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Abstract

A conservative finite difference method designed to capture elastic wave prop-

agation in viscoelastic fluids in two space dimensions is presented. The governing

equations are the incompressible Navier-Stokes equations coupled to the Oldroyd-B

constitutive equations for viscoelastic stress. The equations are cast into a hybrid

conservation form to make use of a second-order upwind method to treat the hyper-

bolic part of the equations. The hyperbolic step also utilizes a new exact and efficient

Riemann solver. A numerical stress splitting technique provides a well-posed dis-

cretization for the entire range of Newtonian and elastic fluids. Incompressibility is

enforced through both a projection method and a special partitioning of variables

which suppresses compressive waves in the hyperbolic step. An embedded bound-

ary approach for irregular geometry is employed, in which regular Cartesian cells

are cut into irregular control volumes, requiring special discretization stencils. The

resulting method is second-order accurate in L1 for smooth geometries for a range

of Oldroyd-B fluids.
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Glossary

Geometry Description:

Ai± 1
2
ed

Face i± 1
2ed

Ai,EB EB face
Ci Cartesian cell i
∂Ci Edges of Cartesian cell Ci

ed dth unit vector
h Grid spacing
i = ij Location index
ni Normalized average outward normal of ∂Ω over Ai,EB

Vi Control volume i
∂Vi Edges of control volume Vi

xi±ed
Location of face centroid on face Ai± 1

2
ed

x̂i±ed
Normalized location of face centroid on face Ai± 1

2
ed

xi,EB Location of face centroid on face Ai,EB

x̂i,EB Normalized location of face centroid on face Ai,EB

αi± 1
2
ed

Area fraction of face Ai± 1
2
ed

αi,EB Area fraction of EB face Ai,EB

κi Volume fraction of control volume Vi

υ Vector whose entries are all one
Ω Solution domain
∂Ω Solution domain boundary

Symbols:

CFL CFL number
De Deborah number
M Acoustic Mach number
Ma Elastic Mach number
Re Reynolds number
We Weissenberg number
a2 Wave speed for numerical stress splitting
A Primitive coefficient matrix
b Right-hand-side of an elliptic or parabolic operator
b Body force vector
B Finger tensor
cd Notation for the elastic shear wave speed,

√
(a2 + τdd)/ρ

cs Speed of sound in a fluid
C Cauchy-Green tensor
D Diffusion or Helmholtz equation constant
D Rate-of-strain tensor
E Young’s (elastic) modulus
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E Error between computed solutions at different resolutions
f Source term in diffusion equation
f Deformation gradient
F Tensor of fluxes
g Inverse deformation gradient
H Heaviside step function
k Iteration index for iterative matrix solver
l Left row eigenvector
L Characteristic length
LN Error norm
L Matrix of left row eigenvectors
L Matrix corresponding to an elliptic or parabolic operator
M The conserved variable M = g · (a2I + τ ) · gT

n Time step index
NA Number of active primitive variables
NI Number of inactive primitive variables
NW Number of primitive variables
NU Number of conserved variables
N1 First normal stress difference
N2 Second normal stress difference
p Hydrostatic pressure
PN Order of convergence corresponding to LN norm
P The projection operator
Q The projection remainder operator
r Right column eigenvector
R Matrix of right column eigenvectors
R Riemann solver
R Rotation matrix
S Entropy
Si Wave speed in Riemann solver
SW Primitive source term vector
SU Conserved source term vector
t Time
∆t Time step
t An arbitrary second-order tensor
T Characteristic time
T Extra-stress tensor
u Velocity vector
U Characteristic velocity
U Conserved variable vector
v An arbitrary vector
W Primitive variable vector
x Spatial (Eulerian) coordinate
X Material (Lagrangian) coordinate
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αd Notation for a2 + τdd

β Weighting coefficient for eigenvector decomposition
γ̇ Shear rate
δ Amount of conserved variable to be redistributed
ε Elongational strain
εPTT Parameter in the Phan-Thien Tanner model
ζ Damping factor for cell-centered projection filter
η Diffusion equation solver coefficients
λ Relaxation time
Λ Eigenvalue
Λmax Eigenvalue of largest magnitude on the domain
Λ Set of eigenvalues
µ Characteristic viscosity
µb Bulk viscosity
µe Elongational viscosity
µE Uniaxial extensional viscosity
µp Polymeric contribution to total viscosity
µs Solvent contribution to total viscosity
ν Kinematic viscosity
ξ Machine precision
ρ Density
σ Surface stress tensor
τ Parameter in a2 calculation
τe Elongational stress
τ Polymeric contribution to the extra-stress tensor
τ s Solvent contribution to the extra-stress tensor
φ An arbitrary scalar
χ Parameter used in a2 calculation
χG Parameter in the Giesekus model
χPTT Parameter in the Phan-Thien Tanner model
Ψ Wave strength in Riemann solver
ω Weighting coefficient for iterative solver
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1

Introduction

This work describes the development of a numerical algorithm for time-

dependent viscoelastic fluids in two space dimensions. There is an ever-increasing

need for accurate simulation tools for complex fluids found in many industrial and

scientific applications, and viscoelasticity is an important property of many such

systems. The chosen model for viscoelasticity is the incompressible Navier-Stokes

equations coupled to the Oldroyd-B constitutive equations for viscoelastic stress.

The Oldroyd-B equations are a relatively simple continuum model for viscoelastic-

ity, yet numerical solutions of such fluids even in simple systems are very difficult

to obtain. Hopefully the techniques developed in this work can be applied to more

advanced constitutive models to more accurately predict real-world phenomena.

This algorithm uses a conservative finite difference (or finite volume) approach,

where the solution domain is divided into rectangular cells. The state variables,

including velocity, stress, and pressure, are defined at the geometric centers of each

cell, and represent the average value in the cell. An embedded boundary approach is

used to represent irregular geometry, in which rectangular cells are cut into irregular

control volumes, requiring special discretization stencils. The basic time-stepping

strategy is to use an upwind procedure to compute intercell fluxes and advance

the solution in time conservatively. A projection method is used to enforce in-

compressibility and the diffusive terms are treated using an advanced semi-implicit

discretization. The resulting method is second-order accurate in L1 for a range of

Oldroyd-B fluids.

This thesis is divided into five chapters. Chapter 1 reviews relevant concepts

in fluid mechanics. Chapter 2 gives an introduction to viscoelasticity, including

examples of real-world viscoelastic phenomena and a mathematical analysis of the

Oldroyd-B model. In Chapter 3, a history of computational viscoelasticity is pre-

sented along with an introduction to upwind and projection methods. Chapter 4
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provides the details of the numerical method. Finally, in Chapter 5, results are

presented for several Oldroyd-B fluids.
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1 Review of Fluid Mechanics

1.1 Notation and Conventions

A variable in bold refers to a tensor quantity, which may be first-order (a vector)

or second-order (a matrix). The order of a tensor will be clear in context. The

subscripts 0 and 1 refer to the corresponding x and y components of a quantity. For

example, x0 refers to the x-direction, u1 refers to the y-component of velocity, and

σ01 refers to the xy-component of the surface stress tensor.

This thesis uses the standard definitions of the dot (or scalar) product and

cross product used in graduate level fluid mechanics textbooks [12, 30]. Note that

representing a first-order tensor as a column vector and a second-order tensor as a

matrix is useful in that a dot product involving one or more second-order tensors is

equivalent to standard matrix multiplication. The lack of a dot indicates the dyadic

product, which is usually defined as a formal product of two vectors, but here has

been extended to tensors of arbitrary order. For example, if v is a vector and t is a

second-order tensor:

(vt)ijk = vitjk, (vv)ij = vivj . (1.1)

One change will be made to the conventions in [12, 30]. Continuum mechanics

and applied mathematics conventions differ for the compact notation used in the

gradient operating on a vector. Here the following convention is used:

(∇v)ij =
∂vi

∂xj
=




∂v0
∂x0

∂v0
∂x1

∂v1
∂x0

∂v1
∂x1


 . (1.2)

A special derivative which is often used in fluid mechanics is the material deriva-

tive:
D

Dt
=

∂

∂t
+ u · ∇, (1.3)



4

which describes the rate of change of a quantity as seen by an observer moving at

the fluid velocity, u. This is in contrast to the Eulerian derivative, ∂/∂t, which

measures the rate of change of a quantity at a fixed point in space.

1.2 The Incompressible Navier-Stokes Equations

All fluids are governed by conservation of mass, also known as the continuity

equation:
∂ρ

∂t
+∇ · (ρu) = 0, (1.4)

where ρ is the fluid density. This equation can be equivalently expressed using the

material derivative:
Dρ

Dt
+ ρ(∇ · u) = 0. (1.5)

All fluids are compressible to a certain extent, as can by quantified by examining

the speed at which (acoustic) sound waves propagate in the fluid:

cs =

√
∂p

∂ρ

∣∣∣∣
S

, (1.6)

where p is the hydrostatic pressure and S is the entropy. For water at room tem-

perature and 1.0 [atm] pressure, the speed of sound is cs = 1.5× 103 [m/s]. Landau

and Lifshitz [47] describe the two conditions for which a fluid can be considered

as incompressible. First, the characteristic fluid velocity, U , must be much smaller

than the speed of sound, i.e., M = U/cs ¿ 1, where M is the acoustic Mach number.

Second, the time required for a sound wave to travel the characteristic length of ob-

servation, L, must be small compared to the characteristic time of fluid observation,

T , i.e., L/cs ¿ T . In this thesis, these two assumptions are considered valid, and

the fluid will be modeled as incompressible.

Lai [46] performs an asymptotic expansion in M for the pressure and density,

and shows that Dρ/Dt = O(M2) and ∇ · u = O(M2). Since M ¿ 1, any density
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Figure 1.1: (Left) Normal stresses and (Right) shear stresses.

field which is initially constant in space is assumed to remain constant. Also, the

following divergence constraint for incompressible fluids is revealed:

∇ · u = 0. (1.7)

All fluids are governed by conservation of momentum [30]:

ρ
Du
Dt

= ρb +∇ · σ. (1.8)

Here, the body forces, b, which may include, for example, the force due to gravity

or a magnetic force on a fluid with net charge, are assumed to be zero. The surface

stress tensor, σ, is defined such that σij is the force per unit area on a fluid element

on a plane perpendicular to the i axis, acting in the j direction [30]. The diagonal

components of σ are the normal stresses, while the off-diagonal components are

the shear stresses, as illustrated in Figure 1.1. As a consequence of conservation of

angular momentum in the absence of body torques, σ is symmetric [30].

For all fluids, σ consists of a contribution due to the hydrostatic pressure and

an extra-stress term, T:

σ = −pI + T, (1.9)

where I is the identity tensor. A fluid is said to be Newtonian if the extra-stress
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tensor is of the form:

T = µs [∇u + (∇u)T ]︸ ︷︷ ︸
2D

+
(

µb − 2
3
µs

)
(∇ · u)I, (1.10)

where µs is the viscosity of the fluid (or solvent), µb is the bulk viscosity, and D =

[∇u+(∇u)T ]/2 is the rate-of-strain tensor, which is a measure of fluid deformation

given by the symmetric part of ∇u. Water is considered a very close approximation

of a Newtonian fluid. A fluid is said to be non-Newtonian if the extra-stress tensor

cannot be expressed by (1.10). The extra-stress may be given by a much more

complicated constitutive relation or the change may be as simple as a viscosity

which is a function of the velocity.

Applying the divergence constraint (1.7) to the extra-stress for a Newtonian fluid

(1.10) leads to an extra-stress that is governed only by the viscous stress, τ s, so that

the surface stress for an incompressible Newtonian fluid is:

σ = −pI + µs

[∇u + (∇u)T
]

︸ ︷︷ ︸
τ s

. (1.11)

Substituting (1.11) into (1.8) gives:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν [∇(∇ · u) + ∆u] , (1.12)

where ν = µs/ρ is the kinematic viscosity and ∆ is the Laplacian operator. Applying

the divergence constraint (1.7) reduces this equation to the well-known evolutionary

part of the incompressible Navier-Stokes equations:

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν∆u. (1.13)

A useful dimensionless number which can be found by non-dimensionalizing
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(1.13) is the Reynolds number, which relates the relative strength of inertial forces

to viscous forces in a fluid, given by:

Re =
ρUL

µ
, (1.14)

where µ is the characteristic viscosity, which in this case is equal to µs. A large Re

indicates that the flow is dominated by inertial forces and a small Re indicates the

flow is dominated by viscous forces.

1.3 Kinematics of Deformation

There are two different coordinate systems that can be used to analyze problems

in mechanics. Using an Eulerian, or spatial coordinate system, “x”, the coordinates

are fixed in space, and the properties of the fluid at these fixed points are tracked.

Using a Lagrangian, or material coordinate system, “X”, the coordinates are at-

tached to the fluid, and the properties of each particular fluid element are tracked.

Mathematically, x is defined as the position occupied at time t by the particle which

occupied position X in the reference configuration at t = 0 [51], such that:

x = x(X, t), x(X, 0) = X. (1.15)

The fluid velocity is found as follows:

u(x(X, t), t) =
Dx
Dt

∣∣∣∣
X

=
∂x
∂t

. (1.16)

The deformation gradient is a second-order tensor which relates x to X as follows:

f =
∂x
∂X

→ fij =
∂xi

∂Xj
. (1.17)
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The inverse deformation gradient is defined as the inverse of f :

g = f−1 =
∂X
∂x

→ gij = (f−1)ij =
∂Xi

∂xj
. (1.18)

Physically, g and f describe the deformation of a box whose corners are attached

to the fluid. The physical meaning of each particular component of g and f can

be easily seen by examining their evolution equations. The evolution equations for

g can be derived in the following manner, using index notation and the material

derivative:

(∇u)ij =
∂ui

∂xj
=

∂ui

∂Xk

∂Xk

∂xj
=

∂

∂Xk

(
Dxi

Dt

)
∂Xk

∂xj
=

D

Dt

(
∂xi

∂Xk

)
∂Xk

∂xj

=
(

Df
Dt
· g

)

ij

. (1.19)

Using the identity f · g = I gives:

D(f · g)
Dt

= f · Dg
Dt

+
Df
Dt
· g = 0. (1.20)

Substituting (1.19) into (1.20) gives:

f · Dg
Dt

+∇u = 0. (1.21)

Pre-multiply this equation by g and expand the material derivative to give the

evolution equation:
∂g
∂t

+ (u · ∇)g + g · (∇u) = 0. (1.22)

Similarly, an evolution equation for f can be obtained by substituting (1.20) into

(1.21), post-multiplying by f and expanding the material derivative:

∂f
∂t

+ (u · ∇)f − (∇u) · f = 0. (1.23)
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x0

x1

Figure 1.2: (Top) Elongational deformation and (Bottom) shear deformation.

To help comprehend the physical meaning of f and g, first assume a velocity

profile exists that is initially zero everywhere. This flow experiences no deformation

and it is natural to set f = g = I, reducing (1.22) and (1.23) to:

∂g
∂t

= −∇u,
∂f
∂t

= ∇u. (1.24)

Now, “attach” a square box to this fluid and imagine the flow field instantaneously

changes to one of the following 4 cases illustrated in Figure 1.2. These cases do not

necessarily describe any real system, but rather are used for instructive purposes.

• Case 1, ∂u0/∂x0 > 0, corresponds to a decrease in g00 and an increase in F00.

• Case 2, ∂u1/∂x1 > 0, corresponds to a decrease in g11 and an increase in F11.

• Case 3, ∂u0/∂x1 > 0, corresponds to a decrease in g01 and an increase in F01.

• Case 4, ∂u1/∂x0 > 0, corresponds to a decrease in g10 and an increase in F10.

A simplified way of viewing these results is that the diagonal components of g and f

are a measure of elongational deformation, whereas the off-diagonal components of

g and f are a measure of shear deformation. Another property of the deformation

gradients is that the determinant of f is proportional to the area bounded by the
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box, Abox, and the determinant of g is inversely proportional to the area of the box,

such that:

det f =
1

detg
∝ Abox. (1.25)

For an incompressible fluid, Abox is constant in time. For the simple cases illustrated

above, det f and detg remain constant under the shear deformation, whereas det f

increases and detg decreases under elongation, which is consistent with (1.25).
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2 Viscoelasticity

2.1 A Simple Viscoelastic Model

Viscoelastic fluids are a class of non-Newtonian fluids characterized by the pres-

ence of memory. Such a fluid combines elements of a Newtonian fluid and an elastic

solid. Mathematically, memory can represented as an extra-stress term which is a

function of the current and past velocity and stress, rather than just the current

velocity as in the Newtonian case. A Maxwell element is a simple one-dimensional

viscoelastic model, consisting of a spring and dashpot in series [50, 70], as illustrated

in Figure 2.1. A spring exhibits ideal elastic behavior, that is, when subjected to

an elongational stress, τe, it yields an elongational strain proportional to the stress,

where strain is a dimensionless quantity defined as the normalized change in length,

i.e., ε = (l− l0)/l0. The constant of proportionality is Young’s (elastic) modulus, E,

yielding the constitutive relation:

τe = Eε. (2.1)

A dashpot exhibits ideal viscous Newtonian behavior, that is, when subjected to an

elongational stress, it undergoes a constant increase in elongational strain rate with

respect to time. The constant of proportionality is the elongational viscosity, µe, in

the constitutive relation:

τe = µe
∂ε

∂t
. (2.2)

µeE

Figure 2.1: A Maxwell element consists of a spring and dashpot in series.
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The stress and strain in a Maxwell element are related by [50, 70]:

∂τe

∂t
=

µe

λ

∂ε

∂t
− 1

λ
τe, (2.3)

where λ = µe/E is the relaxation time. In the elastic limit (λ → ∞, E = µe/λ

finite), (2.3) reduces to the time derivative of (2.1). In the Newtonian limit (λ→ 0),

(2.3) reduces to (2.2).

If a Maxwell element is subjected to a stress relaxation test in which the Maxwell

element is stretched and held at a constant length, then ∂ε/∂t = 0 and τe represents

the stress required to hold the Maxwell element at that constant length. The solution

of equation (2.3) under these conditions is:

τe(t) = τe(0)e−t/λ. (2.4)

In the case of a Maxwell element, the relaxation time is a measure of how long it

takes for the stress to relax to e−1 of the initial value in a stress relaxation test.

From the above analysis, in the Newtonian limit, the stress relaxes instantly. In the

elastic limit, the stress remains constant. Viscoelastic fluids are said to give an elastic

response (no stress relaxation) over short time periods, and a Newtonian response

(total stress relaxation) over long time periods. This particular phenomenon can be

seen in Silly Puttyr, which bounces like a rubber ball when tossed against a hard

surface, yet deforms continuously when laid on a solid surface.

The relaxation time alone is not enough to fully characterize the elasticity of the

fluid, since the characteristic velocity and length scales must be taken into account

as well. The Weissenberg number is a dimensionless measure of the elasticity of a

fluid, given by:

We =
λU

L
. (2.5)

Similar to the Weissenberg number is the Deborah number. Rosen [70] defines the



13

x0
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d

Figure 2.2: Steady shear flow between two parallel plates.

Deborah number as De = λ/T , or the ratio of the relaxation time to the charac-

teristic time of observation, which is a much more qualitative statement than the

previous definition of Weissenberg number. Marchal and Crochet [52] define the

Deborah number as De = λγ̇, where γ̇ is the shear rate on the wall for fully devel-

oped flow in a contraction channel. Phillips and Williams [65] point out that, for

the case of a 2:1 planar contraction, this definition of the Deborah number differs

from the Weissenberg number by a factor of three, such that De = 3We.

2.2 Examples of Viscoelastic Behavior

Viscoelastic fluids are found everywhere in daily life, and their behavior can be

remarkably different than Newtonian fluids for even simple flows. Shear thinning

and thickening, where the viscosity decreases or increases as a function of the shear

rate, are two easily observable viscoelastic phenomena. Paint exhibits shear thinning

such that paint applied to a wall may not flow unless a shear stress is applied with

a brush. A corn starch mixture exhibits shear thickening such that when stirred,

the solution becomes thicker. Other examples of viscoelastic behavior include non-

zero normal stress differences in shear flow and a complex extensional viscosity

function in elongational flow, both leading to surprising behavior which has profound

implications in the mixing and transport of viscoelastic fluids.

Consider the steady shear problem, where in three dimensions two infinitely

large parallel plates are separated by a distance d with the origin on the fixed lower
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plate, and the upper plate moving with a constant velocity u0 = U , as illustrated in

Figure 2.2. For a viscous Newtonian fluid, the steady-state velocity profile is given

as:

u0(x1) =
U

d
x1 = γ̇x1, (2.6)

where γ̇ = U/d is the shear rate. The first and second normal stress differences are

defined as:

N1(γ̇) = σ00 − σ11, N2(γ̇) = σ11 − σ22. (2.7)

At any point in the fluid, the pressure is locally constant, so the normal stress dif-

ferences can be determined by analyzing only the extra-stress, T. The equations for

surface stress in a Newtonian fluid (1.11) indicate that the normal stress differences

in shear flow are zero. However, for a viscoelastic fluid, this may not be the case.

For many viscoelastic fluids in shear flow, N1 has been observed to be positive and

N2 has been observed to be negative with a much smaller magnitude than N1 [6, 50].

Non-zero normal stress differences in shear flow can be qualitatively explained

by considering certain viscoelastic fluids as Newtonian solvents laden with polymeric

or biological molecules. These molecules stretch under an applied stress, and relax

toward their original configuration when the stress is removed. These particles,

when subjected to shear flow, will stretch and align themselves with the streamlines.

Their attempt to relax back toward their original configuration causes them to exert

a non-isotropic stress back on the fluid, causing the normal stress differences.

A well-known consequence of non-zero normal stress differences which is dis-

cussed in virtually all textbooks concerning viscoelastic fluids is the Weissenberg

effect [6, 50, 81]. When a rotating rod is placed into a Newtonian fluid and a certain

viscoelastic fluids such as a suspension of polystyrene particles, the results can be

drastically different as illustrated in Figure 2.3. For the Newtonian fluid, inertial

effects cause the fluid level to rise along the outer rim of the glass. For certain vis-

coelastic fluids, the normal stress differences combine with boundary effects, causing
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Figure 2.3: The Weissenberg effect. A rotating rod is inserted into a Newtonian
fluid (Left) and a viscoelastic fluid (Right) yielding qualitatively different behavior.

x0

x1

x2

Figure 2.4: Uniaxial extension.

the fluid to stick to and climb up the rod.

As for extensional viscosity effects, consider a three-dimensional fluid element

centered at the origin. This fluid element is said to undergo uniaxial extension if

the fluid element deforms with the following velocity profile, as illustrated in Figure

2.4:

u(x) =




ε̇x0

− ε̇
2x1

− ε̇
2x2




, (2.8)

where ε̇ is a constant strain rate. The (uniaxial) extensional viscosity is defined as:

µE(ε̇) =
σ00 − σ11

ε̇
=

σ00 − σ22

ε̇
. (2.9)
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Figure 2.5: Recirculation zones and extended entry lengths have been observed in
the flow of certain viscoelastic liquids through contraction channels.

The equations for surface stress in a Newtonian fluid (1.11) indicate that µE(ε̇) = 3µs

in uniaxial extension. For many viscoelastic fluids, the extensional viscosity is a

more complex function which typically increases with the extension rate [6, 50], a

behavior that can also be qualitatively explained with the analogy of a Newtonian

solvent laden with polymeric molecules. Under extensional flow, the polymers are

stretched, causing additional resistance to further deformation which is “felt” as an

increase in viscosity.

There are two observable phenomena that occur in planar and axisymmetric

contraction flows that can be partially attributed to extensional viscosity effects.

The first is the presence of vortex structures in the salient corners (see Figure 2.5).

For a variety of viscoelastic fluids [14] including DNA-laden Newtonian solvents [38],

the vortex structure grows rapidly with increasing flow rates, whereas the vortex size

remains relatively constant for Newtonian fluids [38]. Second, the entrance length,

defined as the distance after the contraction at which the velocity profile reaches 99%

of the steady-state Poiseuille profile, has been observed to increase with greater levels

of fluid elasticity [39]. The exact mechanisms for these behaviors are not completely

understood, however theories have been proposed in which increasing extensional

viscosity leads to large pressure drops which affect vortex enhancement [10, 11] and
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entrance lengths [39, 73]. Due to the complexity of even simple viscoelastic models,

flows in complex geometries such as these contractions are very difficult to solve

analytically. It has become apparent that the key to understanding the physics

of viscoelastic fluids in contraction geometries, as well as complex geometries in

general, lies in numerical simulation.

2.3 The Oldroyd-B Model

The principle of material frame indifference [59] holds that the constitutive laws

which govern material behavior should not depend on the external reference frame

used to describe them. Oldroyd’s [60] foundational work on this subject in the

1950’s developed two examples for viscoelastic flow which exhibit material frame

indifference. In one, his model “A”, the extra-stress is given by covariant com-

ponents which refer to a reciprocal material basis. In the other, model “B”, the

extra-stress is given by contravariant components which refer to material basis vec-

tors. Both of Oldroyd’s models reduce in the small strain limit to the same linear

constitutive theory proposed by experimentalists of that day to describe viscoelas-

ticity. The Oldroyd-A model implies what is now called a lower-convected Maxwell

(or covariant-convected) derivative, based on the Cauchy-Green deformation tensor

[50, 51], C = gT · g. The Cauchy-Green tensor is a measure of local changes in ex-

tension due to deformation, and the lower-convected Maxwell derivative is defined

such that
∆
C = 0:

∆
t =

∂t
∂t

+ (u · ∇)t + (∇u)T · t + t · (∇u). (2.10)

The Oldroyd-B model implies what is now called an upper-convected Maxwell (or

contravariant-convected) derivative, based on the Finger deformation tensor [50, 51],

B = C−1 = f · fT . The Finger tensor is a measure of local changes in area due to
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deformation, and the upper-convected Maxwell derivative is defined such that
∇
B = 0:

∇
t =

∂t
∂t

+ (u · ∇)t− (∇u) · t− t · (∇u)T . (2.11)

A review of other frame indifferent models is given in [44].

Recall the relationship between stress and strain in a Maxwell element from

(2.3):
∂τe

∂t
=

µe

λ

∂ε

∂t
− 1

λ
τe. (2.12)

Oldroyd replaced the time derivative in the stress-strain relationship for a Maxwell

element (2.12) with a convected derivative of the stress tensor and the rate of strain

with the rate-of-strain tensor. It has been found that the Oldroyd-B model pro-

vides better agreement with experimental observations [34, 63]. In particular, the

Oldroyd-B model predicts rod climbing, while the Oldroyd-A model predicts rod

depression, that is, the fluid level is depressed at the rod and elevated at the outer

wall. Thus, the Oldroyd-B model has become more widely accepted, given by:

∇
τ =

µp

λ
2D− 1

λ
τ , (2.13)

or equivalently:

∂τ

∂t
+ (u · ∇)τ − (∇u) · τ − τ · (∇u)T − µp

λ
[∇u + (∇u)T ] = − 1

λ
τ . (2.14)

The elongational viscosity, µe, has been replaced with the polymeric contribution to

total viscosity, µp, since this particular model is often used to simulate viscoelastic

solutions comprising of a viscous solvent with added polymers or biological macro-

molecules. The tensor τ shall be referred to as the polymeric stress. The viscosities,

µs and µp, are independent of one another.
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Consider the Oldroyd-B model expressed in index notation:

∂τij

∂t
+ uk

∂τij

∂xk
− ∂ui

∂xk
τkj − τik

∂uj

∂xk
− µp

λ

(
∂ui

∂xj
+

∂uj

∂xi

)
= − 1

λ
τij . (2.15)

For steady shear in three dimensions (see Figure 2.2), the polymeric stress profiles

can be derived by using equation (2.15) and the conditions:

u1 = u2 = 0, ∇u =




0 γ̇ 0

0 0 0

0 0 0




,
∂τ

∂t
=

∂τ

∂x0
=

∂τ

∂x2
= 0. (2.16)

The normal polymeric stresses and the stress differences for the Oldroyd-B model

are:

τ00 = 2µpλγ̇2, τ11 = τ22 = 0, (2.17)

N1(γ̇) = 2µpλγ̇2, N2(γ̇) = 0. (2.18)

Thus, the Oldroyd-B model predicts a quadratic first normal stress difference and

zero second normal stress difference. Note that the viscosity remains constant in

shear. The lack of shear thinning or thickening is a major downfall of this model

when attempting to simulate many real fluids.

For uniaxial extensional flow (see Figure 2.4), the polymeric stress profiles can

be derived by using equation (2.15) and the conditions:

u = 0, ∇u =




ε̇ 0 0

0 − ε̇
2 0

0 0 − ε̇
2




,
∂τ

∂t
= 0. (2.19)

The normal polymeric stresses and the extensional viscosity for the Oldroyd-B model
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are:

τ00 =
2µpε̇

1− 2λε̇
, τ11 = τ22 = − µpε̇

1 + λε̇
, (2.20)

µE(ε̇) =
2µp

1− 2λε̇
+

µp

1 + λε̇
+ 3µs. (2.21)

For slow elongation rates (λε̇ ¿ 1), the extensional viscosity approaches µE(ε̇) →
3(µs + µp). As ε̇ approaches a limiting value in the elongational direction ε̇ →
1/(2λ) or compressive direction ε̇ → −1/λ, the extensional viscosity approaches

infinity. Recall that the Oldroyd-B model is based on a spring and dashpot in

series. These two cases represent when the spring has become stretched to an

infinite length or compressed to zero length. The fact that the Oldroyd-B model

permits both an infinite and vanishing spring length leading to an infinite extensional

viscosity at finite strain rates is another major downfall of this model. Despite these

shortcoming, the Oldroyd-B model is well-suited to model Boger fluids [13], which

are very dilute solutions of a high molecular weight polymer in a solvent with high

viscosity, since they exhibit elastic effects such as (approximately) quadratic normal

stress differences and large extensional viscosities with very little shear thinning or

thickening behavior.

The Oldroyd-B model states that the fluid extra-stress consists of a viscous stress

due to the solvent, τ s, and the polymeric stress, τ :

σ = −pI + µs

[∇u + (∇u)T
]

︸ ︷︷ ︸
τ s

+τ . (2.22)

Substituting (2.22) into the differential form of conservation of momentum (1.8) and

applying the divergence constraint (1.7) gives rise to the evolutionary form of the

incompressible Navier-Stokes equations used in this thesis:

∂u
∂t

+ (u · ∇)u− 1
ρ
∇ · τ = −1

ρ
∇p + ν∆u. (2.23)
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The characteristic viscosity used to compute the Reynolds number for this coupled

system is now defined as the sum of the solvent and polymeric contributions, µ =

µs + µp. A special case of the Oldroyd-B model is the Newtonian limit (λ→ 0), in

which the polymeric stress has the same form as the viscous stress:

τ → µp2D = µp

[∇u + (∇u)T
]

as λ→ 0. (2.24)

In this case, the system of equations can be expressed as a Newtonian fluid with an

augmented viscosity:

∂u
∂t

+ (u · ∇)u =
µs + µp

ρ
∆u− 1

ρ
∇p. (2.25)

Equations (2.14) and (2.23) are the evolutionary part of the governing equations,

containing both parabolic diffusion terms and hyperbolic advection terms. The

diffusion equation is a simple example of a parabolic equation:

∂φ

∂t
= D∆φ + f. (2.26)

The presence of the Laplacian operator in the momentum equation (2.23) accounts

for the parabolic nature of the equations. The linear advection equation is a simple

example of a hyperbolic equation:

∂φ

∂t
+ a

∂φ

∂x
= 0. (2.27)

The hyperbolic nature of (2.14) and (2.23) can be seen by analyzing the equations

expressed in quasi-linear form, which is a multidimensional, multivariable, nonlinear

version of (2.27):

∂W
∂t

+ A0(W) · ∂W
∂x0

+ A1(W) · ∂W
∂x1

= SW (W), (2.28)
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where W ∈ RNW is the vector of primitive variables, A0,A1 ∈ RNW×NW are the

primitive coefficient matrices, and SW ∈ RNW is the primitive source term vector.

This system is said to be hyperbolic if A0 and A1 contain only real eigenvalues

each with a corresponding set of linearly independent eigenvectors. For the model

equations, if W is ordered as follows:

W = [u0, u1, τ00, τ10, τ11]
T , (2.29)

then A0 and SW are given as follows:

A0 =




u0 0 −1
ρ 0 0

0 u0 0 −1
ρ 0

−2(µp

λ + τ00) 0 u0 0 0

−τ10 −(µp

λ + τ00) 0 u0 0

0 −2τ10 0 0 u0




, (2.30)

SW =




SW,u

SW,τ


 =



−1

ρ∇p + ν∆u

− 1
λτ


 . (2.31)

The eigenvalues of A0 are real provided that µp/λ + τ00 > 0, given as:

Λ(A0) =



u0 ±

√
2(µp

λ + τ00)
ρ

, u0 ±
√

µp

λ + τ00

ρ
, u0



 . (2.32)

The right column eigenvectors are linearly independent, listed in increasing order as
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follows:

R(A0) =




−
√

2(
µp
λ

+τ00)3

ρ 0 0 0

√
2(

µp
λ

+τ00)3

ρ

−
√

2(
µp
λ

+τ00)

ρ τ10 −
√

µp
λ

+τ00
ρ 0

√
µp
λ

+τ00
ρ

√
2(

µp
λ

+τ00)

ρ τ10

−2(µp

λ + τ00)2 0 0 0 −2(µp

λ + τ00)2

−2(µp

λ + τ00)τ10 −(µp

λ + τ00) 0 −(µp

λ + τ00) −2(µp

λ + τ00)τ10

−2τ2
10 −2τ10 1 −2τ2

10 −2τ10




.

(2.33)

Similarly, the eigenvalues of A1 can be shown to be real with linearly independent

eigenvectors provided that µp/λ + τ11 > 0, and therefore the system is hyperbolic.

Fortunately, it has been proven that the eigenvalues of the system will always be

real provided the initial state contains only real eigenvalues [77].

The eigenvalue/eigenvector pairs, referred to as modes, have special names. The

eigenvalues Λ = u0±
√

2(µp/λ + τ00)/ρ correspond to longitudinal modes which can

be physically described as compressive plane waves [77]. These modes are inherent

to the evolutionary equations and cannot physically exist in an incompressible fluid.

The approach taken in this thesis is to use a special variable splitting technique

to numerically suppress these waves. The eigenvalues Λ = u0 ±
√

(µp/λ + τ00)/ρ

correspond to transverse modes which can be physically described as elastic shear

waves. The eigenvalue Λ = u0 corresponds to the contact discontinuity, which

indicates that certain fluid properties are simply advected with the fluid.

The elastic Mach number is a dimensionless number relating the characteristic

fluid velocity to the characteristic speed of elastic waves propagating in the fluid

[77], given by:

Ma =
U√

µp/(ρλ)
. (2.34)

The elastic Mach number was originally defined by Ultman and Denn [79] as Ma =
√

Re ·We = U/
√

µ/(ρλ). For the Oldroyd-B model, the elastic wave speeds depend
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only on µp and not µs, and therefore definition (2.34) is more relevant to this thesis.

There are more advanced constitutive models for viscoelasticity, many having

similar form to the Oldroyd-B model. As mentioned before, the Oldroyd-B model is

chosen in this thesis due to its relatively simple structure. Phan-Thien and Tanner

[64] replaced the upper-convected Maxwell derivative with a linear combination of

the upper and lower-convected Maxwell derivatives, and scaled the decay term:

(
1− χPTT

2

)∇
τ +

χPTT

2
∆
τ =

µp

λ
2D− 1

λ
τeεPTTλ/µp ; 0 < χPTT < 1, (2.35)

where χPTT and εPTT are model parameters. A non-zero choice of χPTT allows for

a non-zero second normal stress difference in steady shear flow. The scaling of the

decay term allows for a more realistic extensional viscosity response. Another model

is the White-Metzner model [82], which is an Oldroyd-type model with a polymeric

viscosity and relaxation time which vary in space and time. The Giesekus model [33]

attempts to control the non-physical infinite extensional viscosity in the Oldroyd-B

model by incorporating additional nonlinear terms, as in:

∇
τ =

µp

λ
2D− 1

λ
τ − χG

µp
(τ · τ ), (2.36)

where χG is a model parameter. Since many of these models have similar structure

to the Oldroyd-B model, hopefully the techniques discussed in this thesis can be

extended to these more realistic models.
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3 Numerical Methods

3.1 History of Computational Viscoelasticity

In the early 1970’s, computational power had increased to the point where com-

putational scientists could adapt known solution techniques for Newtonian fluids

(the incompressible Navier-Stokes equations in particular) to non-Newtonian fluids.

Some of the first non-Newtonian simulations were for fluids with variable viscosity

designed to predict shear thinning and thickening behavior. In particular, the vis-

cosity was a function of the rate-of-strain tensor. Such problems were easily solved

using both finite difference and finite element techniques for Newtonian fluids, with

a list of early works provided in [27, 28]. However, the applications of such mod-

els were limited, since they did not incorporate any elastic effects found in most

non-Newtonian fluids.

Another approach taken by computational scientists at that time was to model

viscoelastic behavior using the so-called “hierarchy equations” of Coleman and Noll

[26], which were a truncated form of the Rivlin-Ericksen model [69] for viscoelastic

stress. In this model, the extra-stress is an explicit function of the velocity and

higher-order time derivatives of the velocity. These problems were also easily solved

using established finite difference and finite element techniques [27, 28]. However, it

was proven early on that the hierarchy equations are only mathematically valid for

slow moving, slightly elastic liquids (We ¿ 1) [48], a claim that is still widely ac-

cepted today [61]. Therefore, this approach was not particularly useful for predicting

most real-world viscoelastic phenomena of interest.

The third approach at that time was to model complex flows of highly elastic liq-

uids using Oldroyd-type models. Unfortunately, the application of existing methods

for solving Newtonian fluids have not extended easily to Oldroyd-type fluids. By the

early 1980’s, the so-called “high Weissenberg number problem” had been identified

as the outstanding problem in computational rheology [28, 61], in which stable and
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convergent numerical solutions of viscoelastic fluids in abrupt geometries (such as

planar and axisymmetric contractions) could only be computed up to We ∼ 1. The

previous example of vortex formation in abrupt contraction geometries is the clas-

sic example of a complex flow which suffers from the high We problem. The high

We problem has persisted to this day, despite many attempts at using both finite

element and finite volume approaches. Even the exact origin of this problem is still

an open problem. For a list of early attempts at computing highly elastic complex

flows, see [28, 74, 61]. Here, the focus will be on the current state of the problem

and modern difficulties in addressing it.

Recently, Aboubacar et al. [1] analyzed the creeping flow (Re ≈ 0) of an Oldroyd-

B fluid in a 4:1 planar contraction. By solving the momentum equations with a finite

element approach and the stress equations with a finite volume approach, they were

able to obtain steady-state convergent results up to We = 4.4, an improvement over

traditional finite element methods. They attribute the breakdown in the method

due to steep stress boundary layers that develop near the contraction, citing the

need for further mesh refinement to remedy the problem. Phillips and Williams

[65, 66] used a semi-Lagrangian finite volume method using particle tracking for

both creeping and inertial (Re ≈ 1) Oldroyd-B fluids in a 4:1 planar contraction.

They were able to obtain steady-state convergent results up to We = 2.5 and also

attribute the loss of convergence to steep gradients that form near the contraction

which require further refinement. Alves et al. [4] use a fully implicit finite volume

approach to solve creeping flows of Oldroyd-B fluids through planar contractions

and obtained convergent results up to De = 3. Fattal and Kupferman [31] studied

the creeping flow of an Oldroyd-B fluid in a lid driven cavity (an enclosed box with

one wall moving with a fixed velocity). They argued that the high We problem

could be avoided by using a logarithmic scaling of variables to properly capture

exponential stress profiles. They reported convergence for We = 3, noting that this

was nearly an order of magnitude greater than previous approaches to this problem,
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and also believe that increased resolution may lead to improved results.

Joseph et al. [45] take a different approach to the problem and identify the

elastic Mach number, Ma, as the critical parameter in understanding viscoelastic

flows. They note that for steady flows, Oldroyd-type equations change type from

elliptic to hyperbolic in the transition to the supercritical (Ma > 1) regime. They

strengthened their argument by citing the experimental results of Ultman and Denn

[79], who noticed dramatic changes in flow field and heat transfer properties of

dilute polymer solutions when Ma > 1. Joseph makes an analogy to transonic

flow, where the characteristic speed of sound becomes greater than the sound speed,

and suggested that a time-dependent upwind method for hyperbolic systems could

remedy the problem.

Recently, Trebotich, et al. [77] used a Lax-Wendroff finite difference method to

simulate time-dependent Oldroyd-B fluids in contraction channels. Steady solutions

were not available due to the elastic wave propagation originating at the contraction,

yet the unsteady, time-dependent solution was stable and convergent for all We. The

only restriction on the algorithm was the requirement of a sub-critical Mach number

(Ma < 1). Trebotich hypothesized that previous numerical difficulties were a result

of using steady-state or implicit methods, when an appropriately designed unsteady

method may be the proper approach. Trebotich also cites the need for a higher-

order upwind method to further examine the problem, forming the starting point

for the work in this thesis.

3.2 Upwind Methods

Consider the following first-order system of one-dimensional PDEs:

∂W
∂t

+ A · ∂W
∂x

= 0, (3.1)
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where the coefficient matrix, A, is constant. As discussed in Section 2.3, a system

of this form is said to be hyperbolic if all of the eigenvalues of A are real and there

is a corresponding set of linearly independent eigenvectors. If this is the case, then

W can be uniquely decomposed into a linear combination of the eigenvectors of

A. Each of these pieces of W travels with a velocity equal to its corresponding

eigenvalue. The behavior of the solution becomes more complicated for nonlinear

equations such as the Oldroyd-B model, where for example, A is a function of the

solution vector, but there is always an underlying wave structure that is essential to

the construction of stable numerical algorithms.

Upwind methods are a class of numerical methods for solving hyperbolic PDEs

which use only “upstream” information to advance the solution at a given location.

The use of “downstream” information to advance a solution is unstable. In 1959,

Godunov [36] introduced a conservative finite difference upwind method for one-

dimensional ideal gas dynamics, which is a system of nonlinear hyperbolic PDEs.

This work was first-order accurate and has become the foundation for many modern

upwind-based numerical methods. At that time, traditional finite difference methods

operated under the assumption that the solution was smoothly varying everywhere

and relied primarily on Taylor series analysis. In contrast, Godunov represented so-

lutions as piecewise constant states, and the interaction of these states gave rise to

interface values that were used to advance the solution. A key feature in all Godunov

methods is the use of a Riemann solver, which computes the future behavior of a

system consisting of two states initially separated by a jump discontinuity. Godunov

[37] also presented a two-dimensional version of his method in an Eulerian frame-

work, rather than the Lagrangian framework in the original paper. Godunov-type

methods have proven to be more robust than traditional finite difference methods

in the presence of discontinuities that can occur in hyperbolic systems [83].

Van Leer [80] extended Godunov’s method to second-order in Lagrangian coor-

dinates by representing the solution as a collection of piecewise linear functions. A
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slope limiting procedure was used to prevent the buildup of oscillations at disconti-

nuities which were otherwise unavoidable in explicit second-order methods [36]. An

operator splitting technique was used which involved an alternating series of one-

dimensional solutions to advance the full-dimensional solution. Colella presented

a version of van Leer’s work in an Eulerian framework using both piecewise linear

[20, 21] and piecewise parabolic [25] representations of the solution. Later, Colella

presented an unsplit method [22], which was later extended to an embedded bound-

ary (EB) geometry representation [24]. The model equations have traditionally been

the Euler equations for ideal gas dynamics, chosen for their relatively simple, yet

nonlinear behavior. In more recent works [22, 24], a methodology for general sys-

tems of hyperbolic conservation laws has been proposed. The overall time-stepping

strategy in this thesis is based on the multi-dimensional, EB version of Godunov’s

method in [24].

There are two immediate advantages for using this Godunov method over the

Lax-Wendroff discretization used by Trebotich [77]. The first advantage is the ability

to handle arbitrary smooth irregular geometries. Second, the Godunov method

increases the allowable time step by a factor of four, as it is subject to following

advective Courant-Friedrichs-Lewy (CFL) time step constraint required for stability

[49]:

∆t ≤ CFL
h

|Λmax| ; 0 < CFL < 1, (3.2)

where h is the grid spacing,“CFL” is the CFL number, and Λmax is the eigenvalue

of largest magnitude in the primitive coefficient matrices over the entire domain,

including the boundary conditions.

Unfortunately, the time-stepping strategy in [24] cannot be applied directly to

the equations in this thesis. First, the equations are not purely hyperbolic, as

the primitive variable form contains non-zero source terms. Second, the fluid is

incompressible, requiring additional steps for its enforcement. Also, as is the case
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with any problem, the appropriate boundary conditions and Riemann solver must

be derived.

3.3 Projection Methods

Chorin [17] introduced a numerical method for the incompressible Navier-Stokes

equations. Chorin’s projection method is based on the Hodge decomposition of a

vector field [18], in which an arbitrary vector field, in this case the velocity, on a

domain, Ω, can be uniquely decomposed into a part that is divergence-free and a

part that is curl-free (represented as the gradient of a scalar field):

v = vd +∇φ, (3.3)

with boundary conditions vd · n = 0 and n · ∇φ = v · n on ∂Ω. By taking the

divergence of each side of this equation, an elliptic Poisson’s equation is revealed:

∇ · v = ∇ · vd +∇ · ∇φ, (3.4)

∇ · v = ∆φ. (3.5)

Once φ has been computed, the divergence-free velocity is found by using:

vd = v −∇φ. (3.6)

In Chorin’s original method [17], the velocity field is advanced in time using

the evolutionary part of the incompressible Navier-Stokes equations. This prelimi-

nary velocity is projected to enforce the divergence constraint and the curl-free term

is used to update the pressure. Bell, Colella, and Glaz [8, 58] extended Chorin’s

method to second-order accuracy in space and time by utilizing a second-order

Godunov method to capture the hyperbolic advection terms. Almgren, et al. [3]



31

introduced an approximate projection method for node-centered pressures with a

compact Laplacian stencil which prevented grid decoupling and simplified the linear

algebra required to solve the Poisson equation. The resulting method did not return

a discretely divergence-free velocity. Lai [46] introduced an approximate projection

method for cell-centered pressures which used an additional filtering step to elim-

inate non-physical oscillatory modes that persisted due to the approximate nature

of the projection. In this thesis, the pressure is cell-centered, and the cell-centered

velocity is projected using the ideas in [46].
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4 Numerical Details

4.1 Overview of the Numerical Method

The solution domain is divided into rectangular cells, denoted Cij = Ci, where

the subscript is the spatial location index, and the grid spacing is uniform in all

directions such that h = ∆x0 = ∆x1. The state variables are defined at the geomet-

ric centers of each cell, and represent the average value over the cell, as illustrated

in In Figure 4.1. To be consistent with previous methods involving this geometry

description, cells are said to have “volume”, and cell edges are referred to as faces

which have “area”, despite the fact that this is a two-dimensional problem.

In order to advance the solution in time, the equations must first be expressed

in a hybrid conservation form:

∂U
∂t

+∇ · F(U) = SU (U); ∇ · F(U) =
∂F0(U)

∂x0
+

∂F1(U)
∂x1

, (4.1)

where U ∈ RNU is the conserved variable vector, SU ∈ RNU is the conserved source

term vector, F ∈ R2×NU is the tensor of fluxes, and the rows of F are the directional

flux vectors, F0,F1 ∈ RNU . The basic idea is to discretize the time derivative in

Wi,Ui

Wi+e1
,Ui+e1

Wi+e0
,Ui+e0

Ci+e0Ci

Ci+e1

Figure 4.1: Cells and their associated state variables.



33

F0,i+(1/2)e0
F0,i−(1/2)e0

F1,i+(1/2)e1

F1,i−(1/2)e1

Ci

Figure 4.2: Stencil points for the four-point divergence.

(4.1) to form an update equation for U in each cell:

∂U
∂t

=
Un+1 −Un

∆t
→ Un+1

i = Un
i + ∆t [−(∇ · F)i + SU,i] , (4.2)

where the superscript is the time step index. For each cell, the divergence can be

represented as an integral sum of normal fluxes at the cell faces, ∂Ci, using the

divergence theorem:

(∇ · F)i =
1
|Ci|

∫

Ci

(∇ · F)dV =
1
|Ci|

∫

∂Ci

(n · F)dA, (4.3)

where |Ci| is the volume of cell Ci, and n is the outward normal of the cell face.

Therefore, a discrete approximation of the divergence is the following four-point

difference approximation, illustrated in Figure 4.2:

(∇ · F)i =
1
h

1∑

d=0

−∑
±=+

±Fd,i±ed
=

F0,i+ 1
2
e0
− F0,i− 1

2
e0

h
+

F1,i+ 1
2
e1
− F1,i− 1

2
e1

h
, (4.4)

where ed is the dth unit vector.

In order to form a second-order method, the fluxes must be time-centered, that

is, they must be computed using the conserved variables at time tn+ 1
2 = tn + ∆t/2.

The face-centered, time-centered estimates of the state variables, referred to as the

“marker and cell” (MAC) [41] MAC state, are computed using a reconstruction algo-

rithm followed by a MAC projection. The reconstruction step uses an upwind tech-
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nique involving the primitive variable form (2.28) along with Taylor series extrapo-

lations in space and time to obtain a preliminary MAC state. A MAC projection is

applied to the preliminary MAC velocity, which enforces the divergence constraint

by extracting the part of the velocity field containing numerical divergence, yielding

the final MAC state. After obtaining the final MAC state, the cells are updated

conservatively using the intercell fluxes. Advanced discretization stencils are used

to account for the conservative source terms which result in an overall second-order

method which captures the Newtonian and elastic limits of the Oldroyd-B fluid. A

cell-centered projection is performed on the preliminary cell-centered velocity field

to enforce the divergence constraint.

An EB approach will be used to represent irregular geometry in which rectangu-

lar cells are cut into irregular control volumes. For each part of the algorithm, the

numerical method will be described under the assumption that the domain is regu-

lar (all-fluid), that is, there are no EBs. Next, the modifications for cells near EBs

and/or domain boundaries will be described. A domain boundary can have either

an inflow, outflow, or solid wall boundary condition, whereas EBs always represents

a solid wall. For problems with inflow, the flow is directed in the +x0 direction.

4.1.1 Numerical Stress Splitting

Recall the eigenvalues of the primitive variable formulation from (2.32):

Λ(A0) =



u0 ±

√
2(µp

λ + τ00)
ρ

, u0 ±
√

µp

λ + τ00

ρ
, u0



 . (4.5)

These eigenvalues pose an immediate problem. Since an upwind method is being

used to compute the intercell fluxes, the CFL time step constraint from (3.2) applies

here:

∆t ≤ CFL
h

|Λmax| ; 0 < CFL < 1. (4.6)
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In the Newtonian limit (λ→ 0), the eigenvalues become very large, forcing the time

step to become vanishingly small. Using the stress splitting technique in [77], a wave

speed a2 is introduced, in which the Oldroyd-B equations are expressed as:

∂τ

∂t
+ (u · ∇)τ − (∇u) · τ − τ · (∇u)T − a22D =

(µp

λ
− a2

)
2D− 1

λ
τ . (4.7)

At the beginning of each time step, the wave speed a2 is initialized to a value

between µp/λ in the elastic limit (λ → ∞, µp/λ finite) and 2τ in the Newtonian

limit (λ → 0), where τ is defined as the absolute value of the global minimum of

the normal stresses, τ = |mind(τdd)|. In particular:

a2 = min
[
χ(λ)a2

∞ + [1− χ(λ)] a2
0,

µp

λ

]
; (4.8)

a2
∞ = lim

λ→∞
a2 =

µp

λ
, a2

0 = lim
λ→0

a2 = 2τ, (4.9)

χ(λ) =
λ

tadv

(
1− e−λ/(2tadv)

)(
1− e−tadv/λ

)
; (4.10)

tadv =
h

|u|∞ , (4.11)

where |u|∞ is the maximum fluid speed in the domain. Essentially, a2 gives some

control over which terms will be discretized with the upwind method. The matrix

A0 and vector SW are now:

A0 =




u0 0 −1
ρ 0 0

0 u0 0 −1
ρ 0

−2α0 0 u0 0 0

−τ10 −α0 0 u0 0

0 −2τ10 0 0 u0




, (4.12)
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SW =




SW,u

SW,τ


 =




−1
ρ∇p + ν∆u

(µp

λ − a2
)
2D− 1

λτ


 , (4.13)

where αd = a2 + τdd. The eigenvalues of (4.12) in increasing order are:

Λ(A0) =
{

u0 −
√

2c0, u0 − c0, u0, u0 + c0, u0 +
√

2c0

}
, (4.14)

where cd =
√

(a2 + τdd)/ρ. In [77], it is shown that this stress splitting can increase

the time step in the Newtonian limit by a factor of 106 or greater.

4.1.2 Conservation Forms

The equations of motion are now cast into conservation form (4.1). For the

incompressible Navier-Stokes equations (1.13), use the following identity:

(u · ∇)u = ∇ · (uu)− u (∇ · u)︸ ︷︷ ︸
0

. (4.15)

The conservation form follows directly:

∂u
∂t

+∇ · (uu− 1
ρ
τ ) = −1

ρ
∇p + ν∆u. (4.16)

In order to derive conservation equations involving the polymeric stress tensor,

the inverse deformation gradient, g, needs to be coupled into our system of equations.

Begin with the identity from (1.21):

∇u = −f · Dg
Dt

. (4.17)

Substitute this equation into the left hand side of the Oldroyd-B equations (4.7) to



37

get:

Dτ

Dt
+ f · Dg

Dt︸ ︷︷ ︸
−∇u

·τ + τ · DgT

Dt
· fT

︸ ︷︷ ︸
−∇uT

+a2


f · Dg

Dt︸ ︷︷ ︸
−∇u

+
DgT

Dt
· fT

︸ ︷︷ ︸
−∇uT


 =

(µp

λ
− a2

)
2D− 1

λ
τ .

(4.18)

Pre-multiply each side of this equation by g and post-multiply by gT to get:

g · Dτ

Dt
· gT +

Dg
Dt
· τ · gT + g · τ · DgT

Dt
+ a2

(
Dg
Dt
· gT + g · DgT

Dt

)

= g ·
[(µp

λ
− a2

)
2D− 1

λ
τ

]
· gT . (4.19)

The terms on the left hand side (LHS) of this equation can be collected and simplified

as follows:

LHS =
[
g · Dτ

Dt
· gT +

Dg
Dt
· τ · gT + g · τ · DgT

Dt

]
+

[
a2

(
Dg
Dt
· gT + g · DgT

Dt

)]

=
D

Dt

(
g · τ · gT

)
+

D

Dt

(
g · a2I · gT

)

=
D

Dt

(
g · (τ + a2I) · gT

)

=
∂

∂t

(
g · (τ + a2I) · gT

)
+ (u · ∇)

(
g · (τ + a2I) · gT

)
. (4.20)

Define a new conserved variable, M = g · (τ +a2I) ·gT , and use a variant of identity

(4.15):

(u · ∇)M = ∇ · (uM)−M (∇ · u)︸ ︷︷ ︸
0

. (4.21)

The conservation form follows directly:

∂M
∂t

+∇ · (uM) = g ·
[(µp

λ
− a2

)
2D− 1

λ
τ

]
· gT . (4.22)

The inverse deformation gradient is added to both the the vector of primitive and

conserved variables. The evolution equations for g were previously given in (1.22).



38

To obtain a conservation form for g, first consider the expanded form of the evolution

equations:

∂g00

∂t
+

(
u0

∂g00

∂x0
+ g00

∂u0

∂x0
+ g01

∂u1

∂x0

)
+

(
u1

∂g00

∂x1

)
= 0, (4.23)

∂g10

∂t
+

(
u0

∂g10

∂x0
+ g10

∂u0

∂x0
+ g11

∂u1

∂x0

)
+

(
u1

∂g10

∂x1

)
= 0, (4.24)

∂g01

∂t
+

(
u0

∂g01

∂x0

)
+

(
u1

∂g01

∂x1
+ g00

∂u0

∂x1
+ g01

∂u1

∂x1

)
= 0, (4.25)

∂g11

∂t
+

(
u0

∂g11

∂x0

)
+

(
u1

∂g11

∂x1
+ g10

∂u0

∂x1
+ g11

∂u1

∂x1

)
= 0. (4.26)

Rearrange these equations as follows:

∂g00

∂t
+

(
u0

∂g00

∂x0
+ g00

∂u0

∂x0
+ u1

∂g01

∂x0
+ g01

∂u1

∂x0

)
= u1

(
∂g01

∂x0
− ∂g00

∂x1

)
, (4.27)

∂g10

∂t
+

(
u0

∂g10

∂x0
+ g10

∂u0

∂x0
+ u1

∂g11

∂x0
+ g11

∂u1

∂x0

)
= u1

(
∂g11

∂x0
− ∂g10

∂x1

)
, (4.28)

∂g01

∂t
+

(
u0

∂g00

∂x1
+ g00

∂u0

∂x1
+ u1

∂g01

∂x1
+ g01

∂u1

∂x1

)
= u0

(
∂g00

∂x1
− ∂g01

∂x0

)
, (4.29)

∂g11

∂t
+

(
u0

∂g10

∂x1
+ g10

∂u0

∂x1
+ u1

∂g11

∂x1
+ g11

∂u1

∂x1

)
= u0

(
∂g10

∂x1
− ∂g11

∂x0

)
. (4.30)

The right hand side of equations (4.27)-(4.30) is a two-dimensional version of the 3×3

tensor
[
u× (∇× gT )

]T ignoring any terms with a u2 or x2 component. Therefore

the conservation form is:

∂

∂t
(g · ed) +∇ · (edg · u) =

[
u× (∇× gT )

]T · ed; d = 0, 1, (4.31)



39

The expanded conservation forms are:

∂

∂t




u

M

g · e0

g · e1




+
∂

∂x0




u0u− 1
ρτ · e0

u0M

g · u
0




+
∂

∂x1




u1u− 1
ρτ · e1

u1M

0

g · u




= SU , (4.32)

SU =




SU,u

SU,M

SU,g




=




−1
ρ∇p + ν∆u

g · [(µp

λ − a2
)
2D− 1

λτ
] · gT

[
u× (∇× gT

)]T




. (4.33)

The primitive variable vector is now given as:

W = [u0, u1, τ00, τ10, τ11, g00, g10, g01, g11]
T , (4.34)

with A0 and SW given as:

A0 =




u0 0 −1
ρ 0 0 0 0 0 0

0 u0 0 −1
ρ 0 0 0 0 0

−2α0 0 u0 0 0 0 0 0 0

−τ10 −α0 0 u0 0 0 0 0 0

0 −2τ10 0 0 u0 0 0 0 0

g00 g01 0 0 0 u0 0 0 0

g10 g11 0 0 0 0 u0 0 0

0 0 0 0 0 0 0 u0 0

0 0 0 0 0 0 0 0 u0




, (4.35)

SW =




SW,u

SW,τ

SW,g




=




−1
ρ∇p + ν∆u

(µp

λ − a2
)
2D− 1

λτ

0




. (4.36)
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The system is still hyperbolic, as can be seen by the eigenvalues and the matrix of

right column eigenvectors:

Λ(A0) =





u0 −
√

2c0, u0 − c0, u0, u0, u0, u0, u0,︸ ︷︷ ︸
5-fold degenerate

u0 + c0, u0 +
√

2c0





, (4.37)

R0 =




−√2α0c0 0 0 0 0 0 0 0
√

2α0c0

−√2c0τ10 −c0 0 0 0 0 0 c0

√
2c0τ10

−2α2
0 0 0 0 0 0 0 0 −2α2

0

−2α0τ10 −α0 0 0 0 0 0 −α0 −2α0τ10

−2τ2
10 −2τ10 1 0 0 0 0 −2τ10 −2τ2

10

g00α0 + g01τ10 g01 0 1 0 0 0 g01 g00α0 + g01τ10

g10α0 + g11τ10 g11 0 0 1 0 0 g11 g10α0 + g11τ10

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0




. (4.38)

4.2 Embedded Boundary Geometry Representation

The underlying description of space is a set of rectangular Cartesian cells:

Ci = [(i− 1
2
υ)h, (i +

1
2
υ)h]; i ∈ [0, imax], (4.39)

where υ is the vector whose entries are all one. Given an irregular solution domain,

Ω, the control volumes are denoted Vi = Ω ∩ Ci, as illustrated in Figure 4.3. For

regular cells, Vi = Ci. Control volume faces are the intersection of the control

volume edges, ∂Vi, with ∂Ci and are denoted Ai± 1
2
ed

, as illustrated in Figure 4.4.

The EB faces are the intersection of the domain boundary, ∂Ω, with the Cartesian

cells, denoted Ai,EB = ∂Ω ∩ Ci. For this thesis, it is assumed that the irregular

domain representation requires at most one control volume and at most one EB

face per Cartesian cell, even though the method can be generalized to multiple
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V i+e0
V iWi,Ui

V i−e1

Wi−e1
U

Wi+e0
,Ui+e0

i−e1

Figure 4.3: Irregular control volumes are created when an irregular domain, in this
case a channel containing a solid sphere, is represented on a set of Cartesian cells.
The state variables are defined at the center of each Cartesian cell, even if the cell
center is outside of the solution domain.

valid control volumes per Cartesian cell provided there is at most one EB face

per control volume. To construct conservative finite difference methods using this

description, several quantities are needed, all of which can be computed to O(h2) in

two dimensions by representing the EB as a line segment connecting the two points

where ∂Ω intersects ∂Ci:

• The volume fraction of the control volume, κi ∈ [0, 1], the area fractions of

each face, αi± 1
2
ed
∈ [0, 1], and the area fraction of the EB face, αi,EB ∈ [0,

√
2]:

κi =
|Vi|
h2

, αi± 1
2
ed

=

∣∣∣Ai± 1
2
ed

∣∣∣
h

, αi,EB =
|Ai,EB|

h
. (4.40)

• The location of each face-centroid, xi± 1
2
ed

, and the normalized location of each
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A i+(1/2)e0A

V i

A i+(1/2)e1

A i−(1/2)e0

xi−(1/2)e0

ni

xi+(1/2)e1

xi+(1/2)e0

xi,EB i,EB

Figure 4.4: (Left) Control volume Vi with faces Ai± 1
2
ed

and EB face Ai,EB. (Right)
Face-centroids xi± 1

2
ed

, EB centroid xi,EB, and outward normal ni.

face-centroid with respect its corresponding Cartesian face-center, x̂i± 1
2
ed
∈

[−1
2 , 1

2 ]:

xi± 1
2
ed

=
1∣∣∣Ai± 1

2
ed

∣∣∣

∫

A
i± 1

2 ed

xdA, x̂i± 1
2
ed

=
1
h
xi± 1

2
ed
−

(
i± 1

2
ed

)
. (4.41)

• The location of the EB centroid, xi,EB, and the normalized location of the

EB centroid with respect to its corresponding Cartesian cell-center, x̂i,EB ∈
[−1

2υ, 1
2υ]:

xi,EB =
1

|Ai,EB|
∫

Ai,EB

xdA, x̂i,EB =
1
h
xi,EB − i. (4.42)

• The normalized average outward normal of ∂Ω over Ai,EB, ni:

ni =
1

|Ai,EB|
∫

Ai,EB

ndA, |ni| = 1. (4.43)

Each Cartesian cell is classified as open or covered. Covered cells lie completely

within the EB and are not part of the solution domain. Open cells are classified

as either regular or irregular. Regular cells are completely uncovered and irregular

cells are partially covered. A cell is considered to be irregular even if the EB only

shares a portion of the cell boundary and does not actually come inside the cell.
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Faces are classified in the same way. For notational simplicity in this thesis, it is

assumed that if a face is covered, then at least one of the cells adjacent to the face

is covered. This condition is equivalent to assuming a minimum thickness to the

covered regions.

State variables are defined at the geometric centers of each open cell, even if

the cell center is outside the solution domain. The cell-centered values in irregular

cells represent smooth extensions of the state variables to the cell-center, which is

permitted as long as the solution and the domain boundary are sufficiently smooth

[35]. There are several advantages to using a cell-centered representation rather

than a centroid-centered representation. The regular structure of the data leads to

better control over truncation error, and the resulting finite difference operators are

more amenable to multigrid and adaptive methods [23].

Using the geometric quantities defined above, the four-point divergence for reg-

ular cells (4.3) can be generalized to any control volume. The “conservative” diver-

gence of a vector field [24] associated with control volume Vi can be expressed as a

linear combination of face-centered and EB centroid normal components using the

divergence theorem:

(∇ · v)C,FC→CC
i =

1
|Vi|

∫

Vi

(∇ · v)dV =
1
|Vi|

∫

∂Vi

(n · v)dA

≈ 1
κih

[
1∑

d=0

∑
±=+,−

±αi± 1
2
ed

vd(xi± 1
2
ed

) + αi,EBni · vi,EB

]
.

(4.44)

where vd(xi± 1
2
ed

) is the value of vd at face-centroids, obtained by linearly interpo-

lating between the two nearest face-centered values of vd, as illustrated in Figure

4.5. Figure 4.6 illustrates a sample conservative divergence discretization.

In contrast to (4.44) is the “non-conservative” divergence [24], which is the fol-

lowing linear combination of face-centered values of vd, regardless of whether the
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C

C

Figure 4.5: The value of vd or td at the face centroid at point C, is found by linearly
interpolating from the two neighboring face-centered values.

Figure 4.6: (Left) In the conservative divergence stencil, the normal components
of v or t are needed at face-centroids and the EB centroid. (Right) In the non-
conservative divergence stencil, the normal components of v or t are needed at
face-centers, even if the face is irregular or covered.

face is regular, irregular, or covered, as illustrated in Figure 4.6:

(∇ · v)NC,FC→CC
i =

1
h

1∑

d=0

∑
±=+,−

±vd,i± 1
2
ed

. (4.45)

The non-conservative divergence is equivalent to the four-point divergence (4.4), ex-

cept that the non-conservative divergence is defined for irregular cells. For regular

cells, the conservative and non-conservative divergence discretizations are equiva-

lent. Both discretizations have analogous forms for the divergence of a tensor field.
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Embedded boundary methods have been used with success in a wide variety of

problems, with a review given in [23]. Recently, new techniques have been developed

for solving elliptic equations [42], parabolic equations [54], and systems of hyperbolic

conservation laws [24]. This thesis uses solution techniques for each of these classes

of PDEs. The stability and accuracy of these methods have been analyzed, with a

particular focus on the “small-cell” problem [23], in which κi ¿ 1.

Typical elliptic and parabolic equations that are solved are the Poisson equation:

∆hφ = b, (4.46)

and the Helmholtz equation:

(I−D∆h)φ = b, (4.47)

where:

(∆hφ)i =
[∇ · (∇φ)CC→FC

]C,FC→CC

i
. (4.48)

Note that for irregular cells, the EB centroid normal gradient, (n · ∇φ)CC→EB, is

also needed to compute the conservative divergence. The discretizations for the

face-centered normal gradient, (∇φ)CC→FC , and EB centroid normal gradient are

described in Appendix Sections A.2.2 and A.2.3.

For equations (4.46) and (4.47), the potential stability problem coming from the

division by κi in (4.44) is eliminated by multiplying both sides of the equation by κi.

It was shown in [42, 54] that solving the scaled versions of (4.46) and (4.47) with a

straightforward centered difference calculation of the gradients at centroids leads to

a stable method. The choice of gradient discretizations in order to obtain a stable

discretization for three-dimensional problems is non-trivial, as is discussed in [71].

For parabolic problems, the use of a Crank-Nicolson discretization has been shown

to be unstable, due to the interaction of a non-symmetric matrix representation of

the parabolic operator with the neutral stability of Crank-Nicolson [43]. The remedy
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proposed in [54] is to choose a more advanced semi-implicit discretization which is

stable in the presence of embedded boundaries, such as the method developed by

Twizell, et al. [78]. The truncation error for these methods is O(h2) for regular cells

and O(h/κi) for irregular cells. The modified equation analysis in [42] indicates

that the effect of the truncation error is an additional forcing on the PDE. This

forcing acts over a region of size O(κi), which cancels the volume fraction in the

denominator of the truncation error. Thus, the O(h) forcing of the truncation error

in irregular cells acts over a region of width O(h). The smoothing obtained from

applying the solution operator leads to a solution error which is O(h2) uniformly

for all cells. This phenomena is also supported by numerical evidence, in which

second-order solution error convergence is observed in L∞.

For hyperbolic conservation laws of the form (4.1), due to the explicit nature of

the solution discretization, the time step restriction based on using (4.44) to com-

pute the flux divergence is no better than ∆t = O(h
√

κi/|Λi,max|) in two dimensions.

There have been a number of attempts to deal with this problem, including merging

the small control volumes with nearby larger ones [19, 67] and the development of

specialized stencils that cancel the required terms [9]. The approach taken here is

to expand the range of influence of the small control volumes by using a linear com-

bination of conservative and non-conservative divergence stencils for approximating

the fluxes [24] along with a redistribution procedure to maintain global conserva-

tion. The truncation error for this method is O(h2) for regular cells and O(h) for

irregular cells. Thus, the modified equation analysis predicts second-order solution

error convergence in L1 and first-order in L∞, as supported by numerical evidence.

4.3 Reconstruction Algorithm

The reconstruction algorithm computes face-centered, time-centered estimates

of the state variables which are later used to compute the flux divergence. Follow-

ing [22, 24], the reconstruction algorithm is divided into a normal predictor step
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and a transverse predictor step. In the normal predictor, a one-dimensional Taylor

series extrapolation in space and time, along with an upwind procedure in the form

of a characteristic projection operator, are used to obtain a one-dimensional MAC

state. In the transverse predictor, the transverse derivatives omitted in the normal

predictor are accounted for by taking differences of the one-dimensional MAC state,

yielding the preliminary MAC state. The algorithm in [22, 24] will be modified to

eliminate the propagation of compressive waves inherent to the equations of mo-

tion, as well as account for the non-zero source terms. Additionally, the normal and

transverse predictor require the use of a Riemann solver and well-posed boundary

conditions, which are derived for the equations in this thesis. After the recon-

struction step, a MAC projection is performed on the preliminary MAC velocity to

enforce the divergence constraint, yielding the final MAC state.

4.3.1 Normal Predictor

The first step in the reconstruction algorithm is the normal predictor, which

computes a one-dimensional MAC state using a one-dimensional Taylor series ex-

trapolation in space and time followed by a Riemann solver. The Taylor series

extrapolation, illustrated in Figure 4.7, computes two face-centered, time-centered

states at each face, which are centered about the two neighboring cell-centers:

Wi,±,d = Wn
i ±

h

2
∂Wn

i

∂xd
+

∆t

2
∂Wn

i

∂t
. (4.49)

Consider a one-dimensional version of the primitive variable form:

∂W
∂t

+ Ad(W) · ∂W
∂xd

= SW , (4.50)
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Wi,+,0

Wi+e0,−,0

Wi,+,1

Figure 4.7: In the normal predictor, the face-centered, time-centered states, Wi,±,d,
are computed using Taylor series extrapolations centered about each neighboring
cell-center.

The time derivative in (4.49) is replaced with the one-dimensional primitive variable

form:

Wi,±,d = Wn
i ±

h

2
∂Wn

i

∂xd
+

∆t

2

[
−Ad(Wn

i ) · ∂Wn
i

∂xd
+ SW,i

]

︸ ︷︷ ︸
∂Wn

i /∂t

= Wn
i +

[
±h

2
I− ∆t

2
Ad(Wn

i )
]
· ∂Wn

i

∂xd
+

∆t

2
SW,i. (4.51)

The source term vector contains a combination of implicit and explicit terms, so for

now the temporal location of these terms, as well as the spatial discretization, is

left unspecified. The spatial derivative in (4.51) can be represented by the following

fourth-order difference approximation:

∆4C
d Wn

i =
1
12

Wn
i−2ed

− 2
3
Wn

i−ed
+

2
3
Wn

i+ed
− 1

12
Wn

i+2ed
; (4.52)

∆4C
d Wn

i

h
=

∂Wn
i

∂xd
+O(h4). (4.53)
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However, this finite difference approximation cannot simply replace the spatial

derivative in (4.51). Godunov [36] proved that all explicit methods of second-order

or greater for hyperbolic problems will develop unphysical oscillations. In order to

prevent these oscillations from forming, van Leer [80] introduced a slope limiting

procedure where the derivative approximation locally drops order in cells where

oscillations would develop if limiting were not used. Also, due to the presence of

domain boundaries and EBs, the stencil points for the fourth-order approximation

are not necessarily available, requiring the use of one-sided, lower-order difference

approximations. The details for the fourth-order derivative approximation with van

Leer limiting in an EB framework, denoted ∆4
dWi, are given in Appendix Section

A.1. Following [24], the spatial derivative in (4.51) will be replaced with ∆4
dW

n
i ,

rather than ∆4C
d Wn

i .

The difference approximation ∆4
dW

n
i can be uniquely decomposed into a linear

combination of the eigenvectors of Ad(Wn
i ):

∆4
dW

n
i =

N−1∑

k=0

βkrk; βk = lk ·∆4
dW

n
i , (4.54)

where rk and lk are the corresponding right column eigenvectors and left row eigen-

vectors of Ad(Wn
i ), normalized so that rk · lk = 1. In particular, the matrix of

right column eigenvectors of A0(W) is given in (4.38), and the matrix of left row
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eigenvectors is given by:

L0 =




− 1
2
√

2α0c0
0 − 1

4α2
0

0 0 0 0 0 0

τ10
2α0c0

− 1
2c0

τ10
2α2

0
− 1

2α0
0 0 0 0 0

0 0 τ2
10

α2
0

−2τ10
α0

1 0 0 0 0

0 0 g00α0−g01τ10
2α2

0

g01

α0
0 1 0 0 0

0 0 g10α0−g11τ10
2α2

0

g11

α0
0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

− τ10
2α0c0

1
2c0

τ10
2α2

0
− 1

2α0
0 0 0 0 0

1
2
√

2α0c0
0 − 1

4α2
0

0 0 0 0 0 0




. (4.55)

A characteristic projection operator, P±, is applied to the difference approximation

in the Taylor series extrapolation, which is an upwind technique that discards the

components of the differences that do not propagate toward the face. The extrapo-

lation is now given by:

Wi,±,d = Wn
i +

1
2

[
±I− ∆t

h
Ad(Wn

i )
]
· P±(∆4

dW
n
i ) +

∆t

2
SW,i; (4.56)

P±(∆4
dW

n
i ) =

∑

k:Λk≷0

βkrk, (4.57)

where Λk are the eigenvalues of Ad(Wn
i ), given in (4.37). Since Ad(Wn

i )·rk = Λkrk,

the extrapolation can be simplified to:

Wi,±,d = Wn
i +

1
2

∑

k:Λk≷0

(
±1− ∆t

h
Λk

)
βkrk +

∆t

2
SW,i. (4.58)

Variable Partitioning: Unfortunately, the equations of motions contain com-

pressive waves which violate the divergence constraint, as noted in [77]. The lon-

gitudinal modes corresponding to Λ0,8 = u0 ±
√

2c0 are compressive waves, as they
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permit a discontinuity in the normal velocity. This can be seen due to the pres-

ence of non-zero ∓√2α0c0 terms in the u0 position in r0 and r8. A discontinuity

in the normal velocity cannot physically exist in a one-dimensional incompressible

problem. To remedy this situation, the approach taken is to partition the primitive

variables into “active” and “inactive” groups WA,d ∈ RNA and WI,d ∈ RNI . A simi-

lar approach was used in [29] to enforce the divergence-free constraint on the normal

magnetic field in the equations of ideal magnetohydrodynamics (MHD). In the nor-

mal predictor, only the active variables are subject to a characteristic projection

operator, thus eliminating the numerical propagation of compressive waves. The

inactive variables are chosen to be the normal velocity ud and the normal-normal

stress τdd, which is the stress component associated with the compressive waves.

Now, the primitive variables are partitioned and ordered as follows:

W′
0 = [WA,0 |WI,0]

T

= [u1, τ10, τ11, g00, g10, g01, g11 | u0, τ00]
T , (4.59)

and the one-dimensional primitive variable form is partitioned as follows:

∂W′
d

∂t
+ A′

d(W) · ∂W′
d

∂xd
= S′W , (4.60)

∂

∂t




WA,d

WI,d


 +




AAA,d(W) AAI,d(W)

AIA,d(W) AII,d(W)


 · ∂

∂xd




WA,d

WI,d


 =




SW,A

SW,I


 .

(4.61)
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The primitive coefficient matrix A′
0 is given as:

A′
0 =




AAA,0 AAI,0

AIA,0 AII,0




=




u0 −1
ρ 0 0 0 0 0 0 0

−α0 u0 0 0 0 0 0 −τ10 0

−2τ10 0 u0 0 0 0 0 0 0

g01 0 0 u0 0 0 0 g00 0

g11 0 0 0 u0 0 0 g10 0

0 0 0 0 0 u0 0 0 0

0 0 0 0 0 0 u0 0 0

0 0 0 0 0 0 0 u0 −1
ρ

0 0 0 0 0 0 0 −2α0 u0




. (4.62)

The eigenvalues of AAA,0 are:

Λ(AAA,0) =





u0 − c0, u0, u0, u0, u0, u0,︸ ︷︷ ︸
5-fold degenerate

u0 + c0





. (4.63)

The right column eigenvectors and left row eigenvectors of AAA,0, normalized such

that rk · lk = 1, are:

RAA,0 =




−c0 0 0 0 0 0 c0

−α0 0 0 0 0 0 −α0

−2τ10 1 0 0 0 0 −2τ10

g01 0 1 0 0 0 g01

g11 0 0 1 0 0 g11

0 0 0 0 1 0 0

0 0 0 0 0 1 0




, (4.64)
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LAA,0 =




− 1
2c0

− 1
2α0

0 0 0 0 0

0 −2τ10
α0

1 0 0 0 0

0 g01

α0
0 1 0 0 0

0 g11

α0
0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1
2c0

− 1
2α0

0 0 0 0 0




. (4.65)

Thus, the eigenvalues u0±
√

2c0 do not exist in the active partition, and the remain-

ing eigenvalues and eigenvectors remain unchanged from the unpartitioned system.

For d = 1, the primitive variables and advection matrices are ordered as follows:

W′
1 = [WA,1 WI,1]T

= [u0, τ00, τ10, g00, g10, g01, g11 u1, τ11]T , (4.66)

A′
1 =




u1 0 −1
ρ 0 0 0 0 0 0

−2τ10 u1 0 0 0 0 0 0 0

−α1 0 u1 0 0 0 0 −τ10 0

0 0 0 u1 0 0 0 0 0

0 0 0 0 u1 0 0 0 0

g00 0 0 0 0 u1 0 g01 0

g10 0 0 0 0 0 u1 g11 0

0 0 0 0 0 0 0 u1 −1
ρ

0 0 0 0 0 0 0 −2α1 u1




. (4.67)

The eigenvalues and eigenvectors are:

Λ(AAA,1) = {u1 − c1, u1, u1, u1, u1, u1,︸ ︷︷ ︸
5-fold degenerate

u1 + c1}, (4.68)
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RAA,1 =




−c1 0 0 0 0 0 c1

−2τ10 1 0 0 0 0 −2τ10

−α1 0 0 0 0 0 −α1

0 0 1 0 0 0 0

0 0 0 1 0 0 0

g00 0 0 0 1 0 g00

g10 0 0 0 0 1 g10




, (4.69)

LAA,1 =




− 1
2c1

0 − 1
2α1

0 0 0 0

0 1 −2τ10
α1

0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 g00

α1
0 0 1 0

0 0 g10

α1
0 0 0 1

1
2c1

0 − 1
2α1

0 0 0 0




. (4.70)

The Taylor series extrapolation is now partitioned as:

W′
i,±,d = Wn′

i ±
h

2
∂Wn′

i

∂xd
+

∆t

2
∂Wn′

i

∂t
, (4.71)




WA,i,±,d

WI,i,±,d


 =




Wn
A,i

Wn
I,i


± h

2
∂

∂xd




Wn
A,i

Wn
I,i


 +

∆t

2
∂

∂t




Wn
A,i

Wn
I,i


 . (4.72)

Replacing the partitioned time derivative in (4.72) with the partitioned one-

dimensional primitive variable form (4.61) leads to separate equations for the active

and inactive variables:

WA,i,±,d = Wn
A,i +

[
±h

2
I− ∆t

2
AAA,d(Wn

i )
]

∂Wn
A,i

∂xd

+
∆t

2

[
−AAI,d(Wn

i )
∂Wn

I,i

∂xd
+ SW,A,i

]
, (4.73)



55

WI,i,±,d = Wn
I,i +

[
±h

2
I− ∆t

2
AII,d(Wn

i )
]

∂Wn
I,i

∂xd

+
∆t

2

[
−AIA,d(Wn

i )
∂Wn

A,i

∂xd
+ SW,I,i

]
. (4.74)

Following [29], for the active variables, the characteristic projection operator is

applied to the active differences only, and second-order, non-limited differences (see

Appendix Section A.1) are used for the inactive differences:

WA,i,±,d = Wn
A,i +

1
2

∑

k:Λk≷0

(
±1− ∆t

h
Λk

)
βkrk

+
∆t

2

[
−1

h
AAI,d(Wn

i )D2
dW

n
I,i + SW,A,i

]
; (4.75)

βk = lk ·∆4
dW

n
A,i, (4.76)

where Λk, rk, and lk now correspond to the active-active partition AAA,d(Wn
i ) of

A′
d(W

n
i ). For the inactive variables, second-order non-limited differences are applied

to both the active and inactive differences:

WI,i,±,d = Wn
I,i +

[
±1

2
I− ∆t

2h
AII,d(Wn

i )
]
· D2

dW
n
I,i

− ∆t

2h
AIA,d(Wn

i ) · D2
dW

n
A,i +

∆t

2
SW,I,i. (4.77)

For irregular cells, the Taylor series extrapolation is only performed to open

faces, as illustrated in Figure 4.8. An extrapolation procedure will be used to ob-

tain the covered face state. Also, note that there is only one extrapolated state at

domain boundaries.

Velocity source terms: The velocity source terms have the following dis-
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Domain Solid Wall

Domain Solid Wall

OutflowInflow

Figure 4.8: For each open cell, a Taylor series extrapolation is performed to obtain
a face-centered, time-centered state at each open face.

cretization:

ui,±,d = ũi,±,d +
∆t

2

(
−1

ρ
∇p

n− 1
2

i + κiν(∆hun)i

)

︸ ︷︷ ︸
SW,u,i

, (4.78)

where ũi,±,d are the velocity terms from the normal predictor Taylor series extrap-

olation without the effect of the source terms. The time-lagged pressure gradient is

known and was previously computed with the pressure-projection method described

in Section 4.5.2. The Laplacian is computed component-wise using the stencil ∆hφ

from (4.48). For regular cells away from domain boundaries, the Laplacian stencil

becomes the standard five-point difference approximation, as illustrated in Figure

4.9:

(∆hφ)i =
φi+e0 + φi+e1 − 4φi + φi−e0 + φi−e1

h2
. (4.79)

Boundary conditions for the Laplacian are enforced in the normal gradient calcula-

tion. The physical boundary conditions for the Laplacian in (4.78) are as follows: a

prescribed Dirichlet value is used at inflow (u = uin), a homogeneous Dirichlet, or

no-slip condition (u = 0) is used at domain and EB solid walls, and a homogeneous
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Figure 4.9: Stencil points for the five-point Laplacian for regular cells.

Neumann condition (∂u/∂x0 = 0) is used at outflow. The general Laplacian stencil

contains a factor of the inverse volume fraction, 1/κi, so the Laplacian in (4.78)

is scaled by κi to cancel the potentially small volume fraction in the denominator,

providing stability for small control volumes at the cost of local accuracy.

Stress source terms: For the stress source terms, a combination of implicit

and explicit terms are used, giving the following discretization:

τ i,±,d = τ̃ i,±,d +
∆t

2

[
− 1

λ
τ i,±,d +

(µp

λ
− a2

)
2Dn

i

]

︸ ︷︷ ︸
SW,τ ,i

, (4.80)

where τ̃ i,±,d are the stress terms from the normal predictor Taylor series extrapo-

lation without the effect of the source terms. This equation can be rearranged to

give:

τ i,±,d =
(

2λ

2λ + ∆t

)
τ̃ i,±,d +

(
∆t

2λ + ∆t

) (
µp − λa2

)
2Dn

i . (4.81)

Note that in the Newtonian limit of the algorithm (λ → 0), the stress terms have

the same form as the Newtonian stress, but scaled by µp rather than µs:

τ i,±,d → µp2Dn
i = µp

[∇un + (∇un)T
]
i

as λ→ 0. (4.82)

The gradients in the rate-of-strain tensor are computed component-wise using the
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Figure 4.10: Stencil points for the two-point cell-centered gradient for regular cells.

stencil (∇φ)CC→CC , which is the cell-centered gradient of a cell-centered field. For

regular cells away from the domain boundary, each component of the gradient is

given by the two-point difference approximation, illustrated in Figure 4.10:

∇φCC→CC
d,i =

φi+ed
− φi−ed

2h
. (4.83)

The general discretization for (∇φ)CC→CC is described in Appendix Section A.2.

The physical boundary conditions for the rate-of-strain tensor in (4.81) are as fol-

lows: extrapolation boundary conditions are used for the normal velocity at inflow

and outflow, and no-flow (un = 0) is used at solid walls. In this case, no-flow and

no-slip conditions are equivalent since the transverse velocity at domain boundaries

does not enter into the gradient stencil.

Normal predictor Riemann problem: After the face-centered, time-centered

extrapolated states, Wi,±,d, have been computed, a Riemann solver takes these

extrapolated states and computes the one-dimensional MAC state at each open

face, W1D
i± 1

2
ed

, as illustrated in Figure 4.11. This process is denoted as:

W1D
i+ 1

2
ed

= R (Wi,+,d,Wi+ed,−,d, d) . (4.84)

The details of the Riemann solver are described in Section 4.3.3. At domain bound-

aries, there is only one input to the Riemann solver, requiring a special one-sided
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Wi+e0,−,0

Wi,+,0

W i+(1/2)e0

1D

Figure 4.11: A Riemann solver takes the input extrapolated states, Wi,±,d, and
returns the one-dimensional MAC state at each open face, W1D

i± 1
2
ed

.

Riemann solver, as described in Section 4.3.5. Next, the one-dimensional MAC

state at covered faces is computed using the extrapolation procedure described in

Appendix Section A.3. At this point, the one-dimensional MAC state is available

at each of the four faces in each open cell, regardless of whether the face is regular,

irregular, covered, or a domain boundary.

4.3.2 Transverse Predictor

In the transverse predictor, the extrapolated terms from the normal predictor,

Wi,±,d, are updated with transverse derivatives of the one-dimensional MAC state,

W1D
i+ 1

2
ed

, to obtain new extrapolated states at open faces, W
n+ 1

2
,∗

i,±,d . This process is

illustrated in Figure 4.12 and the details of this procedure are given by:

W
n+ 1

2
,∗

i,±,d = Wi,±,d − ∆t

2h
Ad′(Wi,±,d) ·

(
W1D

i+ 1
2
ed′
−W1D

i− 1
2
ed′

)
; d 6= d′. (4.85)

In the original method, [22, 24], the transverse predictor was posed in terms of
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i+(1/2)e1
W

1i−(1/2)eW

i+e0,−,0 i+e0+(1/2)e1

i+e0−(1/2)e1

WWi,+,0

W

W1D n+(1/2),* n+(1/2),* 1D

1D1D

Figure 4.12: In the transverse predictor, the extrapolated terms from the normal
predictor, Wi,±,d, are updated with transverse derivatives of the one-dimensional

MAC state, W1D
i+ 1

2
ed

, to obtain new extrapolated states, W
n+ 1

2
,∗

i,±,d .

conserved variables [24]:

F1D
i+ 1

2
ed

= Fd(U1D
i+ 1

2
ed

), (4.86)

U
n+ 1

2
,∗

i,±,d = Ui,±,d − ∆t

2h

(
F1D

i+ 1
2
ed′
− F1D

i− 1
2
ed′

)
; d 6= d′. (4.87)

However, it has been found that a conservative variable approach affects the con-

vergence rate for the overall algorithm, perhaps due to the coupling of the g and τ

terms which define M. The primitive variable formulation of the transverse predic-

tor does cause the overall method to suffer from a loss of convergence.

Transverse predictor Riemann problem: Next, a Riemann solver takes the

extrapolated states W
n+ 1

2
,∗

i,±,d and computes the preliminary MAC state at each open

face, W
n+ 1

2
,∗

i+ 1
2
ed

, as illustrated in Figure 4.13. This process is denoted as:

W
n+ 1

2
,∗

i+ 1
2
ed

= R
(
W

n+ 1
2
,∗

i,+,d ,W
n+ 1

2
,∗

i+ed,−,d, d

)
. (4.88)

At covered faces, the same extrapolation procedure used in the normal predictor
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Wi+e0,−,0

Wi,+,0

W i+(1/2)e0

1D

Figure 4.13: A Riemann solver takes the input states, W
n+ 1

2
,∗

i,±,d and returns the

preliminary MAC state at each open face, W
n+ 1

2
,∗

i+ 1
2
ed

.

is used to obtain the covered face preliminary MAC state, and the same one-sided

Riemann solver is used at domain boundaries. At this point, the preliminary MAC

state is available at each of the four faces in each open cell, regardless of whether

the face is regular, irregular, covered, or a domain boundary. The next step is to

perform a MAC projection, as described in Section 4.5.1, to enforce the divergence-

free constraint leading to the final MAC state.

4.3.3 Riemann Solver

Both the normal and transverse predictor require the use of a Riemann solver,

which takes as inputs a left state, right state, and the direction of the interface

normal and determines the future behavior of the system. The solution is a similarity

solution, that is, it is a function of xd/(t − t0), but the only solution of interest

is the future state at the interface where xd = 0. For many systems including

gas dynamics [75], MHD [29] and solid mechanics [56, 57], approximate Riemann

solvers have been used to avoid the computational expense of the exact solution.

For these problems, exact Riemann solvers have been derived [55, 75, 76] primarily
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W

xd

S

Si
t

Si−1

S0

W0=WL

Wi

(0,t0)

WR

xd=0

t = t0

WL

NW      =WR

NW−1

Figure 4.14: A Riemann problem consists of computing the future behavior of a
system given two initial states separated by a jump discontinuity. The general
solution consists of NW + 1 separate states separated by NW waves.

to analyze the accuracy of various approximate solvers. Fortunately, the equations

of viscoelasticity in this thesis lend themselves to simple, exact solutions that are

computationally inexpensive. The Riemann solution is now derived for d = 0 with

enough generality to solve for the case when d = 1.

The Riemann problem will be solved in terms of primitive variables, i.e., given

the following system of one-dimensional hyperbolic equations:

∂W
∂t

+ Ad(W) · ∂W
∂xd

= SW ; W ∈ RNW , (4.89)

with discontinuous initial data of the form:

W(xd, t0) =





WL, xd < 0,

WR, xd > 0.

(4.90)

The goal is to compute the future behavior of the system . The general solution
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consists of NW + 1 separate states separated by NW waves each with speed Si

in the (xd, t) plane. The wave speeds are related to, but not necessary equal to

the eigenvalues of Ad(W). If two or more eigenvalues have the same value, the

corresponding waves are referred to as degenerate. Each wave emanates from the

location of the original discontinuity (xd, t) = (0, t0), as illustrated in Figure 4.14.

In general, the solution to the Riemann problem consists of the left state, right

state and a series of intermediate states separated by waves associated with the

eigenvalues of the primitive coefficient matrix. There is a separate treatment for

the active and inactive variables since the same incompressibility-violating waves

that were removed in the predictor step cannot exist in the Riemann solution [29].

The solution for the inactive variables for all (xd, t); t > t0, is simply the average of

the left and right states, and will also be used as parameters for the active variable

solution.

To derive the active variable solution, the first step is to determine the type of

each wave (shock, rarefaction or linearly degenerate) in order to understand how the

state variables change across them. Consider the eigenvalues (4.63) and eigenvectors

(4.65) of AAA,0. It can be illustrated that each of the waves are linearly degenerate,

i.e.:

∇WA,0
Λk · rk = 0; k = 0, · · · , 6, (4.91)

∇WA,0
=

(
∂

∂u1
,

∂

∂τ10
,

∂

∂τ11
,

∂

∂g00
,

∂

∂g10
,

∂

∂g01
,

∂

∂g11

)T

. (4.92)

Equivalently, a wave is linearly degenerate if the eigenvalue has the same value on

each side of the wave. Here, since the eigenvalues are constant with respect to the

active variables, (4.91) is trivially true for each wave, and therefore all the waves

are linearly degenerate.

A linearly degenerate wave separates two states by a jump discontinuity propa-

gating at speed equal to the eigenvalue [75]. Graphically, such waves are represented
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Figure 4.15: Example solution to the Riemann problem; (Left) solution at xd/t = 0
is WL, (Right) solution at xd/t = 0 is WR∗.

in the (xd, t) plane as passing through the original point of discontinuity with inverse

slope equal to the corresponding eigenvalue. Therefore, the complete solution to the

Riemann problem consists of 4 states: WL,WL∗,WR∗, and WR. The left wave cor-

responding to Λ0 = u0− c0 separates states WL and WL∗. The five-fold degenerate

center wave corresponding to Λ1 = · · · = Λ5 = u0, which shall be referred to as the

contact discontinuity, separates the star states WL∗ and WR∗. The right wave cor-

responding to Λ6 = u0 + c0 separates states WR∗ and WR. Figure 4.15 illustrates

example cases when the solution for xd/t = 0 is WL and WR∗ respectively.

The relative jumps of the active variables across each wave can be determined

using the Generalized Riemann Invariants [75]. For a linearly degenerate wave

associated with eigenvalue Λk, the following NA ordinary differential equations are

true:
∂W (0)

r
(0)
k

=
∂W (1)

r
(1)
k

= · · · = ∂W (NA−1)

r
(NA−1)
k

, (4.93)

where W (i) is the ith element in WA,0 and r
(i)
k is the ith element in the kth column

eigenvector of RAA,0. For the left wave associated with Λ0 = u0 − c0:

∂u1

−c0
=

∂τ10

−α0
=

∂τ11

−2τ10
=

∂g00

g01
=

∂g10

g11
=

∂g01

0
=

∂g11

0
. (4.94)
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For the center contact discontinuity associated with Λ1 = · · · = Λ5 = u0:

∂u1

0
=

∂τ10

0
=

∂τ11

1
=

∂g00

0
=

∂g10

0
=

∂g01

0
=

∂g11

0
, (4.95)

∂u1

0
=

∂τ10

0
=

∂τ11

0
=

∂g00

1
=

∂g10

0
=

∂g01

0
=

∂g11

0
, (4.96)

∂u1

0
=

∂τ10

0
=

∂τ11

0
=

∂g00

0
=

∂g10

1
=

∂g01

0
=

∂g11

0
, (4.97)

∂u1

0
=

∂τ10

0
=

∂τ11

0
=

∂g00

0
=

∂g10

0
=

∂g01

1
=

∂g11

0
, (4.98)

∂u1

0
=

∂τ10

0
=

∂τ11

0
=

∂g00

0
=

∂g10

0
=

∂g01

0
=

∂g11

1
. (4.99)

For the right wave associated with Λ6 = u0 + c0:

∂u1

c0
=

∂τ10

−α0
=

∂τ11

−2τ10
=

∂g00

g01
=

∂g10

g11
=

∂g01

0
=

∂g11

0
. (4.100)

The first important piece of information obtained from (4.95)-(4.99) is that due to

the zero in the denominator of the terms containing ∂u1 and ∂τ10, u1 and τ10 must be

constant across the contact discontinuity. Also, for each term in (4.94) and (4.100)

except for the term containing ∂τ11, the denominator of each term is a constant in

a sense that the value is the same on each side of the corresponding wave. This

means that the change in each variable across the wave (excluding τ11), is equal

to a constant wave-strength multiplied by the denominator of the corresponding

variable. In other words, the complete star states for the active variables excluding

τ11, (indicated with a hat above the vector) are:

ŴA,L∗ = ŴA,L + ΨLr̂0 (WL) ,

ŴA,R∗ = ŴA,R + ΨRr̂5 (WR) . (4.101)

Using a method similar to [76] for ideal MHD, a unique consistent mapping can

be made across the states. In particular, u1 and τ10 are constant across the center
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contact waves, so these constraints will be used to determine the two wave strengths

ΨL and ΨR. Using (4.93) and (4.94), the following pair of equations must be true:

u1,L∗ = u1,L −ΨLc0,

τ10,L∗ = τ10,L −ΨLα0. (4.102)

Using (4.93) and (4.100), the following equations must be true:

u1,R∗ = u1,R + ΨRc0,

τ10,R∗ = τ10,R −ΨRα0. (4.103)

Since u1,L∗ = u1,R∗ and τ10,L∗ = τ10,R∗ these 4 equations can be reduced to:




c0 c0

α0 −α0







ΨL

ΨR


 =




u1,L − u1,R

τ10,L − τ10,R


 . (4.104)

The unknowns are found by solving this system, and are given by:




ΨL

ΨR


 =




α0(u1,L−u1,R)+c0(τ10,L−τ10,R)
2α0c0

α0(u1,L−u1,R)−c0(τ10,L−τ10,R)
2α0c0


 . (4.105)

To get the L∗ state for τ11, examine a subset of (4.94):

∂τ10

−α0
=

∂τ11

−2τ10
→ ∂τ11 =

2
α0

τ10∂τ10. (4.106)

Integrate both sides of the equation across the left wave to get:

∫ τ11,L∗

τ11,L

∂τ11 =
2
α0

∫ τ10,L∗

τ10,L

τ10∂τ10 → τ11,L∗ = τ11,L +
1
α0

(
τ2
10,L∗ − τ2

10,L

)
. (4.107)
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xi,EB,0

xi,EB,1

i,EBWn+1/2

Figure 4.16: A full-dimensional Taylor series extrapolation in space and time is used

to compute the EB centroid state, W
n+ 1

2
i,EB

Similarly, for the right wave:

∫ τ11,R∗

τ11,R

∂τ11 =
2
α0

∫ τ10,R∗

τ10,R

τ10∂τ10 → τ11,R∗ = τ11,R+
1
α0

(
τ2
10,R∗ − τ2

10,R

)
. (4.108)

4.3.4 EB Centroid State Calculation

Since the divergence term in (4.3) is approximated as a linear combination of

normal fluxes at the control volume faces, the state variables at the EB centroid

must be known in irregular cells. To obtain the time-centered state at the EB

centroid W
n+ 1

2
i,EB, a full-dimensional Taylor extrapolation in space in time is used, as

illustrated in Figure 4.16:

W
n+ 1

2
i,EB = Wn

i + hx̂i,EB,0
∂Wn

i

∂x0
+ hx̂i,EB,1

∂Wn
i

∂x1
+

∆t

2
∂Wn

i

∂t
. (4.109)

Replacing the time derivative in this equation with the full-dimensional primitive

variable form (2.28) gives the extrapolation:

W
n+ 1

2
i,EB = Wn

i +
(

hx̂i,EB,0I− ∆t

2
A0

)
·∂Wn

i

∂x0
+

(
hx̂i,EB,1I− ∆t

2
A1

)
·∂Wn

i

∂x1
+

∆t

2
SW,i.

(4.110)



68

The choice is made to replace the spatial derivatives with second-order non-limited

differences:

W
n+ 1

2
i,EB = Wn

i +
(

x̂i,EB,0I− ∆t

2h
A0

)
·D2

0W
n
i +

(
x̂i,EB,1I− ∆t

2h
A1

)
·D2

1W
n
i +

∆t

2
SW,i.

(4.111)

The source terms are evaluated using the same discretization in the normal predictor

as given in (4.78) and (4.81). A one-sided Riemann problem must be solved to obtain

the solution state at the EB centroid. In order to do this, a rotation is performed on

W
n+ 1

2
i,EB to a coordinate system where the EB has a normal that points in the +x0

direction. This is done by introducing a rotation matrix using the outward normal:

R =



−n0 −n1

n1 −n0


 . (4.112)

To rotate the variables, the following is used:

urot = R · un+ 1
2

i,EB, τ rot = R · τn+ 1
2

i,EB ·RT , grot = R · gn+ 1
2

i,EB ·RT . (4.113)

The one-sided Riemann solver for solid walls described in Section 4.3.5 is used, and

then the solution state is rotated back to the original frame using:

u
n+ 1

2
i,EB = RT · urot, τ

n+ 1
2

i,EB = RT · τ rot ·R, g
n+ 1

2
i,EB = RT · grot ·R. (4.114)

This process is illustrated in Figure 4.17.

4.3.5 One-Sided Riemann Solvers

In the reconstruction algorithm, there are several cases where a one-sided Rie-

mann problem must be solved. This occurs in the normal and transverse predictor at

domain boundaries and in the calculation of the time-centered EB centroid state (see
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WS,rot

WE,rot

WE i,EB=Wn+1/2 WS i,EB=W n+1/2

Figure 4.17: In order to solve a one-sided Riemann problem at an EB centroid, the

EB centroid state W
n+ 1

2
i,EB is rotated into an orientation where the normal points in

the +x0 direction.

Inflow

W

WS

E

Domain Solid Wall

WS WE

WE

WS

Outflow

EB Centroid
(Solid Wall)

WE

WS

Figure 4.18: There are four cases where a one-sided Riemann solver is used to obtain
the solution state WS : inflow, domain solid walls, outflow, and EB centroids.

Figure 4.18). In each of these cases, an extrapolated state WE has been computed,

and the actual solution state WS is to be determined. The approach taken is to

use the methods in [32] for determining well-posed boundary conditions for multi-

dimensional finite volume methods for hyperbolic problems. In this method, the

eigenvalues and eigenvectors of the coefficient matrices along with physical bound-

ary conditions are used to determine a well-posed solution state. Based on the sign

of the eigenvalues at the boundary, WS is composed of contributions from either

WE or physical boundary conditions.

Consider a domain boundary that is on the low side of a Cartesian cell. Positive

eigenvalues are said to “point” inside the domain, while negative eigenvalues “point”

outside the domain. The reverse is true for domain boundaries that lie on the high

side of a cell. For each eigenvalue that points inside the domain, one of the variables

in WS must be specified to a Dirichlet value based on a physical condition. For each
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eigenvalue that points out of the domain, a characteristic condition must be met.

Specifically, if Λk points out of the domain, a sufficient characteristic condition is

given by:

lk(WE) · (WE −WS) = 0. (4.115)

A third possible case is when Λk = 0. This is an ambiguous case, with no well-

defined systematic treatment. Here, for each zero eigenvalue, the choice is made to

set one element in WS to be equal to WE as long as any conditions imposed by

the non-zero eigenvalues are not violated. By following these rules, there are always

exactly the number of conditions to match the number of unknowns in WS . Note

that if all the eigenvalues at a boundary point into the domain, then WS must be

completely specified using physical conditions. If all the eigenvalues at a boundary

point out of the domain, then WS = WE . The one-sided Riemann problem is used

for the active variables only, allowing the freedom to choose either a Dirichlet or

extrapolated condition for the inactive variables. Specific details are now described

for this problem.

For domain boundary solid walls, which will always lie on the high or low side

in the x1 direction, the inactive variables are specified using a no-flow condition

on the normal velocity u1,S = 0 and extrapolation on the normal-normal stress

τ11,S = τnn,E . As for the active variables, it is always true that exactly one eigenvalue

points into the domain, one points out of the domain, and the rest are equal to zero.

The prescribed physical condition is chosen to be no-slip, ut = 0. Therefore, the

shear stress is found simply by applying lk(WE) · (WE −WS) = 0, where k = 0

if the wall normal points in the positive direction and k = 6 if the normal points

in the negative direction. The transverse velocity and the shear stress are the only

two non-zero entries in l0 and l6, so all the other active variables are set to the

extrapolated state WE .

At inflow, which lies on the low side of the domain in the x0 direction, the inactive
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variables u0 and τ00 are specified using the prescribed inflow condition. Then, it must

be determined whether the inflow is subsonic or supersonic by computing the left

wave speed u0−c0 using the prescribed inflow. If the flow is supersonic (u0−c0 > 0),

then all the eigenvalues point inside the domain and WS is set to the prescribed

inflow. If the flow is subsonic, a characteristic boundary condition is used. Since

the fluid velocity is positive, exactly six eigenvalues point into the domain and one

eigenvalue points out of the domain. Therefore, WS can be specified as equal to the

inflow condition for six of the seven active variables. The excluded active variable

is the shear stress, which is computed with the equation l0(WE) · (WE −WS) = 0.

At outflow, which lies on the high side of the domain in the x0 direction, the

inactive variables u0 and τ00 are set to the extrapolated values. Then, it must be

determined whether the outflow is subsonic or supersonic by calculating the left

wave speed u0 − c0 using the extrapolated state WE . If the flow is supersonic

(u0 − c0 > 0), then all the eigenvalues point outside the domain and WS = WE .

If the flow is subsonic, a characteristic condition must be used. The fluid velocity

is assumed to be positive and therefore exactly one of the seven eigenvalues points

into the domain. Therefore, the solution WS can only be specified for 1 variable

and use characteristic conditions for lk(WE) · (WE −WS) = 0, k = 1, · · · , 6 to

determine the other 6. The domain is assumed to be long enough such that there

is no transverse velocity at outflow and the condition u1 = 0 is applied.

4.4 Cell Update Step

Following [24], the control volumes are updated conservatively using fluxes com-

puted with the final MAC state. Afterwards, the conservative source terms are

accounted for, followed by a cell-centered projection to enforce the divergence-free

constraint on the velocity field as well as update the pressure. Additional steps must

be taken to account for the conservative source terms in a manner which preserves

a second-order accurate algorithm while capturing the Newtonian and elastic limits
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of the Oldroyd-B fluid.

4.4.1 Conservative Update

At this point, the MAC state and the time-centered EB centroid state have been

computed, and therefore the corresponding fluxes are available as well. Recall the

time-stepping strategy (4.2):

Un+1 = Un + ∆t [−∇ · F + SU ] . (4.116)

For regular cells, the divergence can be represented as the four-point difference

approximation in (4.4). For the general case, it would be desirable to use the

conservative divergence discretization (4.44), as it leads to local conservation of

each conserved variable:

Un+1
i = Un

i −∆t
[
(∇ · F)C,FC→CC

i

]
+ ∆tSU,i. (4.117)

Unfortunately, the use of the conservative divergence to discretize the divergence

term is unstable due to the potentially small volume fraction, κi, in the denominator

of the conservative divergence. This is the well-known small-cell problem for EB

methods [24]. To resolve this problem, a linear combination of conservative and

non-conservative (4.45) divergence discretizations to account for the fluxes is used:

Un+1
i = Un

i −∆t
[
κi(∇ · F)C,FC→CC

i + (1− κi) (∇ · F)NC,FC→NC
i

]
+ ∆tSU,i.

(4.118)

Since local conservation is not maintained under this procedure, a redistribution

procedure is used in order to maintain global conservation. The quantity δi is the

difference between the conserved variable increment κi(Un+1
i −Un

i ) given by (4.118)
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δi

Figure 4.19: The conserved variable vector δi is distributed into the (up to) nine
cells adjacent and including i in a volume weighted manner.

and a purely conservative update (4.117), ignoring the source terms:

δi = κi(Un+1
i −Un

i )

= κi(κi − 1)
[
(∇ · F)C,FC→CC

i − (∇ · F)NC,FC→CC
i

]
. (4.119)

A redistribution step is performed, where δi is distributed into the nine cells adjacent

to and including i in a volume weighted manner (see Figure 4.19), thus preserving

global conservation. Note that in regular cells, the conservative and non-conservative

divergence discretizations are both the four-point divergence approximation from

equation (4.4) and therefore, δi = 0.

4.4.2 Conservative Source Terms

Velocity source terms: After the conservative update and redistribution step,

the state variables are updated to account for the conservative source terms. Recall

from (4.33) that:

SU,u = −1
ρ
∇p + ν∆u. (4.120)
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The evolutionary part of the incompressible Navier-Stokes equations can be rear-

ranged into the following parabolic diffusion equation:

∂u
∂t

= ν∆u +
[
−∇ ·

(
uu− 1

ρ
τ

)
− 1

ρ
∇p

]
. (4.121)

One possible discretization of this equation is:

un+1 − un

∆t
= ν∆u +

[
−∇ ·

(
uu− 1

ρ
τ

)n+ 1
2

− 1
ρ
∇pn− 1

2

]
. (4.122)

Standard choices for the temporal discretization of the Laplacian are explicit, ∆un,

implicit, ∆un+1, or semi-implicit, such as Crank-Nicolson, (∆un + ∆un+1)/2. In

[8], it was illustrated that a Crank-Nicolson discretization of the Laplacian in the

absence of EBs would still lead to an overall second-order method, despite the use

of the time-lagged pressure gradient. The approach taken in this thesis is to use

a more advanced second-order, semi-implicit discretization of the Laplacian that is

stable in the presence of embedded boundaries.

The form of the diffusion equation is now modified to include the ideas in [77], in

which diffusion coefficient respects the Newtonian and elastic limits of the equation.

In particular, in the Newtonian limit (λ→ 0), the diffusion equation must take the

form:
∂u
∂t

=
µs + µp

ρ
∆u +

[
−∇ · (uu)n+ 1

2 − 1
ρ
∇pn− 1

2

]
, (4.123)

whereas in the elastic limit (λ→∞, µp/λ finite), the diffusion equation must take

the form:
∂u
∂t

=
µs

ρ
∆u +

[
−∇ ·

(
uu− 1

ρ
τ

)n+ 1
2

− 1
ρ
∇pn− 1

2

]
. (4.124)

In order to derive an equation which respects these limits, an additional modification

to the transverse predictor step is required. Recall the transverse predictor step
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(4.85):

W
n+ 1

2
,∗

i,±,d = Wi,±,d − ∆t

2h
Ad′(Wi,±,d) ·

(
W1D

i+ 1
2
ed′
−W1D

i− 1
2
ed′

)
; d 6= d′. (4.125)

This equation is replaced with:

W
n+ 1

2
,∗

i,±,d = W̃i,±,d − ∆t

2h
Ad′(W̃i,±,d) ·

(
W1D

i+ 1
2
ed′
−W1D

i− 1
2
ed′

)
; d 6= d′. (4.126)

where W̃i,±,d are the one-dimensional MAC states computed with the assumption

that SW,τ = 0. Note that the differenced terms W1D
i± 1

2
ed

are one-dimensional MAC

states that still do include the effects of SW,τ . After solving the transverse predictor

Riemann problem, the stress terms in the final MAC state is denoted as τ̃n+ 1
2 to

indicate that the stress source terms in the normal predictor were omitted. Now the

stress source terms are accounted for using the semi-implicit equation:

τn+ 1
2 = τ̃n+ 1

2 +
∆t

2

[
− 1

λ
τn+ 1

2 +
(µp

λ
− a2

)
2D

]

=
2

2λ + ∆t

[
λτ̃n+ 1

2 +
∆t

2
(
µp − λa2

)
2D

]
. (4.127)

The temporal location and spatial discretization of the rate-of-strain tensor in

(4.127) are left unspecified for now. The update equation for velocity can be written

as:

∂u
∂t

=
un+1,∗ − un

∆t
=

[
−∇ · (uu +

1
ρ
τ )n+ 1

2

]
+

[
−1

ρ
∇pn− 1

2 + ν∆u
]

. (4.128)

Substituting (4.127) into (4.128) and rearranging terms gives a diffusion equation
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for the preliminary cell-centered velocity:

un+1,∗ − un

∆t
=

1
ρ

[
µs +

(
µp − λa2

)
∆t

2λ + ∆t

]
∆u

+

[
−∇ ·

(
uu− 1

ρ

2λ

2λ + ∆t
τ̃

)n+ 1
2

− 1
ρ
∇pn− 1

2

]
, (4.129)

which satisfies the proper formulations in the Newtonian (4.123) and elastic (4.124)

limits. The rate-of-strain tensor from equation (4.127) now appears in the Laplacian

term, and the discretization of this diffusion equation is provided below. The star

in the superscript of (4.129) indicates that the preliminary velocity is not neces-

sarily divergence-free. After un+1,∗ has been computed, a cell-centered projection

described in Section 4.5.2 is applied immediately following the diffusion equation

solver, and before the conservative source terms SU,M and SU,g are applied, to give

the final cell-centered velocity.

Diffusion equation discretization: Each component of velocity in the diffu-

sion equation takes the following form:

∂φ

∂t
= D∆φ + f. (4.130)

The solution to this diffusion equation is computed using a second-order, semi-

implicit, L0-stable method [78], which has been shown to be stable in the presence

of fixed and moving boundaries in an EB geometry framework [43, 54, 71]. There is

an additional advantage to using this method over the Crank-Nicolson scheme. The

Crank-Nicolson discretization is not L0-stable, that is, high frequency modes in the

solution are not damped sufficiently, which can lead to numerical oscillations in the

solution. The method used here is L0-stable and avoids such oscillations.

Following [78], there are two steps to solving the diffusion equation, each in-
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volving the solution of a Helmholtz operator. First, an intermediate solution φ′ is

computed:

κi

[
I− η2D∆h

I

]
φ′ = κi

[(
I + η3D∆h

I

)
φn +

(
I + η4D∆h

H

)
fn+ 1

2 ∆t
]
, (4.131)

followed by an equation which yields the time-advanced solution, φn+1:

κi

[
I− η1D∆h

I

]
φn+1 = κiφ

′. (4.132)

Here, ∆h
I and ∆h

H are the discrete Laplacian operators with inhomogeneous and ho-

mogeneous boundary conditions, respectively. To solve these Helmholtz operators,

first consider a general Helmholtz operator of the form:

(I−D∆h)φ = b. (4.133)

A linear equation is associated with each control volume, leading to a system of

n linear equations, where n is the total number of control volumes in the domain.

This linear system can be expressed as a matrix equation of the form Lφ = b. For

regular cells away from domain boundaries, the linear equation associated with Vi

uses the standard five-point Laplacian (4.79):

φi −D

(
φi+e0 + φi+e1 − 4φi + φi−e0 + φi−e1

h2

)
= bi. (4.134)

The same finite volume discretization for the Laplacian from (4.48) is used. As

mentioned in Section 4.2, the Laplacian stencil contains a factor of the inverse

volume fraction, 1/κi, so the Helmholtz discretizations are scaled by κi to cancel the

potentially small denominator, providing numerical stability. To solve the resulting

linear system, an iterative multigrid solver is used, in which the full linear system

is solved by iteratively solving a series of smaller linear systems, as described in
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Appendix Section A.4. Following [78], the parameters ηi are defined as:

η1 =
a−√a2 − 4a + 2

2
∆t, (4.135)

η2 =
a +
√

a2 − 4a + 2
2

∆t, (4.136)

η3 = (1− a)∆t, (4.137)

η4 =
(

1
2
− a

)
∆t. (4.138)

In order to minimize the truncation error while maintaining a second-order, L0 sta-

ble method, a = 2 − √2 − ξ, where ξ = 1.0 × 10−12 is on the order of machine

precision. The same velocity boundary conditions are used as in the explicit Lapla-

cian in equation (4.78). Note that the divergence terms in f are evaluated after

the redistribution step, and despite the fact that the pressure gradient in f is time-

lagged, the overall algorithm still shows second-order convergence.

Inverse deformation gradient source terms: After the cell-centered pro-

jection, the next step is to account for SU,g. Recall from (4.33) that:

SU,g =
[
u× (∇× gT

)]T
=




u1

(
∂g01

∂x0
− ∂g00

∂x1

)

u1

(
∂g11

∂x0
− ∂g10

∂x1

)

−u0

(
∂g01

∂x0
− ∂g00

∂x1

)

−u0

(
∂g11

∂x0
− ∂g10

∂x1

)




. (4.139)

The term g̃n+1 is defined as the inverse deformation gradient after the conservative

update and redistribution step, and before accounting for the source terms. The
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following discretization used in [56] for SU,g is:

gn+1
i = g̃n+1

i +
∆t

h




u
n+ 1

2
1,i

[(
g

n+ 1
2

01,i+ 1
2
e0
− g

n+ 1
2

01,i− 1
2
e0

)
−

(
g

n+ 1
2

00,i+ 1
2
e1
− g

n+ 1
2

00,i− 1
2
e1

)]

u
n+ 1

2
1,i

[(
g

n+ 1
2

11,i+ 1
2
e0
− g

n+ 1
2

11,i− 1
2
e0

)
−

(
g

n+ 1
2

10,i+ 1
2
e1
− g

n+ 1
2

10,i− 1
2
e1

)]

−u
n+ 1

2
0,i

[(
g

n+ 1
2

01,i+ 1
2
e0
− g

n+ 1
2

01,i− 1
2
e0

)
−

(
g

n+ 1
2

00,i+ 1
2
e1
− g

n+ 1
2

00,i− 1
2
e1

)]

−u
n+ 1

2
0,i

[(
g

n+ 1
2

11,i+ 1
2
e0
− g

n+ 1
2

11,i− 1
2
e0

)
−

(
g

n+ 1
2

10,i+ 1
2
e1
− g

n+ 1
2

10,i− 1
2
e1

)]




,

(4.140)

where in this equation, u
n+ 1

2
i is the average of the initial and final velocity,

u
n+ 1

2
i = (un

i + un+1
i )/2. The face-centered, time-centered values of g are taken

from the final MAC state.

Stress source terms: Recall from (4.33) that:

SU,M = g ·
[(µp

λ
− a2

)
2D− 1

λ
τ

]
· gT . (4.141)

The term M̃n+1 is defined as value obtained after the redistribution step and before

accounting for the source terms. The source terms for M are accounted for using a

Crank-Nicolson discretization, as follows:

Mn+1 = M̃n+1 +
∆t

2

[(
g · [(µp

λ
− a2)2D− 1

λ
τ ] · gT

)n

+
(
g · [(µp

λ
− a2)2D− 1

λ
τ ] · gT

)n+1
]

. (4.142)

Since τn+1 appears on the right hand side of this equation, the terms can be alge-

braically rearranged so that the entire right hand side is a known quantity:
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Mn+1 =
2λ

2λ + ∆t
M̃n+1 +

∆t

2λ + ∆t

[(
g · [(µp − a2λ)2D− τ ] · gT

)n

+
(
g · [(µp − a2λ)2D + a2I] · gT

)n+1
]
.

(4.143)

4.5 Projection Discretizations

This thesis uses the discretizations for the MAC and cell-centered projections

used in [5] for solving the incompressible Navier-Stokes equations. The preliminary

MAC velocities obtained from the transverse predictor Riemann problem (4.88),

un+ 1
2
,∗, and the preliminary cell-centered velocities obtained from the solution to

the diffusion equation (4.129), un+1,∗, do not necessarily satisfy the divergence con-

straint, ∇ · u = 0. A MAC projection is performed on un+ 1
2
,∗ and a cell-centered

projection is performed on un+1,∗ to enforce this constraint. The projection op-

erator, P, operating on an arbitrary vector field v, consists of the solution to the

Poisson equation (3.5) followed by the update equation (3.6), a process which is

abbreviated as:

P(v) = v −Q(v), (4.144)

Q(v) = ∇∆−1(∇ · v). (4.145)

A projection can be either exact or approximate. For an exact projection, the

discrete divergence, gradient, and Laplacian are defined such that ∇ · (∇φ) = ∆φ,

ensuring that P(v) is discretely divergence-free. Also, P(∇φ) = 0 and P(vd) = vd,

implying that P is idempotent, i.e., P2 = P. Unfortunately, there are certain

disadvantages for some exact projections. Consider a velocity field where both

components of velocity are located at the cell-center, and define the divergence and
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Figure 4.20: Stencil points for the spread out five-point Laplacian that arises in
exact cell-centered projections.

gradient as the following centered difference approximations:

(∇ · u)i =
u0,i+e0 − u0,i−e0

2h
+

u1,i+e1 − u1,i−e1

2h
, (4.146)

(∇φ)d,i =
φi+ed

− φi−ed

2h
. (4.147)

Using these definitions of the divergence and gradient, the stencil for the Laplacian,

∆φ = ∇ · (∇φ), becomes a spread out version of the standard five-point Laplacian,

as illustrated in Figure 4.20. This non-standard Laplacian operator creates four

decoupled sets of stencil points which complicates the linear algebra used to solve

the Poisson equation [46]. For an approximate projection, ∇ · (∇φ) 6= ∆φ, the re-

sulting velocity field is not discretely divergence-free, and P2 6= P. Additionally,

the divergence discretization can contain a null space which prevents certain oscilla-

tory modes from being removed. However, approximate projections provide greater

flexibility in the Laplacian discretization, often resulting in linear systems that are

well conditioned for iterative solvers. For the case where both components of the

velocity are located at cell-centers, it has been shown that an approximate pro-

jection using the centered difference discretizations for the divergence (4.146) and

gradient (4.147), and a compact five-point stencil for the Laplacian can still lead to
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a stable, second-order projection [46]. For the MAC projection, described in Section

4.5.1, only the normal components of velocity contribute to the divergence, which

enables an exact projection discretization with a compact Laplacian stencil. The

cell-centered projection, described in Section 4.5.2, is an approximate projection.

For the cases of inflow and outflow boundaries where ud · n 6= 0, the boundary

conditions for φ in the Poisson equation are modified using the ideas in [3]. At

inflow, in order for the pressure gradient to respect the Dirichlet condition on the

normal velocity, the condition n · ∇φ = (u− ud) · n must be used. This is actually

a generalized Dirichlet boundary condition that is valid even for no-flow conditions.

At outflow, in order for the pressure gradient to respect the homogeneous Neumann

condition on the normal velocity, the condition φ = 0 is used. Physically, this

imposes the condition that there are no net forces accelerating the fluid parallel to

the outflow face.

4.5.1 MAC Projection

The first step in the MAC projection is to solve the Poisson equation (3.5).

Similar to the Helmholtz operator in the diffusion equation solver, a linear equation

is associated with each control volume leading to a matrix equation of the form

Lφ = b can be constructed. For regular cells away from domain boundaries, the

linear equation associated with Vi uses the five-point Laplacian (4.79) and four-point

divergence (4.4):

φi+e0 + φi+e1 − 4φi + φi−e0 + φi−e1

h2
=

u
n+ 1

2
,∗

0,i+ 1
2
e0
− u

n+ 1
2
,∗

0,i− 1
2
e0

h
+

u
n+ 1

2
,∗

1,i+ 1
2
e1
− u

n+ 1
2
,∗

1,i− 1
2
e1

h
.

(4.148)

The linear equation associated with an arbitrary Vi is given as:

κi(∆hφ)i = κi

(
∇ · un+ 1

2
,∗

i± 1
2
ed

)C,FC→CC

i

. (4.149)
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Similar to the diffusion equation solver, the Poisson equation discretization is scaled

by κi to cancel the potentially small denominator. Again, the finite volume dis-

cretization for ∆hφ from (4.48) is used. To solve the resulting linear system, the

same iterative multigrid solver used in the diffusion equation solver is used, as de-

scribed in Appendix Section A.4.

The second step in the MAC projection is to update the velocity using equation

(3.6) with the following discretization:

u
n+ 1

2

i± 1
2
ed

= u
n+ 1

2
,∗

i± 1
2
ed
− (∇φ)CC→FC

i± 1
2
ed

. (4.150)

For regular cells away from domain boundaries, the normal gradient is the two-point

difference approximation:

(∇φ)CC→FC
d,i± 1

2
ed

=
φi+ed

− φi

h
. (4.151)

The transverse gradient is the following four-point difference approximation, which

is the average of the two neighboring cell-centered transverse gradients:

(∇φ)CC→FC
d′,i± 1

2
ed

=
1
2

(
φi+ed′ − φi−ed′

2h
+

φi+ed+ed′ − φi+ed−ed′

2h

)
. (4.152)

The general discretization for (∇φ)CC→FC is given in Appendix Section A.2.2.

The boundary conditions for velocity have already been enforced in the recon-

struction algorithm in the transverse predictor Riemann problem. Note that when

computing the divergence, only the normal velocity enters into the divergence sten-

cil, and therefore specifying boundary conditions for the transverse velocity does

not affect the divergence. As for the boundary conditions on φ, a homogeneous

Neumann condition n ·∇φ = 0 is used at inflow and solid walls, and a homogeneous

Dirichlet condition φ = 0 is used at outflow. After the MAC projection, the normal

velocity at outflow is overwritten to a value which forces the conservative divergence
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in the cell to be zero.

4.5.2 Cell-Centered Projection and Pressure Update

Unlike the MAC projection, the cell-centered projection is an approximate pro-

jection and also provides an update for the pressure. Almgren, et al. [2] analyzed

various cell-centered projection schemes, recommending the following scheme, which

is also used in [77, 5].

v∗ = un+1,∗ +
∆t

ρ
∇pn− 1

2 , (4.153)

un+1 = P (v∗) , (4.154)

∇pn+ 1
2 =

ρ

∆t
Q (v∗) . (4.155)

Again, the Poisson equation in the projection operator results in n linear equations,

which are solved with the same iterative multigrid solver used in the MAC projec-

tion. For regular cells away from domain boundaries, the linear equation associated

with Vi uses the five-point Laplacian (4.79) and a new four-point divergence, which

uses cell-centered stencil points instead of face-centered points:

φi+e0 + φi+e1 − 4φi + φi−e0 + φi−e1

h2
=

v∗0,i+e0
− v∗0,i−e0

2h
+

v∗1,i+e1
− v∗1,i−e1

2h
. (4.156)

The linear equation associated with an arbitrary Vi is given as:

κi(∆hφ)i = κi

[
∇ ·

(
un+1,∗ +

∆t

ρ
∇pn− 1

2

)]C,CC→CC

i

, (4.157)

un+1
i =

(
un+1,∗

i +
∆t

ρ
∇pn− 1

2

)
− (∇φ)CC→CC

i , (4.158)

∇p
n+ 1

2
i =

ρ

∆t
(∇φ)CC→CC

i . (4.159)
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To compute the cell-centered conservative divergence of a cell-centered field, (∇ ·
v)C,CC→CC , the cell-centered values are first averaged to face-centers, and then a

conservative divergence (4.44) is performed:

(∇ · v)C,CC→CC
i =

[∇ ·Avg(v)CC→FC
]C,FC→CC

i
. (4.160)

The operator Avg(v)CC→FC simply averages cell-centered values onto face-centers:

Avg(v)CC→FC
i± 1

2
ed

=
vi + vi±ed

2
. (4.161)

Boundary conditions need to be specified for the velocity and pressure gradient for

the averaging operator used in (∇ · v)C,CC→CC . At inflow, the normal velocity is

a prescribed Dirichlet value, and n · ∇p = 0. At solid walls, the normal velocity

is zero and n · ∇p = 0. At outflow, the normal velocity and pressure gradient are

extrapolated using a second-order linear extrapolation from the two nearest inward

face-centers. At covered faces, Avg(v)CC→FC is not needed since covered face values

do not enter into the conservative divergence stencil. Boundary conditions for φ are

the same as for the MAC projection, that is, homogeneous Neumann n·∇φ at inflow

and solid walls, and φ = 0 at outflow. Once again, the discretization is scaled by κi

to provide numerical stability in small cells.

As mentioned before, due to the approximate nature of this projection, certain

oscillatory modes are not removed by this projection, requiring a filtering algorithm

[46, 29]. Some examples of oscillatory modes, which contain divergence that is not

detected by the cell-centered divergence operator, are illustrated in Figure 4.21. By

choosing a divergence stencil other than the four-point stencil in the right-hand-side

of (4.156), the oscillatory modes are suppressed by updating the velocity as follows:

u = u + ζ∇(∇ · u), (4.162)
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Figure 4.21: (Above) Sample oscillatory velocity modes that are not detected by
the divergence operator in the cell-centered projection. (Below) Two-point velocity
modes in the x0 and x1 directions that form a basis for all oscillatory modes not
detected by the cell-centered projection.

where ζ is a constant damping factor. For regular cells away from domain bound-

aries, the choice has been made to use the “edge-centered divergence” stencil [68],

illustrated in Figure 4.22:

(∇·u)i+ 1
2
ed

=
ud,i+ed

− ud,i

h
+

1
2

(
ud′,i+ed′ − ud′,i−ed′

2h
+

ud′,i+ed+ed′ − ud′,i+ed−ed′

2h

)
,

(4.163)
[
∇(∇ · u)i+ 1

2
ed

]
d,i

=
(∇ · u)i+ 1

2
ed
− (∇ · u)i− 1

2
ed

h
. (4.164)

For this discretization of (4.162), the algorithm uses ζ = h2/5 in order to guarantee

stability and guarantee the damping of the oscillatory modes [29]. The general

discretization for the edge-centered divergence stencil in the presence of domain and

embedded boundaries is given in Appendix Section A.5.
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u0,i+e0

u1,i+e0−e1
u1,i−e1

u0,i

u1,i+e1
u1,i+e0+e1

Figure 4.22: (Left) Stencil points for the edge-centered divergence for regular cells.
(Right) Stencil points for the cell-centered gradient of the edge-centered divergence.

4.6 Time Step and Initialization

Since the source terms are handled implicitly, they do not provide any stability

constraint on the time step. Therefore, the time step is limited by the CFL stability

constraint for the Godunov method [24]:

∆t ≤ CFL
h

|Λmax| ; 0 < CFL < 1, (4.165)

where Λmax is the eigenvalue of largest magnitude in the unpartitioned primitive

coefficient matrices over the entire domain, including the boundary conditions. This

gives a CFL time step condition that can be compared directly to [77].

At the beginning of each time step, g is reinitialized to I, since the complete

evolution of g is not required to advance the solution for u and τ . As mentioned in

Section 4.1.1, a2 is also reinitialized at the beginning of each time step. Therefore,

after g and a2 have been reinitialized, M must be reinitialized as well.

At the beginning of each simulation, the pressure gradient is initialized using a

priming procedure. After choosing an initial velocity field, a cell-centered projection
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and filter is performed to ensure the velocity is divergence-free. Next, the initial

stress is set to zero, g is set to I, and the pressure gradient is initialized to a

problem specific value. Next, three pressure priming iterations are performed, in

which the solution for a full time step is computed, yet only the pressure gradient

is updated and the total time is not advanced.
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5 Results

Results are now presented for two groups of tests which demonstrate the robust-

ness and accuracy of the method. The first group of tests is the confined vortex flow

of three types of Oldroyd-B fluids, in which the velocity is initialized to a smooth

vortex function inside both a rectangular and circular geometry. The second group

of tests is the flow of two real experimental fluids [39] in both an abrupt contraction

and past a sphere.

For each test except for the abrupt contraction, a solution error test is performed.

The abrupt contraction test is used for comparison to experimental data, and the

solution error properties are adversely affected by the sharp geometry. In the solu-

tion error test, the solution is first computed on a coarse domain to a specified time,

t, using a fixed time step. Next, both ∆t and h are refined by successive factors of 2

to compute the solution at time t at a medium and fine resolution. To get the error

between the medium and fine solutions, Emed-fine, the fine solution is coarsened using

a volume weighted average and the solutions are subtracted directly. This process

is repeated to obtain the error between the coarse and medium solutions, Ecoar-med.

The L∞ norm is defined as the maximum value of |Ei| on the domain. The L1 and

L2 norms are defined as:

L1(E) =
1
|Ω|

∫

Ω
|E|dV =

1∑
Ω κi

∑

Ω

κi|Ei|, (5.1)

L2(E) =
(

1
|Ω|

∫

Ω
E2dV

) 1
2

=

(
1∑
Ω κi

∑

Ω

κiE2
i

) 1
2

. (5.2)

The order of convergence corresponding to the LN norm, PN , is given by:

PN =
log

(
LN (Ecoar-med)
LN (Emed-fine)

)

log 2
. (5.3)
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5.1 Confined Vortex Flow

For the confined vortex test problems, the first fluid is a Maxwell (highly elastic)

fluid, characterized by having no solvent viscosity, a non-zero polymeric viscosity,

and a non-zero relaxation time. The second fluid is a Newtonian fluid, characterized

by having a non-zero solvent viscosity, no polymeric viscosity, and relaxation time

of zero. The third fluid is a “hybrid” fluid [77], which is a Maxwell fluid with an

added solvent viscosity.

For the rectangular geometry, the computational domain has l = w = 2.0. The

rectangular box has dimensions l = 1.7, and w = 1.0, and has been rotated 45◦

to maximize the amount of fluid in the computational domain. The initial vortex

velocity profile has been chosen to be sufficiently smooth at the vortex edge, given by

the function uθ(r) = 2.56[(r/0.45)(1− r/0.45)]4H(0.45− r), where r is the distance

to the center of the box and H is the Heaviside step function. This gives a maximum

initial speed of |u| = 1.0 at r = 0.225 (see Figure 5.1, top-left). For all the images in

this thesis corresponding to the angled box geometry, the output has been rotated

so the variables are seen with respect to the normal (length-wise) and transverse

(width-wise) directions, which is done using a rotation similar to that in Section

4.3.4. The initial pressure is set to zero. The characteristic speed, U , is defined

as the maximum initial velocity and the characteristic length, L, is defined as the

width of the box.

For the circular geometry, the computational domain has l = w = 1.0 and the

circle has radius r = 0.45 to maximize the amount of fluid in the computational

domain. The initial velocity profile is uθ(r) = 2.56[(r/0.4)(1 − r/0.4)]4H(0.4 − r),

which gives a maximum initial speed of |u| = 1.0 at r = 0.2 (see Figure 5.3, top-

left). The initial pressure is set to zero. The characteristic speed, U , is defined

as the maximum initial velocity and the characteristic length, L, is defined as the

diameter of the circle.
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5.1.1 Maxwell Fluid

For the Maxwell fluid, the rheological parameters are µs = 0, µp = 1.0, λ = 1.0,

and ρ = 1.0. This gives the dimensionless parameters Re = 1.0, We = 1.0, and Ma =

1.0 for the rectangular box geometry. The coarse domain resolution is 128 × 128

cells and the coarse time step is 3.2× 10−3, corresponding to CFL ≈ 0.5. The time-

dependent normal velocity is shown in Figure 5.1. The elastic wave propagation and

reflection off the walls is clearly visible. The transverse velocity, stress, and pressure

corresponding to the final image of normal velocity are shown in Figure 5.2. The

solution error convergence after 400 fine time steps is given in Table 5.1.

For Maxwell fluids, it has been observed here that additional cell-centered fil-

tering steps must be used to prevent the buildup of divergent modes near cells with

small volume fractions. In the other flow regimes, the non-zero solvent viscosity

present in the diffusion equation solver smooths the velocity and helps eliminate the

divergent modes so that additional filtering steps are not required. The approach

taken here to stabilize the method is to perform 1 filter iteration per time step at

the coarse resolution, 2 iterations at the medium resolution, and 4 iterations at the

finest resolution. The additional filters are not required for the other flow regimes,

yet are still performed so the results are consistent with the case of the Maxwell

fluid.
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Figure 5.1: Time-dependent normal velocity un profiles of a Maxwell fluid with a
vortex initial condition in an enclosed box. The grid resolution is 256× 256 with 24
time step increments using ∆t = 1.6× 10−3. Scale: -0.5 (red) to 0.5 (blue).
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Figure 5.2: Profiles for a Maxwell fluid in an enclosed box at t = 0.4288 (correspond-
ing to the last image in Figure 5.1.) In order, clockwise from top-left: transverse
velocity ut, -0.5 (red) to 0.5 (blue); normal stress τnn, -0.21 (red) to 0.31 (blue);
normal stress τtt, -0.21 (red) to 0.28 (blue); shear stress τtn, -0.46 (red) to 0.33
(blue); hydrostatic pressure p, 0 (red) to 0.656 (blue).
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N Variable Coarse Error Fine Error Order
1 u0 9.90e-04 2.69e-04 1.88
1 u1 9.62e-04 2.63e-04 1.87
1 τ00 1.24e-03 3.06e-04 2.02
1 τ10 1.38e-03 3.40e-04 2.02
1 τ11 1.37e-03 3.39e-04 2.01
1 p 1.04e-03 2.68e-04 1.96
2 u0 1.65e-03 4.34e-04 1.93
2 u1 1.66e-03 4.23e-04 1.97
2 τ00 1.89e-03 4.78e-04 1.98
2 τ10 3.06e-03 6.93e-04 2.14
2 τ11 3.27e-03 8.36e-04 1.97
2 p 2.52e-03 4.78e-04 2.40
∞ u0 4.08e-02 6.32e-03 2.69
∞ u1 4.15e-02 6.98e-03 2.57
∞ τ00 5.11e-02 1.09e-02 2.23
∞ τ10 8.36e-02 2.77e-02 1.59
∞ τ11 1.45e-01 3.73e-02 1.95
∞ p 7.76e-02 1.15e-02 2.75

Table 5.1: Solution error convergence rates for a Maxwell fluid with a vortex initial
condition inside a rectangular geometry.
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Figure 5.3: Time-dependent u0 profiles of a Maxwell fluid with a vortex initial
condition in an enclosed circle. The grid resolution is 128× 128 with 24 time step
increments using ∆t = 1.6× 10−3. Scale: -0.50 (red) to 0.50 (blue).

The same rheological parameters are used for the circular geometry, leading to

dimensionless parameters Re = 0.9, We = 0.9, and Ma = 1.0. The time-dependent

u0 profiles are shown in Figure 5.3. Again, the elastic wave propagation and reflec-

tion off the walls is easily visible. The u1 component of velocity, stress, and pressure

corresponding to the final image of u0 are shown in Figure 5.4. The solution error

convergence after 400 fine time steps is given in Table 5.2.
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Figure 5.4: Profiles for a Maxwell fluid in an enclosed circle at t = 4.288 × 10−3

(corresponding to the last image in Figure 5.3.) In order, clockwise from top-left:
u1, -0.50 (red) to 0.50 (blue); normal stress τ00, -0.38 (red) to 0.67 (blue); normal
stress τ11, -0.38 (red) to 0.67 (blue); shear stress τ10, -0.53 (red) to 0.53 (blue);
hydrostatic pressure p, 0 (red) to 0.55 (blue).
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N Variable Coarse Error Fine Error Order
1 u0 2.00e-03 5.70e-04 1.81
1 u1 2.05e-03 6.14e-04 1.74
1 τ00 2.01e-03 6.87e-04 1.55
1 τ10 1.62e-03 6.87e-04 1.39
1 τ11 2.03e-03 6.88e-04 1.56
1 p 1.49e-03 5.62e-04 1.40
2 u0 3.06e-03 1.01e-03 1.59
2 u1 3.15e-03 1.08e-03 1.55
2 τ00 3.09e-03 1.02e-03 1.60
2 τ10 2.33e-03 8.78e-04 1.41
2 τ11 3.00e-03 1.00e-03 1.58
2 p 2.19e-03 8.60e-04 1.35
∞ u0 3.11e-02 1.66e-02 0.91
∞ u1 3.31e-02 1.64e-02 1.01
∞ τ00 4.07e-02 2.24e-02 0.86
∞ τ10 4.15e-02 1.94e-02 1.09
∞ τ11 3.68e-02 2.31e-02 0.67
∞ p 3.04e-02 2.16e-02 0.49

Table 5.2: Solution error convergence rates for a Maxwell fluid with a vortex initial
condition inside a circular geometry.
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Figure 5.5: Time-dependent normal velocity un profiles of a Newtonian fluid with a
vortex initial condition in an enclosed box. The grid resolution is 256× 256 with 30
time step increments using ∆t = 3.0× 10−4. Scale: -0.25 (red) to 0.25 (blue).

5.1.2 Newtonian Fluid

For the Newtonian fluid, the rheological parameters are µs = 1.0, µp = 0.0, λ =

1.0×10−11, and ρ = 1.0 leading to dimensionless parameters Re = 1.0 and We = 0.0

for the rectangular box geometry. Since µp = 0, the polymeric stress remains zero

at all times. The coarse domain resolution is 64 × 64 and the coarse time step is

1.5 × 10−2, corresponding to CFL ≈ 0.5. The time-dependent normal velocity is

shown in Figure 5.5, in which the vortex spreads out to fill the box and decays

over time. The transverse velocity and pressure corresponding to the final image of

normal velocity are shown in Figure 5.6. The solution error convergence after 20

fine time steps is given in Table 5.3. The reason why so few time steps are chosen is

because the fluid velocity has already decayed to less than two percent of the initial

value.
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Figure 5.6: Profiles for a Newtonian fluid in an enclosed box at t = 2.7 × 10−2

(corresponding to the last image in Figure 5.5.) (Left) Transverse velocity ut, -0.15
(red) to 0.15 (blue); (Right) hydrostatic pressure p, 0 (red) to 1.52 (blue).

N Variable Coarse Error Fine Error Order
1 u0 8.44e-04 1.68e-04 2.33
1 u1 8.39e-04 1.68e-04 2.32
1 p 1.69e-02 3.15e-03 2.42
2 u0 1.14e-03 2.26e-04 2.33
2 u1 1.13e-03 2.26e-04 2.33
2 p 3.07e-02 6.63e-03 2.21
∞ u0 9.61e-03 2.35e-03 2.03
∞ u1 9.66e-03 2.35e-03 2.04
∞ p 1.31e-01 4.13e-02 1.67

Table 5.3: Solution error convergence rates for a Newtonian fluid with a vortex
initial condition inside a rectangular geometry.
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Figure 5.7: Time-dependent u0 velocity u0 profiles of a Newtonian fluid with a vortex
initial condition in an enclosed circle. 20 time step increments, ∆t = 3.0 × 10−4,
-0.25 (red) to 0.25 (blue).

Figure 5.8: Profiles for a Newtonian fluid in an enclosed circle at t = 1.8 × 10−2

(corresponding to the last image in Figure 5.7.) (Left) u1, -0.15 (red) to 0.15 (blue);
(Right) hydrostatic pressure p, 0 (red) to 0.52 (blue).

The same rheological parameters are used for the circular geometry, leading

to dimensionless parameters Re = 0.9 and We = 0. The time-dependent normal

velocity is shown in Figure 5.7. Similar to the rectangular box case, the vortex

spreads out to fill the circle and decays over time. The transverse velocity and

pressure corresponding to the final image of normal velocity are shown in Figure

5.8. The solution error convergence after 20 fine time steps is given in Table 5.4.



101

N Variable Coarse Error Fine Error Order
1 u0 4.06e-04 9.44e-05 2.10
1 u1 4.06e-04 9.44e-05 2.10
1 p 5.12e-03 1.58e-04 5.02
2 u0 4.88e-04 1.16e-04 2.07
2 u1 4.88e-04 1.16e-04 2.07
2 p 1.04e-02 2.48e-04 5.40
∞ u0 1.06e-03 5.51e-04 0.95
∞ u1 1.06e-03 5.51e-04 0.95
∞ p 7.77e-02 1.13e-03 6.11

Table 5.4: Solution error convergence rates for a Newtonian fluid with a vortex
initial condition inside a circular geometry.
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Figure 5.9: Time-dependent normal velocity un profiles of a hybrid fluid with a
vortex initial condition in an enclosed box. The grid resolution is 256× 256 with 30
time step increments using ∆t = 1.6× 10−3. Scale: -0.25 (red) to 0.25 (blue).

5.1.3 Hybrid Fluid

For the hybrid fluid, the rheological parameters are µs = 0.1, µp = 0.9, λ = 1.0,

and ρ = 1.0 leading to dimensionless parameters Re = 1.0, We = 1.0, and Ma = 1.05

for the rectangular box geometry. The initial stress is set to zero. The coarse

domain resolution is 128×128 and the coarse time step is 6.4×10−3, corresponding

to CFL ≈ 0.5. The time-dependent normal velocity is shown in Figure 5.9. As is

the case with the Newtonian fluid, the vortex spreads out and decays over time,

with a different shape than the Newtonian case. The transverse velocity, stress, and

pressure corresponding to the final image of normal velocity are shown in Figure

5.10. The solution error convergence after 400 fine time steps is given in Table 5.5.
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Figure 5.10: Profiles for a hybrid fluid in an enclosed box at t = 0.144 (corresponding
to the last image in Figure 5.9.) In order, clockwise from top-left: transverse velocity
ut, -0.15 (red) to 0.15 (blue); normal stress τnn, -0.25 (red) to 0.37 (blue); normal
stress τtt, -0.25 (red) to 0.37 (blue); shear stress τtn, -0.30 (red) to 0.29 (blue);
hydrostatic pressure p, 0 (red) to 0.55 (blue).
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N Variable Coarse Error Fine Error Order
1 u0 3.66e-04 8.52e-05 2.10
1 u1 3.80e-04 8.83e-05 2.11
1 τ00 4.86e-04 1.29e-04 1.91
1 τ10 6.09e-04 1.73e-04 1.82
1 τ11 4.87e-04 1.31e-04 1.89
1 p 7.25e-04 2.50e-04 1.53
2 u0 7.58e-04 1.96e-04 1.95
2 u1 7.74e-04 2.01e-04 1.94
2 τ00 7.97e-04 2.44e-04 1.71
2 τ10 1.04e-03 3.00e-04 1.79
2 τ11 8.41e-04 2.88e-04 1.54
2 p 1.08e-03 3.87e-04 1.48
∞ u0 1.29e-02 6.78e-03 0.92
∞ u1 1.30e-02 6.87e-03 0.93
∞ τ00 5.68e-03 2.66e-03 1.09
∞ τ10 9.44e-03 8.63e-03 0.13
∞ τ11 6.41e-03 4.71e-03 0.44
∞ p 4.89e-03 6.67e-03 -0.45

Table 5.5: Solution error convergence rates for a hybrid fluid with a vortex initial
condition inside a rectangular geometry.
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Figure 5.11: Time-dependent u0 profiles of a hybrid fluid with a vortex initial con-
dition in an enclosed circle. The grid resolution is 128 × 128 with 20 time step
increments, ∆t = 1.6× 10−3, -0.25 (red) to 0.25 (blue).

The same rheological parameters are used for the circular geometry, leading to

dimensionless parameters Re = 0.9, We = 0.9, and Ma = 1.05. The time-dependent

u0 component of velocity is shown in Figure 5.11. Similar to the rectangular box

case, the vortex spreads out to fill the circle and decays over time. The transverse

velocity, stress, and pressure corresponding to the final image of u0 are shown in

Figure 5.12. The solution error convergence after 400 fine time steps is given in

Table 5.6.
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Figure 5.12: Profiles for a hybrid fluid in an enclosed circle at t = 0.096 (corre-
sponding to the last image in Figure 5.11). In order, clockwise from top-left: u1,
-0.15 (red) to 0.15 (blue); normal stress τ00, -0.25 (red) to 0.35 (blue); normal stress
τ11, -0.25 (red) to 0.35 (blue); shear stress τ10, -0.30 (red) to 0.30 (blue); hydrostatic
pressure p, 0 (red) to 0.040 (blue).
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N Variable Coarse Error Fine Error Order
1 u0 1.21e-04 3.05e-05 1.99
1 u1 1.27e-04 3.40e-05 1.91
1 τ00 2.66e-04 6.62e-05 2.01
1 τ10 3.95e-04 1.25e-04 1.66
1 τ11 2.54e-04 6.39e-05 1.99
1 p 3.94e-04 1.40e-04 1.50
2 u0 2.23e-04 6.86e-05 1.70
2 u1 2.27e-04 7.12e-05 1.67
2 τ00 3.53e-04 9.91e-05 1.83
2 τ10 4.94e-04 1.62e-04 1.60
2 τ11 3.44e-04 9.73e-05 1.82
2 p 4.82e-04 1.72e-04 1.49
∞ u0 2.31e-03 1.15e-03 1.00
∞ u1 2.30e-03 1.15e-03 1.00
∞ τ00 4.47e-03 2.13e-03 1.07
∞ τ10 3.78e-03 1.64e-03 1.21
∞ τ11 4.75e-03 2.28e-03 1.06
∞ p 2.19e-03 1.90e-03 0.20

Table 5.6: Solution error convergence rates for a hybrid fluid with a vortex initial
condition inside a circular geometry.
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Figure 5.13: Image of the contraction channel geometry used in microfluidic exper-
iments [39]. The downstream contraction has width w = 0.013 [cm].

5.2 Experimental Fluids

The second group of tests involves two real fluids from microfluidic experiments

designed to examine the differences between Newtonian and viscoelastic fluid behav-

ior in contraction geometries [39]. The first fluid is distilled water and the second

fluid is a semi-dilute (400 [ug/mL]) concentration of DNA molecules from the species

bacteriophage lambda (λ-DNA) added to a 1X TAE Newtonian solvent [39]. This

particular DNA was chosen for experimentation because its structure is well-known

and rheological properties have been widely studied [62, 72]. In the experiments,

the fluids were pumped from a large reservoir into a downstream contraction, as

shown in Figure 5.13. In this numerical simulation, the experimental device will be

approximated as a 2:1 abrupt contraction to obtain a qualitative comparison be-

tween the downstream flow profiles. Additionally, the numerical convergence rates

for the flow past a sphere for both of these fluids will be computed. In both of these

computational tests, the fluid rheology, length scales, and velocity scales will match

the experimental setup.

5.2.1 Experimental Data

In the experiments, fluid flows from a large reservoir into a downstream contrac-

tion of width w = 0.013 [cm] with an average downstream velocity of 0.042 [cm/s]
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for the distilled water and 0.085 [cm/s] for the DNA fluid. The experimentally mea-

sured rheological parameters for the distilled water are µs = 0.01 [cP], µp = 0.0 [cP],

λ = 1.0× 10−11 [s], and ρ = 1.0 [g/cm3]. The experimentally measured rheological

parameters for the DNA fluid are µs = 0.01 [cP], µp = 0.05919 [cP], λ = 0.91 [s],

and ρ = 1.0 [g/cm3]. In the numerical simulations, both fluid velocities will match

the distilled water experiment. The characteristic velocity, U , is the average velocity

in the downstream contraction and the characteristic length, L, is half the width of

the downstream contraction leading to computational dimensionless parameters of

Re = 2.7× 10−2 and We = 0 for the distilled water and Re = 4.0× 10−3, We = 5.9,

and Ma = 0.16 for the DNA fluid.

The experimentally obtained transverse velocity profiles for this configuration is

illustrated in Figure 5.14. The top image indicates the location where the transverse

velocities were measured. The entrance length is clearly longer for the DNA fluid,

as can be seen by the non-zero transverse velocity profile at point “D”, whereas the

transverse velocity profile for distilled water has a much smaller magnitude upstream

at point “C”.
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Figure 5.14: Experimentally obtained transverse velocity profiles [39] for distilled
water and the DNA fluid at various locations downstream of the contraction in
Figure 5.13, as indicated in the top image. The solid lines represent best-fit curves
for the blue data points.
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Figure 5.15: Computed normal and transverse velocity profiles of distilled water
(Left) and DNA fluid (Right) in a 2:1 abrupt contraction geometry at t = 0.15 [s],
u0, 0 (red) to 0.063 (blue) [cm/s]; u1, -0.01 (red) to 0.01 (blue) [cm/s].

5.2.2 Abrupt Contraction Geometry

In these numerical simulations, units are included since the geometrical and rhe-

ological parameters are obtained from the experiments. The computational domain

has l = 0.104 [cm] and w = 0.026 [cm], and a 2:1 abrupt contraction is placed at the

center of the domain, providing a downstream contraction width of w = 0.013 [cm].

The initial velocity, stress, and pressure as well as the inflow velocity and stress

are set to the analytic solution for fully developed Poiseuille flow in the absence of

the contraction. The grid resolution is 128× 32 cells. The solution is computed to

t = 0.15 [s] in order to allow the solution to fully develop.

Figure 5.15 illustrates the computed normal and transverse velocity profiles of

both distilled water and the DNA fluid. The entrance lengths are clearly greater

for the DNA fluid, as is examined in more detail in Figure 5.16, which illustrates

the computed transverse velocity profiles at various downstream locations. This is

in good qualitative agreement with the experimental results.
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Figure 5.16: Computed transverse velocity profiles for distilled water and the DNA
fluid at various locations downstream of the 2:1 contraction, as indicated in the top
image. The solid lines represent best-fit curves for the blue data points. The results
are consistent with Figure 5.14, in which the entrance lengths are greater for the
DNA fluid.
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N Variable Coarse Error Fine Error Order
1 u0 1.82e-04 3.21e-05 2.50
1 u1 9.34e-05 1.78e-05 2.39
1 p 3.45e-02 6.73e-03 2.36
2 u0 5.70e-04 1.38e-04 2.05
2 u1 2.24e-04 6.22e-05 1.85
2 p 3.60e-02 7.17e-03 2.33
∞ u0 1.31e-02 6.51e-03 1.01
∞ u1 6.38e-03 3.64e-03 0.81
∞ p 1.68e-01 4.06e-02 2.05

Table 5.7: Solution error convergence rates for distilled water past a sphere.

5.2.3 Flow Past a Sphere

The next test case is the flow of the experimental fluids past a sphere. The

computational domain has l = 0.052 [cm] and w = 0.013 [cm] to match the width

of the downstream experimental contraction. A sphere of radius 0.00195 [cm] is

placed in the center of the channel. The initial velocity, stress, and pressure as well

as the inflow velocity and stress are set to the analytic solution for fully developed

Poiseuille flow in the absence of the sphere.

For distilled water, the coarse domain resolution is 128× 32 and the coarse time

step is 3.0 × 10−4, corresponding to CFL ≈ 0.5. The steady-state velocity and

pressure profiles are shown in Figure 5.17. The solution error convergence after 200

fine time steps is given in Table 5.7.
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Figure 5.17: Steady-state profiles of distilled water past a sphere. From top to
bottom: u0, 0 (red) to 0.087 (blue) [cm/s]; u1, -0.028 (red) to 0.028 (blue) [cm/s];
hydrostatic pressure p, 0 (red) to 3.47 (blue) [g/(cm-s2)].
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Figure 5.18: Time-dependent u0 profiles of a DNA fluid past a sphere. The grid
resolution is 256×64 with 200 time step increments using ∆t = 1.0×10−5 [s]. Scale:
0 (red) to 0.087 (blue) [cm/s].

For the DNA fluid, the coarse domain resolution is 128× 32 and the coarse time

step is 2.0×10−5, corresponding to CFL ≈ 0.5. The time-dependent normal velocity

is shown in Figure 5.18. The transverse velocity, stress, and pressure corresponding

to the final image of normal velocity are shown in Figure 5.19. The solution error

convergence after 100 fine time steps is given in Table 5.8. Note that even for this

geometry, increased entrance lengths occur past the sphere for the DNA fluid.
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Figure 5.19: Profiles for a DNA fluid past a sphere at t = 0.008 [s] (corresponding
to the last image in Figure 5.18). From top to bottom: u1, -0.016 (red) to 0.016
(blue) [cm/s]; normal stress τ00, -0.005 (red) to 40 (blue) [g/(cm-s2)]; normal stress
τ11, -0.02 (red) to 0.38 (blue) [g/(cm-s2)]; shear stress τ10, -1.44 (red) to 1.44 (blue)
[g/(cm-s2)]; hydrostatic pressure p, 0 (red) to 13.8 (blue) [g/(cm-s2)].
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N Variable Coarse Error Fine Error Order
1 u0 8.31e-05 1.97e-05 2.08
1 u1 2.75e-05 7.66e-06 1.85
1 τ00 9.96e-03 2.52e-03 1.98
1 τ10 1.69e-04 4.24e-05 2.00
1 τ11 1.77e-05 4.74e-06 1.90
1 p 2.11e-02 4.86e-03 2.11
2 u0 3.10e-04 1.12e-04 1.47
2 u1 1.16e-04 5.03e-05 1.20
2 τ00 1.40e-02 4.35e-03 1.69
2 τ10 6.94e-04 2.43e-04 1.52
2 τ11 5.82e-05 2.03e-05 1.52
2 p 2.18e-02 5.06e-03 2.11
∞ u0 1.25e-02 6.82e-03 0.87
∞ u1 8.06e-03 3.75e-03 1.10
∞ τ00 3.76e-01 1.99e-01 0.92
∞ τ10 3.31e-02 1.17e-02 1.50
∞ τ11 3.54e-03 1.24e-03 1.51
∞ p 6.79e-02 2.16e-02 1.65

Table 5.8: Solution error convergence rates for the DNA fluid past a sphere.
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5.3 Conclusions

For each of the smooth test problems, the algorithm exhibits second-order solu-

tion error convergence in L1 and first-order in L∞ for velocity and stress with an

advective CFL time step constraint of CFL ≈ 0.5, as expected. This is an improve-

ment over [77], in which less than second order convergence was obtained with a

smaller time step, and the algorithm did not support arbitrary smooth geometries.

The algorithm also exhibits at least first-order convergence in L1 for pressure, as

expected. In some cases, such as the Maxwell fluid in the rectangular geometry,

the convergence rates in L∞ exceed first-order. This is due to the fact that given

the position and shape of the expanded vortex, the largest magnitude errors occur

in the interior of the domain, where the algorithm is second-order. For the abrupt

contraction geometry, the algorithm also predicts the increased entrance lengths ob-

served in real experimental fluids in microcontraction channels. This phenomena

can be seen in the computational flow of experimental fluids past a sphere as well.

For this algorithm, a particular item requiring further study is the need for

additional projection filters to smooth out the divergence in the velocity field in

irregular cells. The problem requires additional filtering with increased resolution.

Perhaps the solution is not a more robust filtering algorithm, but perhaps a new

covered face state extrapolation that prevents these oscillations from occurring.

The first obvious extension to this work is a three-dimensional discretization of

the equations. The upwind method [24] and discretizations for Poisson’s equation

and the heat equation [71] in a three-dimensional embedded boundary framework

have already been developed, so the extension is straightforward. The methods in

this thesis have been developed under the assumption that the geometry is suffi-

ciently smooth. Additional studies are required to determine the robustness of the

algorithm in the presence of discontinuous geometries, such as abrupt contractions.

This will enable comparisons to standard benchmark problems [4, 65, 66, 77], such
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as the flow of elastic liquids in hard-cornered planar and axisymmetric contractions.

Additional studies are also required to robustness of this algorithm under higher

values of We and Ma, and for a larger variety of experimental fluids and operating

conditions [38, 39, 40]. In addition, adaptive numerical algorithms for the incom-

pressible Navier-Stokes equations, in which the grid is locally refined in regions of

interest, are being developed [53]. Adaptive techniques have already been used with

success for hyperbolic conservation laws [24], so these two methods can be combined

to develop a new adaptive projection method for incompressible viscoelasticity. Fi-

nally, another obvious extension is the discretization of more advanced constitutive

models, such as those presented in Section 2.3. The methods in this thesis provide

a framework for including the additional terms present in such models.
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A Appendix

A.1 Difference Approximations

The reconstruction algorithm uses fourth-order van Leer limited differences [24,

80] to approximate the derivative. The notation F = A | B | C means that formula

A is used for F if the adjacent high and low side cells are open, the 2-point formula

B is used if the high side cell is covered or outside of the domain, and the 2-point

formula C is used if the low side cell is covered or outside of the domain. The

difference approximation is defined as follows:

∆4
dWi = ∆vL

(
∆4C

d Wi, ∆L
d Wi, ∆R

d Wi

) | ∆L
d Wi | ∆R

d Wi;

∆4C
d Wi =

2
3

[(
W − 1

4
∆2

dW
)

i+ed

−
(
W +

1
4
∆2

dW
)

i−ed

]
;

∆2
dWi = ∆vL

(
∆2C

d Wi, ∆L
d Wi, ∆R

d Wi

) | ∆L
d Wi | ∆R

d Wi;

∆2C
d Wi =

1
2

(Wi+ed
−Wi−ed

) ,

∆L
d Wi = Wi −Wi−ed

,

∆R
d Wi = Wi+ed

−Wi, (A.1)

where the van Leer limiting is applied to the primitive variables component-wise

using:

∆vL(X, Y, Z) =





sign(X) ·min(|X|, 2|Y |, 2|Z|), Y · Z > 0,

0, otherwise.
(A.2)

The reconstruction algorithm also makes use of a second-order non-limited difference

to approximate the derivative:

D2
dWi = ∆2C

d Wi | ∆L
d Wi | ∆R

d Wi. (A.3)
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A.2 Gradient Discretizations

There are three gradient discretizations used in this thesis, each operating on

a scalar field φ. In situations where the gradient of a vector field is needed, the

gradient of each component is computed separately. The first discretization is the

cell-centered gradient of a cell-centered field, (∇φ)CC→CC . This discretization relies

completely on the results for the second discretization, which is the face-centered

gradient of a cell-centered field, (∇φ)CC→FC . To obtain the face-centered gradient

at covered faces, there are three possible extrapolation procedures which will be

described. For faces that correspond to domain boundaries, the discretizations for

Dirichlet, homogeneous Neumann, and extrapolation boundary conditions will be

described. The third gradient discretization is the EB centroid normal gradient

of a cell-centered field, (n · ∇φ)CC→EB, which is always associated with either a

Dirichlet or homogeneous Neumann boundary condition. The first two gradient

discretizations return vector fields, while the third returns a scalar field.

A.2.1 Cell-Centered Gradient

The cell-centered gradient of a cell-centered field is defined as the average of

the two normal face-centered gradients (see Appendix Section A.2.2), regardless of

whether the face is open, covered, or a domain boundary:

(∇φ)CC→CC
d,i =

1
2

[
(∇φ)CC→FC

d,i+ 1
2
ed

+ (∇φ)CC→FC
d,i− 1

2
ed

]
. (A.4)

For regular cells away from domain boundaries, this discretization reduces to the

standard two-point centered difference approximation given in (4.83).
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A.2.2 Face-Centered Gradient

For open faces, the face-centered normal gradient of a cell-centered field is the

two-point difference approximation:

(∇φ)CC→FC
d,i+ 1

2
ed

=
φi+ed

− φi

h
. (A.5)

For open faces, the face-centered transverse gradient of a cell-centered field is the

average of the two neighboring cell-centered transverse gradients:

(∇φ)CC→FC
d′,i+ 1

2
ed

=
1
2

[
(∇φ)CC→CC

d′,i + (∇φ)CC→CC
d′,i+ed

]
. (A.6)

For covered faces and domain boundaries, these stencils must be modified since

they require data points from outside of the solution domain. There are three

options for obtaining (∇φ)CC→FC at covered faces: a geometrical extrapolation,

a two-dimensional extrapolation, and a one-dimensional extrapolation. There are

three possible boundary conditions for (∇φ)CC→FC at domain boundaries: Dirich-

let, homogeneous Neumann, and extrapolation.

Geometrical extrapolation for the gradient at covered faces: The geo-

metrical extrapolation for the gradient at covered faces only computes the normal

gradient. This extrapolation is used for computing cell-centered gradients in the

deformation tensor 2D, and the cell-centered ∇φ in the cell-centered projection. In

the geometrical extrapolation, a ray is cast into the domain from the covered face

at the same orientation as the EB normal to obtain an extrapolation stencil using

nearby face-centered gradients with the same orientation as the covered face, as

illustrated in Figure A.1. The gradient at P is given by the following second-order

extrapolation:

(∇φ)d,P = 2(∇φ)d,Q − (∇φ)d,R. (A.7)



123

P
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R
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Q

R

Figure A.1: Stencil points for the geometrical extrapolation for the gradient at
covered faces. The covered face is at P . A ray is cast into the domain from P in
the direction of the EB normal and obtain two values Q and R from neighboring
faces with the same orientation as the covered face using linear interpolation from
the two closest face-centers. A linear extrapolation is performed from points Q and
R to get the value at P .

If any of the face-centered gradients needed in this stencil are covered or outside

the domain, the algorithm switches to the two-dimensional extrapolation for the

gradient at covered faces, defined next.

Two-dimensional extrapolation for the gradient at covered faces: The

two-dimensional extrapolation for the gradient is only called if a stencil point for the

geometrical extrapolation is covered or outside of the domain, and thus computes

only the normal gradient. In the two-dimensional extrapolation, the highest order

available approximation in the normal and transverse directions is used to obtain

the gradient at covered face Ai∓ 1
2
ed

(see Figure A.2). The gradient in the normal

direction is defined as:

if
(
i± 1

2
ed

)
and

(
i± 3

2
ed

)
are both open then

GN,d = 2(∇φ)d,i+ 1
2
ed
− (∇φ)d,i+ 3

2
ed

and orderN = 2
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P

Q

R Q Q R

R

Figure A.2: Stencil points for the two-dimensional extrapolation for the gradient at
covered faces. The covered face is at P . Gradients are linearly extrapolated from
points Q and R (if they are open), and the highest order available stencil is used,
using an averaging procedure in case of a tie.

else

GN,d = (∇φ)d,i+ 1
2
ed

and orderN = 1. (A.8)

The gradient in the transverse direction is given by:

if
(
i + 2ed′ ∓ 1

2
ed

)
,
(
i + ed′ ∓ 1

2
ed

)
,
(
i− ed′ ∓ 1

2
ed

)
,

and
(
i− 2ed′ ∓ 1

2
ed

)
are all open then

GT,d =
1
2

[
2(∇φ)d,i+ed′∓ 1

2
ed
− (∇φ)d,i+2ed′∓ 1

2
ed

+2(∇φ)d,i−ed′∓ 1
2
ed
− (∇φ)d,i−2ed′∓ 1

2
ed

]
and orderT = 2

else if
(
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2
ed

)
and

(
i + ed′ ∓ 1

2
ed

)
are both open then

GT,d = 2(∇φ)d,i+ed′∓ 1
2
ed
− (∇φ)d,i+2ed′∓ 1

2
ed

and orderT = 2

else if
(
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2
ed

)
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(
i− ed′ ∓ 1

2
ed

)
are both open then

GT,d = 2(∇φ)d,i−ed′∓ 1
2
ed
− (∇φ)d,i−2ed′∓ 1

2
ed

and orderT = 2

else if
(
i + ed′ ∓ 1

2
ed

)
and

(
i− ed′ ∓ 1

2
ed

)
are both open then

GT,d =
1
2

[
(∇φ)d,i+ed′∓ 1

2
ed

+ (∇φ)d,i−ed′∓ 1
2
ed

]
and orderT = 1

else if
(
i + ed′ ∓ 1

2
ed

)
is open then
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GT,d = (∇φ)d,i+ed′∓ 1
2
ed

and orderT = 1

else if
(
i− ed′ ∓ 1

2
ed

)
is open then

GT,d = (∇φ)d,i−ed′∓ 1
2
ed

and orderT = 1

else

GT,d = 0 and orderT = 0. (A.9)

The gradient is then given by the highest order available approximation:

if orderN > orderT then

(∇φ)d,i∓ 1
2
ed

= GN,d

else if orderT > orderN then

(∇φ)d,i∓ 1
2
ed

= GT,d

else

(∇φ)d,i∓ 1
2
ed

=
1
2

(GN,d + GT,d) . (A.10)

One-dimensional extrapolation for the gradient at covered faces: Un-

like the previous extrapolation procedures for the gradient at covered faces, the

one-dimensional version computes both normal and transverse gradients. This ex-

trapolation is used to compute both components of the face-centered∇φ in the MAC

projection. In the one-dimensional extrapolation, the normal gradient at covered

face Ai∓ 1
2
ed

is found by extrapolating gradients in the normal direction (see Figure

A.3):

if
(
i± 1

2
ed

)
and

(
i± 3

2
ed

)
are both open then

(∇φ)d,i∓ 1
2
ed

= 2(∇φ)d,i± 1
2
ed
− (∇φ)d,i± 3

2
ed

else if
(
i± 1

2
ed

)
is open then

(∇φ)d,i∓ 1
2
ed

= (∇φ)d,i± 1
2
ed

else
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Figure A.3: Stencil points for the one-dimensional extrapolation for the gradient at
covered faces. The covered face is at P . (Left) The normal gradient at P is a linear
extrapolation of normal gradients from Q and R. (Right) The transverse gradient
at P is a linear extrapolation of transverse gradients at Q and R, which are averages
of the normal gradients at Q′, Q′′, R′, and R′′.

(∇φ)d,i∓ 1
2
ed

= 0. (A.11)

The transverse gradient at covered face Ai∓ 1
2
ed

is found with the following:

if (i) and (i± ed) are both open then

(∇φ)d′,i∓ 1
2
ed

=
3
2
(∇φ)d′,i − 1

2
(∇φ)d′,i±ed

else

(∇φ)d′,i∓ 1
2
ed

= (∇φ)d′,i, (A.12)

where the cell-centered transverse gradients needed in (A.12) are defined as:

if
(
i +

1
2
ed′

)
and

(
i− 1

2
ed′

)
are both open then

(∇φ)d′,i =
1
2

[
(∇φ)d′,i+ 1

2
ed′

+ (∇φ)d′,i− 1
2
ed′

]

else if
(
i +

1
2
ed′

)
and

(
i +

3
2
ed′

)
are both open then

(∇φ)d′,i =
3
2
(∇φ)d′,i+ 1

2
ed′
− 1

2
(∇φ)d′,i+ 3

2
ed′

else if
(
i− 1

2
ed′

)
and

(
i− 3

2
ed′

)
are both open then

(∇φ)d′,i =
3
2
(∇φ)d′,i− 1

2
ed′
− 1

2
(∇φ)d′,i− 3

2
ed′

else if
(
i +

1
2
ed′

)
is open then

(∇φ)d′,i = (∇φ)d′,i+ 1
2
ed′
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else if
(
i− 1

2
ed′

)
is open then

(∇φ)d′,i = (∇φ)d′,i− 1
2
ed′

else

(∇φ)d′,i = 0. (A.13)

Domain boundary conditions for the face-centered gradient: There

are three types of boundary conditions used for obtaining (∇φ)CC→FC at domain

boundaries: Dirichlet, homogeneous Neumann, and extrapolation. The domain

boundary face is at Ai∓ 1
2
ed

and only the normal gradients are needed. For the

Dirichlet condition φi∓ 1
2
ed

= f , the following first-order difference approximation is

used:

(∇φ)CC→FC
d,i∓ 1

2
ed

= ∓f − φi

0.5h
. (A.14)

For the homogeneous Neumann condition (n · ∇φ)CC→FC
d,i∓ 1

2
ed

= 0, the exact condition

can be imposed:

(∇φ)CC→FC
d,i∓ 1

2
ed

= 0. (A.15)

For an extrapolation boundary condition, linear extrapolation is used:

if
(
i± 1

2
ed

)
and

(
i± 3

2
ed

)
are both open then

(∇φ)CC→FC
d,i∓ 1

2
ed

= 2(∇φ)CC→FC
d,i± 1

2
ed
− (∇φ)CC→FC

d,i± 3
2
ed

else if
(
i± 1

2
ed

)
is open then

(∇φ)CC→FC
d,i∓ 1

2
ed

= (∇φ)CC→FC
d,i± 1

2
ed

else

(∇φ)CC→FC
d,i∓ 1

2
ed

= 0. (A.16)
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P

P
Q R

Q

Figure A.4: Stencil points for the EB centroid normal gradient. The EB centroid is
at point P . A ray is cast into the domain from P in the direction of the EB normal
and obtain two values φQ and φR from neighboring cell columns (if θ < π/4) or
rows (if π/4 ≤ θ ≤ π/2) using quadratic polynomial interpolation from the three
nearest cell-centers. Here, θ is the magnitude of the smallest angle between the ray
and the horizontal. Boundary conditions are applied and a quadratic polynomial
approximation is used to obtain the normal gradient at P .

A.2.3 EB Centroid Normal Gradient

To compute (n · ∇φ)CC→EB, there are two possible boundary conditions at the

EB. A homogeneous Neumann condition (n · ∇φ)CC→EB = 0 specifies the gradient

exactly and no computations are required. For a Dirichlet condition, φB = f ,

the normal gradient is computed using the second-order extrapolation technique

described in [42], in which a ray is cast into the domain from the EB centroid in

the direction of the EB normal to obtain an extrapolation stencil, as illustrated in

Figure A.4. The normal gradient at P is computed by taking the derivative of a

quadratic polynomial approximation to φ [16]:

(n · ∇φ)P =
l21 (φR − φP )− l22 (φQ − φP )

l1l2 (l2 − l1)
; l1 = |PQ|, l2 = |PR|. (A.17)
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A.3 Covered Face State Extrapolation

After the normal predictor Riemann problem, the one-dimensional MAC state,

W1D
i± 1

2
ed

, is available at each open face and after the transverse predictor Riemann

problem, the preliminary MAC state, W
n+ 1

2
,∗

i± 1
2
ed

, is available at each open face. After

each of these steps, the corresponding MAC state at covered faces is determined by

extrapolating neighboring MAC states. The extrapolation is based on the technique

described in [24], in which the inputs to open face Riemann problems are extrapo-

lated to obtain a “covered-side” state. The “interior” face-centered, time-centered

state is computed using the same Taylor series extrapolation procedure used for

open faces in the normal and transverse predictor steps. A covered-face Riemann

problem is solved using the interior and covered-side states as inputs. In contrast,

the approach taken here is to extrapolate the MAC state. In this work, it has been

observed that this form of covered face extrapolation provides additional stability

in irregular cells, in particular cells with small volume fractions.

The details of the extrapolation are now described for the one-dimensional MAC

state. The extrapolation for the preliminary MAC state is identical, except that

W
n+ 1

2
,∗

i± 1
2
ed

is used as the input state rather than W1D
i± 1

2
ed

. In particular, if cell i is

open and cell i∓ ed is covered then the covered face value W1D
i∓ 1

2
ed

is extrapolated

from a collection of values W1D
i± 1

2
ed

that have been previously computed at each

open face. First, the control volumes involved are defined as:

iu = i + sd′ed′ − sded,

is = i + sded,

ic = i + sd′ed′ , (A.18)

where d′ 6= d and sd = sign(nd), where here n is the inward normal. Next, the
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Figure A.5: Extrapolation of the one-dimensional (and preliminary) MAC state
to covered faces. The covered face is at C. (Case 1, Left) Extrapolation is used
to obtain Ws and then the value at X is determined using linear interpolation
between Ws and Wc where the boundary normal intersects the dashed line. An
extrapolation procedure along the normal is used to get the value at the covered
face. (Case 2, Right) An interpolation procedure is used between Wu and Wc to X
where the boundary normal intersects the dashed line. An extrapolation procedure
is used back along the normal to the covered face.

extrapolations of the state variables to nearby edges are defined as:

Wu = W1D
iu± 1

2
ed

,

Ws = W1D
is± 1

2
ed
− sd∆2

dW
n
is ,

Wc = W1D
ic± 1

2
ed

. (A.19)

To extrapolate to the covered faces, a linear combination of the values defined above

are used to compute the value along a ray normal to the EB and passing through

the center of the covered face. The values are then extrapolated to the covered face

using second-order limited slopes. The details are as follows:

Case 1, illustrated in Figure A.5, left: If |nd| ≥ |nd′ |, then

W1D
i± 1

2
ed

=
|nd′ |
|nd|Wc +

(
1− |nd′ |
|nd|

)
Ws −

( |nd′ |
|nd| sd′∆d′W + sd∆dW

)
; (A.20)

∆d′′W =
nd′

nd
∆2

d′′W
n
ic +

(
1− |nd′ |
|nd|

)
∆2

d′′W
n
is . (A.21)
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Case 2, in Figure A.5, Right: If |nd| < |nd′ |, then

W1D
i∓ 1

2
ed

=
|nd|
|nd′ |

Wc +
(

1− |nd|
|nd′ |

)
Wu −

( |nd|
|nd′ |

sd∆dW + sd′∆d′W
)

; (A.22)

∆d′′W =
nd

nd′
∆2

d′′W
n
ic +

(
1− |nd|
|nd′ |

)
∆2

d′′W
n
iu . (A.23)

If one or both values of Wu, Wc, or Ws used in the extrapolation lie on a covered

face, the algorithm drops order. First, if is is open, then W1D
i∓ 1

2
ed

= W1D
is± 1

2
ed
−

2sd∆2
dW

n
is
. Otherwise, if exactly one of the values of Wu, Wc, or Ws used in the

extrapolation is covered, then W1D
i∓ 1

2
ed

is set to the value corresponding to the open

face. If both faces are covered, then W1D
i∓ 1

2
ed

= Wn
i .

A.4 Multigrid Solver

The discretizations for the diffusion equation Helmholtz operators (4.131) and

(4.132), the MAC projection Poisson equation (4.149), and the cell-centered projec-

tion Poisson equation 4.157) can be represented as a system of n linear equations,

where n is the total number of control volumes in the domain. Each of these systems

of linear equations can be represented as a matrix equations of the form:




L




·




φij

φi+1,j

...

φi+imax,j

φi,j+1

...

φi+imax,j+jmax




=




bij

bi+1,j

...

bi+imax,j

bi,j+1

...

bi+imax,j+jmax




.

(A.24)

Ignoring the effects of round-off error, these systems can be solved exactly using

direct methods such as Gaussian elimination, but these methods are computationally
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expensive, requiring O(n3) operations. For modest sized problems where n = 5122

(for a 512×512 domain), the total number of operations required to solve the linear

system directly is approximately O(5126) ≈ 1.8×1016. Obviously, it is not practical

to use direct solvers for problems of this size, so iterative methods are used.

Consider an elliptic equation of the form (4.46), or a parabolic equation of the

form (4.47). These equations can be represented in matrix form:

Lφ = b. (A.25)

An iterative method repeatedly updates an approximation to the solution, φ̂, until

an acceptable solution is reached, as measured by a norm of the residual, ρ:

ρ = b−Lφ̂. (A.26)

Performing an iterative update on the approximate solution is often referred to as

“relaxing” the approximate solution. Using an iterative method, the norm of the

residual can become acceptably small using significantly less operations than a direct

method. A basic relaxation method is Jacobi relaxation, which takes the form:

φk+1
i = φk

i + ωi

[
bi − (Lφk)i

]
, (A.27)

where the superscript is the iteration index and ωi is a problem-dependent weighting

coefficient. Jacobi relaxation is suitable for parallel processing since the solution

approximations for each control volume are updated simultaneously.

Another relaxation method is Gauss-Seidel relaxation, which takes the form:

φk+1
i = φk

i + ωi

[
bi − (Lφ̃k)i

]
, (A.28)

where the solution approximations for each control volume are updated sequen-
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Figure A.6: In a multicolored Gauss-Seidel relaxation, the cells are labeled as either
red (R), yellow (Y), green (G), or black (B) in the following pattern, regardless of
whether a cell is regular or irregular.

tially and the auxiliary approximation φ̃k is the original approximation φk that is

overwritten with values of φk+1
i as they become available. Gauss-Seidel relaxation

often reduces the norm of the residual more quickly than Jacobi relaxation, but is

not suitable for parallel processing since the solutions for each control volume are

updated sequentially.

A third relaxation method is red-black Gauss-Seidel relaxation, named after the

red-black pattern that appears on checkerboards. Each cell is alternately labeled

as either “red” or “black”. The red cells are updated with a Jacobi relaxation.

Next the black cells are updated with a Jacobi relaxation using an auxiliary ap-

proximation φ̃k, which consists of updated approximations φk+1 from the red cells

and the original approximations φk from the black cells. Red-black Gauss-Seidel

relaxation is suitable for parallel processing since groups of solution approximations

are updated simultaneously.

The relaxation method used in this thesis is a multicolored Gauss-Seidel relax-

ation, which is a variant of red-black Gauss-Seidel relaxation. All regular cells are

labeled as either red, yellow, green, or black in an alternating fashion (see Figure

A.6). The cells are relaxed in the following sweep order: regular red, irregular red,

regular yellow, irregular yellow, regular green, irregular green, regular blue, and ir-
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regular blue. Similar to red-black Gauss-Seidel, after each set of cells are relaxed,

the subsequent relaxations in the sweep use the most recently computed values.

The weighting coefficient ωi is computed for each cell by taking the Laplacian of the

following “delta” function:

1
ωi

= Lδi, δi =





1, in cell i,

0, otherwise.
(A.29)

Note that using this formulation, the EB face does not contribute to ω, since the

gradient stencil at the EB face does not include the cell-centered value, and therefore

is equal to zero.

One of the disadvantages to iterative methods is that low frequency error modes

are damped very slowly, requiring a very large number of iterations to approach

the exact solution. Multigrid is an iterative technique in which a specified number

of iterations are performed, and then the residual is transferred to a coarser grid

using a restriction operator. An iterative procedure is performed on the coarse grid

to determine a correction that will be used to correct the fine grid approximation.

The concept behind multigrid is that low frequency errors that are slowly damped

using iterative methods on a fine grid will appear as higher frequency errors when

transferred to a coarser grid. Refer to [15] for a detailed description of the multigrid

implementation described here. The details for a two-level multigrid scheme are as

follows:

1. The goal is to iteratively solve:

Lhφh = bh. (A.30)

Choose an initial guess, φ̂h, and relax the fine grid solution ν1 times.
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2. Compute the fine grid residual, ρh:

ρh = bh −Lhφ̂h. (A.31)

3. Use a restriction operator, I2h
h , to transfer the fine grid residual to a coarse

grid:

b2h = I2h
h ρh. (A.32)

4. Now the goal is to iteratively solve the residual equation:

L2hφ2h = b2h, (A.33)

with homogeneous Dirichlet boundary conditions. Choose an initial guess,

φ̂2h = 0, and relax the coarse grid solution ν1 times.

5. Use an interpolation operator, Ih
2h, to correct the fine grid solution with the

coarse grid solution:

φ̂h ← φ̂h + Ih
2hφ̂2h. (A.34)

6. Relax the fine grid solution ν2 times.

A more elaborate scheme used in this thesis involves successively transferring the

residuals from each resolution to a coarser grid. A full step is referred to as a V-

cycle, and the boundary conditions for all the residual problems are homogeneous

Dirichlet. The method is given as follows:

• Relax on Lhφh = bh ν1 times with an arbitrary initial guess φ̂h.

• Compute b2h = I2h
h (bh −Lhφ̂h).

• Relax on L2hφ2h = b2h ν1 times with an initial guess φ̂2h = 0.

• Compute b4h = I4h
2h (b2h −L2hφ̂2h).
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Figure A.7: V-cycle for four levels of refinement. The coarsest mesh has a grid
spacing of 16h.

• Relax on L4hφ4h = b4h ν1 times with an initial guess φ̂4h = 0.

• Compute b8h = I8h
4h (b4h −L4hφ̂4h).

...

• Solve LLhφ̂Lh = bLh.
...

• Correct φ̂4h ← φ̂4h + I4h
8h φ̂8h.

• Relax on L4hφ4h = b4h ν2 times with an initial guess φ̂4h.

• Correct φ̂2h ← φ̂2h + I2h
4h φ̂4h.

• Relax on L2hφ2h = b2h ν2 times with an initial guess φ̂2h.

• Correct φ̂h ← φ̂h + Ih
2hφ̂2h.

• Relax on Lhφh = bh ν2 times with an initial guess φ̂h.

In this thesis, ν1 = ν2 = 4. The fine geometry is coarsened such that the area

fractions and volume fractions are conserved. Note that using this representation,

the EB cannot be represented as a line on coarser geometries. The residuals are

transferred to a coarser grid using a volume weighted average. The corrections are

interpolated to the finer grid using piecewise constant interpolation. After each V-

cycle, the norm of the residual is computed. The iterative process is complete when
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the max norm of the residual decreases by a factor of 10−12. Before each multigrid

V-cycle, a preconditioning step is used in which the finest solution is relaxed using

4 Jacobi relaxations. At the coarsest level, the BiConjugate Gradient Stabilized

(BiCGSTAB) [7] iterative method is used to solve the problem.

A.5 Cell-Centered Projection Filter

The cell-centered projection filter requires a cell-centered discretization of ∇(∇·
u). Following [5], there are three steps in computing∇(∇·u). First, the cell-centered

velocity gradients are computed from cell-centered data using:

if (i + ed) and (i− ed) are both open then

(∇u)i =
ui+ed

− ui−ed

2h

else if (i± ed) and (i± 2ed) are both open then

(∇u)i = ±
[
4 (ui±ed

− ui)− (ui±2ed
− ui)

2h

]

else if (i± ed) is open then

(∇u)i = ±
[
ui±ed

− ui

h

]

else

(∇u)i = 0. (A.35)

Next, the face-centered divergence is computed at non-domain faces as follows:

(∇ · u)i± 1
2
ed

=
ud,i+ed

− ud,i

h
+

1
2

[
(∇u)d′,i+ed

+ (∇u)d′,i
]
. (A.36)

At domain boundaries, the following extrapolation procedure is used:

if (i± ed) is open then

(∇ · u)i∓ 1
2
ed

= ±

2.25

(
ud,i − ud,i∓ 1

2
ed

)
− 0.25

(
ud,i±ed

− ud,i∓ 1
2
ed

)

0.75h



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+
[
3(∇u)d′,i − (∇u)d′,i±ed

2

]

else

(∇ · u)i∓ 1
2
ed

= ±
[ud,i − ud,i∓ 1

2
ed

0.5h

]
+ (∇u)d′,i, (A.37)

where ui∓ 1
2
ed

matches the domain boundary conditions in the cell-centered projec-

tion. Covered face divergences are obtained using the same geometrical extrapola-

tion stencil used to compute normal gradients at covered faces. The last step is to

calculate the non-conservative face-centered gradient of the face-centered divergence:

[
∇(∇ · u)i± 1

2
ed

]
d,i

=
(∇ · u)i+ 1

2
ed
− (∇ · u)i− 1

2
ed

h
. (A.38)
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