−03
U 1.67E−02 2.26 3.48E−03 2.06 8.36E−04

characteristic of thermodiffusively unstable flames. In such regions, it is critical correctly
to capture the stiff coupling of the chemistry with the differential diffusion. We use the
chemistry mechanism and initial profile from the previous example, but here we use a
domain with dimensions Lx = Ly = 1.2 cm, ncell = 256 in each direction, and periodic
boundary conditions in the x-direction. We use the same inflow condition at the low-y
boundary, and outflow at the high-y boundary. Each column of cells is initialised with the
same one-dimensional profile as in the previous example, except that we shift the location
of the initial profile using a series of Fourier modes,

yshift(x) = 0.016
5∑

i=1

{
Ai sin

[
2πBi(x − Ci)

Lx

]}
, (65)
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1080 A. Nonaka et al.

Figure 4. Time evolution of d[ρY (H2)]/dt (blue) 0 to (red) −0.013 g cm−3 s−1 at t = 0, 4.8, 8.0 and
12.7 ms using the MISDC algorithm. (colour online)

with A = [1, 1.023, 0.945, 1.017, 0.982], B = [4, 2, 3, 5, 5] and C = [0, 0.4598,

0.712435, 0.33, 1.4234] cm. The time evolution of d[ρY (H2)]/dt using the MISDC al-
gorithm is shown in Figure 4. To compare the performance of MISDC and Strang splitting,
we restart each simulation using the data in the last frame in Figure 4 and track the solution
trajectories within the chemical integration steps over two time steps in the centre of the
strongest cellular burning region, indicated by the darkest red region in the last panel. Fig-
ures 5–7 illustrate how Y (H2), Y (H2) and Y (H2O2) evolve over the next two time steps, and
are analogous to the solution trajectory figures from the methane flame example. Similar
to the methane flame example, we illustrate the evolution of a species with a relatively
large destruction rate (H2), as well as two species with relatively short-time-scale dynamics
(H2O2 and HO2). In this particular cell, MISDC requires 45 right-hand-side evaluations,
whereas Strang splitting requires 110 evaluations. We reach the same conclusions as in

1.0
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1.4

 0 Δt/2 Δt 3Δt/2 2Δt
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 x
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0-3

Time

Strang Step 2A
Strang Step 2D

MISDC Step 2A-V
MISDC Step 2B-V

Figure 5. Same as Figure 1, but for Y (H2) in the two-dimensional hydrogen flame example. (colour
online)
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Figure 6. Same as Figure 5, but for Y (H2O2).(colour online)
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Figure 7. Same as Figure 5, but for Y (HO2). (colour online)
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1082 A. Nonaka et al.

the methane flame example, in that the advection–diffusion forcing terms in the MISDC
chemistry integrations lead to a smoother trajectory which requires fewer right-hand-side
evaluations than Strang splitting.

5.4. Nuclear carbon flame

Here we examine the performance of both algorithms in the astrophysical regime with
extremely temperature-sensitive reactions (scaling with ∼ T 23) and a non-ideal equation
of state. The physical problem is the development and propagation of a one-dimensional
nuclear carbon flame in a white dwarf environment. We use the public version of the general
stellar equation of state described in [35], which includes contributions from electrons, ions
and radiation. We calculate thermal conductivity using Timmes’s publicly available routine,
which includes contributions from radiation and electron conduction processes as explained
in [36]. Our simulation contains three species (12C, 16O and 24Mg) and we model a C/Mg
reaction using a single-step mechanism derived from [37]. We initialise our domain with a
fuel mixture that smoothly transitions to an ash mixture. After ∼ 2.25 × 10−4 s, a flame front
develops and begins propagating across the domain at a constant velocity. We examine the
computed flame speed of each algorithm as a function of σ , and will show that the MISDC
algorithm computes a much more accurate flame speed compared to Strang splitting at a
given advective CFL number.

Our problem domain is 20 cm with ncell = 2048. We initialise our domain by first
defining a fuel state with ρfuel = 5 × 107 g cm −3, Tfuel = 108 K, Y (C)fuel = 0.5, Y (O)fuel =
0.5 and Y (Mg)fuel = 0. The thermodynamic pressure is computed from the fuel state using
the equation of state, i.e. p0 = p(ρfuel, Tfuel, Yfuel). We define an ash state with Tash =
3 × 109 K, Y (C)ash = 0, Y (O)ash = Y (O)fuel and Y (Mg)ash = 0.5. We smoothly vary the
temperature and composition across the domain, such that the initial state is given by

T (x) = Tfuel + 1

2
(Tash − Tfuel){1 + tanh[2(x − 2.5)]}, (66)

Y (C)(x) = Y (C)fuel + 1

2
[Y (C)ash − Y (C)fuel] {1 + tanh[2(x − 2.5)]}, (67)

Y (Mg)(x) = 1 − Y (O)(x) − Y (C)(x).
(68)

The equation of state is used to initialise ρ, h = ρ, h(p0, T , Ym) in each cell and we initialise
the velocity to U = 5 × 104 cm s−1 everywhere. We use an inflow condition at the lower
boundary with the initial fuel conditions. We use outflow at the upper boundary.

We run the simulation with each algorithm to t = 2.5 × 10−4 s using σ =
0.5, 0.25, 0.1, 0.05 and 0.01. Unlike the terrestrial flame examples, we do not fix the
time step, but allow the time step to change over the course of the simulation based on
the advective CFL condition. For reference, the total number of time steps in the σ = 0.5
simulation is ∼ 3000, and the number of time steps is inversely proportional to σ , as ex-
pected. We also run the same simulations with the MISDC algorithm and kmax = 3 instead
of kmax = 1. We will refer to the MISDC simulations as MISDC-3 and MISDC-1. Note
that the MISDC-3 simulation requires approximately twice the amount of computational
work in the thermodynamic advance as the MISDC-1 case. We define the exact solution as
a Strang splitting simulation run with σ = 0.001. The flame speed is computed by tracking
the speed of the location in the flame where T = 2 × 109 K, which corresponds to roughly
half of the peak temperature in the flame. We will report the average flame speeds over the
final ∼ 0.2 × 10−4 s.
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Figure 8. Flame speed as a function of advective CFL number and algorithm for the nuclear carbon
flame.

In Figure 8, we plot the flame speed vs. σ for each of the simulations. The horizontal
dashed line indicates the exact flame speed. We observe that for advective CFL numbers of
0.25 and lower, the MISDC simulations are much more accurate than the Strang splitting
simulations. At σ = 0.5, both the Strang splitting and MISDC-1 show significant inaccu-
racies compared to the MISDC-3. We note that even though the MISDC-3 simulation is
performing two additional iterations of the corrector, the overall work done by the algorithm
is less than twice the amount of work done by MISDC-1, since the MAC projection, nodal
projection, and velocity update are each performed only once regardless of the value of
kmax. Also, the error of the MISDC-3 algorithm at σ = 0.5 is even less than Strang splitting
at σ = 0.1, which implies that a computationally efficient and accurate strategy can poten-
tially be to run with a larger σ with more than one iteration of the MISDC corrector. The
behaviour at large σ serves to underscore the importance of coupling the different physical
processes in obtaining an accurate solution and illustrates how splitting error can lead to
significantly larger errors.

Even though the method is formally second-order with kmax = 1, we see that additional
iterations of the corrector can significantly improve the accuracy of the solution. We wish
to examine the behaviour of this flame simulation with a large value of σ and kmax > 1.
We take data from the end of the MISDC-3, σ = 0.5 simulation and run for one additional
time step, but with kmax = 10. In Figure 9, we plot the values of ρX(C) and ρh at tn+1 as a
function of iteration number k in the cell with the largest amount of Mg production. In this
plot, we include the solution at tn for reference, and the solution after the predictor is the
value reported at k = 0. The figure shows that the solution converges in a few iterations,
and changes very little for k ≥ 3. This is consistent with Figure 8, in which the flame
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Figure 9. Solution trajectories of ρX(C) and ρh as a function of k in the cell with the most vigorous
reactions in a fully developed carbon flame with σ = 0.5. The solution at tn is given for reference.
The solution after the predictor is the value reported at k = 0. The solution after k iterations of the
corrector follow.
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Figure 10. Solution trajectories of ρX(C) and ρh as a function of k in the cell with the most vigorous
reactions in a fully developed carbon flame with σ = 0.25. The solution at tn is given for reference.
The solution after the predictor is the value reported at k = 0. The solution after k iterations of the
corrector follow.
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Figure 11. Solution trajectories of ρX(C) and ρh as a function of k in the cell with the most vigorous
reactions in a fully developed carbon flame with σ = 0.05. The solution at tn is given for reference.
The solution after the predictor is the value reported at k = 0. The solution after k iterations of the
corrector follow.

speed using MISDC-1 with σ = 0.5 is highly inaccurate, whereas the flame speed using
MISDC-3 with σ = 0.5 is much more accurate. Thus, we conclude that in order for the
error to become acceptably small in this simulation, ∼ 3 or more corrector iterations are
required. Figures 10 and 11 contain the same data as Figure 9, but for the σ = 0.25 and
0.05 cases, respectively. As the σ decreases, fewer MISDC corrector iterations are required
in order for the solution to approach a steady value. In fact, for the σ = 0.25 case, the
solution changes very little after k = 1, and for the σ = 0.05 case, the solution changes
very little after the MISDC predictor (k = 0). The rate of convergence of SDC iterations
for stiff problems is discussed in [38], where it is shown that the number of iterations to
achieve convergence can grow substantially for stiff problems. Although the results here are
consistent with those in [38], we note that, in the current context, the integration of the stiffest
terms is done to a prescribed precision rather than the backward Euler type discretisation
of the correction equation considered in [38]. Nevertheless, there is clearly a trade-off
between taking larger time steps and potentially requiring more correction iterations in our
approach. We are investigating monitoring the convergence of the correction iterations to
determine the optimally efficient advective CFL number for future simulations, which will
vary depending on the nonlinearity of the PDE as well as the details of the flame dynamics.

6. Conclusions

We have developed a new thermodynamic coupling strategy for low Mach number flows
with detailed chemistry and transport that uses a multi-implicit spectral deferred correction
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1086 A. Nonaka et al.

strategy. By reusing the individual process discretisations from a Strang splitting algorithm
with minor modification, the MISDC algorithm couples the processes in a way designed
to eliminate splitting error. The new method exhibits higher-order (up to second-order)
accuracy and lower errors with less computational work compared to the Strang splitting
approach used in [7]. By iteratively coupling the processes, the MISDC algorithm is
able to obtain second-order accuracy in cases in which Strang splitting exhibits order
reduction. We have demonstrated the applicability to both terrestrial and astrophysical
flames, including problems with stiff chemical kinetics coupled to differential diffusion, as
well as strongly nonlinear reactions. Our approach is general enough to be applied to more
elaborate transport schemes, including multicomponent diffusion with Dufour and Soret
effects.

The long-term goal of this effort is to develop higher-order algorithms for low Mach
number reacting flows. There are, however, several issues we plan to address as a prelude to
moving to higher order. First, we would like to incorporate the velocity update and projection
scheme in the iterative update. This will lead to better accuracy, and reduce or eliminate the
drift of the solution from the equation of state. We would also like to implement a three-
dimensional, adaptive mesh refinement (AMR) version of the algorithm, including the
subcycling in time required to maintain a constant �x/�t across refinement levels. These
initial developments will set the stage for developing higher-order algorithms. Higher-
order discretisations will be able to take better advantage of the next generation many-core
computer architectures, where the memory per core is reduced, and the communication
time between cores becomes more expensive relative to floating point arithmetic. We will
use the ideas from other higher-order SDC-based projection schemes [23–25] as a starting
point for this future work. Finally, on a different matter, due to the reduced stiffness in
the chemistry integration, we will explore the use of simpler reaction integration schemes
that do not require adaptively dividing the time step within each cell. By using the same
chemical integration scheme in each cell, we will be able to take advantage of GPU-based
computer architectures.
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