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The focus of this minisymposium is on the large-scale simulation of problems governed by 
systems of partial differential equations on multicore platforms. There are many challenges 
including scalability on massively parallel platforms and efficiency of algorithms on multicore 
processors. This minisymposium will explore challenges and various details concerning the 
efficient use of massively parallel multicore platforms for engineering applications.  
 
Abstract: We present a suite of AMR hydrodynamics codes for astrophysical applications 
developed at the Center for Computational Sciences and Engineering at LBNL. MAESTRO is 
suitable for low Mach number flows and CASTRO is a general compressible code. Both codes 
scale to 100k-200k cores using a hybrid MPI/OpenMP approach on the Jaguar XT5 
supercomputer at OLCF. We are currently studying a variety of astrophysical phenomena 
including Type Ia supernovae. 



Outline 

 

• Overview of MAESTRO and CASTRO 

• Numerical Implementation 

• Parallel Implementation 

• Scaling and Scientific Results 

 

• Collaborators 

– LBNL Center for Computational Sciences and Engineering 

• Ann Almgren, Mike Lijewski, Candace Gilet, John Bell 

– Stony Brook University Dept. of Physics and Astronomy 

• Mike Zingale, Chris Malone 



MAESTRO and CASTRO 

• Finite volume, block structured adaptive mesh 
refinement (AMR) codes for astrophysical phenomena 

– System of advection-reaction-diffusion equations 

– Modular equation of state 

– Modular reaction network 

– Massively parallel 

• MAESTRO scales to 100K cores 

• CASTRO scales to 200K+ cores 

• CASTRO is a general compressible code 

• MAESTRO is a low Mach number code, designed for 
efficient simulation of low speed flows (relative to the 
sound speed). 



MAESTRO and CASTRO 

• Both codes are mature and are being actively used in 
scientific investigations. 

• MAESTRO 

– Type Ia supernovae; pre-ignition (Zingale, Stony Brook) 

– Type I X-Ray Bursts (Malone, Stony Brook) 

– Classical novae (Krueger, Calder, Stony Brook) 

– Convection in massive stars (Gilet, LBNL) 

• CASTRO 
– Type Ia supernovae; post-ignition (Ma, Woosley, UCSC) 

– Core-collapse supernovae (Nordhaus, Burrows, Princeton) 

– Pair instability supernovae (Chen, Heger, U. of Minnesota; 
Joggerst, LANL) 

 



General Framework 

 

 

• Finite Volume: solution in                                                   
each Cartesian cell represents                                             
the average over the cell 

 

 

 

• AMR: Block-structured approach with logically 
rectangular grids 

½;u; p; T , etc.



Example: Type Ia Supernova Explosion 

• Temperature plot and zoom-in of a 3D Type Ia supernova 
explosion in CASTRO (Ma, Woosley, UCSC) 

 

 

 

 

 

 

 

 

• Our software can handle many levels of AMR and scales well 
for problems with datasets that are 100GB – 1TB. 



Software Overview 

• BoxLib software framework provides set of tools for 
finite-volume block-structured AMR applications 

– C++ / Fortran90 

– Subcycling in time (CASTRO only) 

 

• Parallel I/O 

– Peak I/O at NERSC (approx 13 GB/s) is comparable with 
NERSC benchmarks 

 

• Hierarchical programming model 

– Hybrid MPI/OpenMP approach. 

 

 

 



MAESTRO Overview 

• MAESTRO is a low Mach number hydrodynamics solver 
for astrophysical flows. 
– Mach number: M = U/c 

– In the low Mach number regime, M = O(10-2), acoustic 
waves carry little energy so we derive an equation set 
which excludes them. 

– Time steps are constrained by advective CFL, not acoustic 
CFL. 

 

 

 

 

 

– Low Mach time steps are a factor of 1/M larger! 
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Low Mach Number Equation Set 

• Derived from fully compressible equation set 
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Low Mach Number Equation Set 

• Our system is closed with an equation of state, which keeps 
system in thermodynamic equilibrium. 
– Differentiate equation of state along particle paths to represent as a 

divergence constraint: 

 

 

 

 

• Numerical enforcement of divergence constraint analogous to 
solution methodology for incompressible flow 
– Pressure-projection method involving a variable-coefficient Poisson 

solve 

 

 

r¢ (¯0u) = ¯0S

¯0 !
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captures expansion/contraction of fluid due to changes in altitude 

captures local compressibility effects due to reactions and thermal diffusion 



Numerical Methodology 

• Strang splitting couples advection/reaction/diffusion 

– Advection using Godunov approach 

– Reactions using stiff ODE solver 

– Diffusion semi-implicit (multigrid) 

– Divergence-constraint requires elliptic solve (multigrid) 
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Implementation Details 

• Divide computational domain into cells. 



• Divide the domain into grids 

• In a pure MPI instantiation, we assign each grid to a core. 
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• Each core advances the solution on the grid(s) it owns 

• Communication between grids to fill ghost cells 
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• We repeat this process for each level of refinement. 

– Integrate levels separately 

– Synchronize solution between levels 
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• Each core advances the solution on the grid(s) it owns 

• Communication between grids to fill ghost cells 



• Two-way communication between levels required to 
synchronize solution 

1 

2 

3 

1 

2 

3 

4 



Communication Requirements 

• Advection and reaction steps require minimal 
communication – transfer of ghost cell data. 

 

• Multigrid requires intensive communication – often 
1000+ calls to transfer ghost cell data per linear solve. 

 

• Also, there is a non-trivial amount of time spent 
determining communication patterns between grids. 

 

• Our approach is to reduce communication overhead by 
reducing the number of MPI processes. 

– Hybrid MPI/OpenMP approach. 



Parallel Implementation – Pure MPI 

node 

core core core core core core 

node 

core core core core core core 

• Each grid is assigned to a core 
• Cores communicate each other using MPI 

– In this example, we require 12 MPI processes. 

• Divide solution 
domain into grids 



Parallel Implementation – Hybrid MPI/OpenMP 

node 

core core core core core core 

node 

core core core core core core 

• Each grid is assigned to a node 
– Spawn a thread on each core to work on the grids simultaneously 

• Nodes communicate each other using MPI 
– In this example, we require 2 MPI processes. 

• Divide solution 
domain into fewer, 
larger grids 



Advantages of Hybrid MPI/OpenMP 

• Fewer MPI processes lead to reduced communication 
time 

– Especially important in communication-intensive multigrid 

 

• Fewer grids leads to reduced memory overhead 
requirements 

– Metadata contains a mapping of grids and their associated 
MPI processes. 



Other Techniques 

 

• As we approach the coarser levels of multigrid, we 
transfer the problem to fewer, larger grids, thus reducing 
the number of MPI processes in the bottom solve. 

 

• Hash sorting to efficiently compute communication 
patterns by more intelligently searching for neighboring 
grids. 

 

• Cache commonly used communication patterns. 



Type Ia Supernovae 

• Full star dynamics 

• 5000 km3 domain 

• 5763 resolution 

– 1728 · 483 grids 



Type Ia Supernovae 

• Full star dynamics 

• 5000 km3 domain 

• 5763 resolution 

– 1728 · 483 grids 

• 11523 resolution 

– 1831 grids 

• 23043 resolution 

– 2449 grids 

• 46083 resolution 

– 7072 grids 

 



MAESTRO Strong Scaling 



MAESTRO Weak Scaling 



Type Ia Supernovae with MAESTRO 

• We have performed simulations of convection in a white dwarf 
preceding a Type Ia supernova on the jaguarpf XT5 at OLCF 
– 10K cores, 7M CPU-hours per simulation, 11523 effective resolution with 2 AMR levels. 

– Will perform more studies at (up to) 43083 effective resolution with 4 AMR levels. 



CASTRO Overview 

• Standard compressible equations of motion 

 

 

 

 

• Advection (Godunov method) and reactions (stiff ODE 
solver) require little communication. 

• Semi-implicit thermal diffusion and self-gravity (Poisson 
equation) are optional. 

– Using a monopole gravity approximation and explicit 
thermal diffusion, CASTRO scales to 200K+ cores. 
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CASTRO Weak Scaling 



Type Ia Supernovae with CASTRO 

• CASTRO has been used to perform simulations of the explosion 
phase of a Type Ia Supernova on jaguarpf (Haitao Ma, UCSC) 
– 12K cores, 2.5M CPU-hours, 81923 effective resolution with 5 AMR levels. 



Summary 

• Low Mach number AMR code MAESTRO scales to 100K 
cores, performing science using O(10K) cores. 

• Compressible AMR code CASTRO scales to 200K cores, 
performing science using O(10K) cores 

 

• We are interested in testing the scalability of our codes 
on the next generation machines, which may have 24+ 
cores per node. 


