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Introduction

e We are interested in numerical simulation of stochastic
reaction-diffusion systems

e Thermal fluctuations drive movement and collision of
iIndividual molecules

* Applications include:

— Front propagation acceleration and/or directional changes
— Pattern formation — transient and steady state
— Fluctuation-induced instabilities

— Cell biology / cellular function




Introduction

* We seek a seamless approach that is efficient and
accurate:

— Our primary interest is for weak fluctuations (macroscopic
scales and/or large particle count).

— Also of concern are strong fluctuations (mesoscopic scales
and/or small particle count)

* Particularly useful when populations of chemical species
have different orders of magnitude, including dilute
solvent-solute models.

* We use techniques developed independently for
stochastic reactions and stochastic diffusion, and create
new temporal integrators that combine these techniques




Reactions

* Three classes of algorithms developed for single-cell
stochastic chemistry for solving the Chemical Master
Equation (CME).

— Stochastic Simulation Algorithm (SSA): track each

Individual reaction event sequentially by repeatedly
drawing from exponential random variables.

* Exact sampling of CME, but prohibitively expensive for many
zones and large particle counts

— Chemical Langevin Equation (CLE): augment the reaction
rates with Gaussian random noise.

* Very efficient, but fails to produces results predicted by
statistical mechanics.

— Tau Leaping: track the total number of events over a time
step by drawing from a Poisson random variable

» Efficient and accurate, as long as the chemistry is not too stiff




Diffusion

* Three classes of algorithms developed for stochastic
diffusion:
— SSA: track each individual intercell “hop” sequentially by
repeatedly drawing from exponential random variables.
* Exact sampling, but prohibitively expensive for many zones
and large particle counts
— Multinomial: track the total number of hops over a time
step by drawing from a Poisson random variable

* Efficient, accurate, but limited by explicit diffusion time step
— Fluctuating Hydrodynamics (FHD): augment diffusive

fluxes with Gaussian noise using the Landau/Lifshitz
formalism

 Efficient, accurate, and allows for both explicit and implicit
temporal discretization for very large time steps




“Best of Both Worlds” Approach

* Finite volume formulation.
— Number densities expressed as averages over Cartesian
grid cells
* Fluctuating Hydrodynamics diffusion approach.

— Diffusive fluxes augmented by Gaussian White Noise,
using the Landau/Lifshitz formalism

— Implicit diffusion treatment that can greatly exceed time
step for hopping and other explicit treatments

* Reactions treated as a Poisson process, 2 choices:
— Tau-leaping (primary option)
— SSA also an option if chemistry is stiff.

* We develop unsplit temporal integrators that are second-
order in the deterministic limit, and capture the correct
spectrum of equilibrium fluctuations




Spatial Discretization

* Finite volume approach
* Number densities, r, (for species “s”) are cell-averaged.
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» Diffusive and stochastic fluxes are face-averaged.




Diffusion Model

« We can express the stochastic diffusion-only system as
a system of stochastic ODEs for the number density In
each cell:

diffusion Spatio-temporal
coefficients Gaussian white noise
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Reaction Model

« Chemical Langevin equation (CLE) for stochastic

reactions: ]
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stoichiometric propensity function Gaussian white

_ coefficient (reaction rate) _ noise
* We have previously shown that describing reactions as a

Markov jump process (Poisson noise) is consistent with
equilibrium statistical mechanics.
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Temporal Discretization

* Putting diffusion and reactions together, we have
developed a 2-stage, implicit, tau-leaping scheme that is
second-order deterministically, and produces third-order
structure factors. (ImMidTau)
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Structure Factor for Model Equations

« The static structure factor quantifies the spectrum of
fluctuations at equilibrium. For a single-species model:

S(k) = (07 )(0ng,)),  0fk = F(n —n)

 We take the Fourier transform of the linearized reaction-
diffusion equations:
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Schlogl Model

k k
* Single-species Schlogl model 2X k;‘l 3X O k:‘g X
2 4

* Consider an out-of-equilibrium monostable case.

* We have analyzed the discrete structure factors for our
2-stage implicit diffusion schemes (and other 2-stage
explicit-diffusion schemes) and compared to the
continuum result:




Schlogl Model - Structure Factor
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Small Number of Molecules

* Diffusion — pure arithmetic averaging of number densities
to faces used to multiply stochastic fluxes is problematic.
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— We need stochastic fluxes to “shut off” as the number
density in either face approaches zero (in order to avoid
driving the number densities negative)
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— Smoothed Heaviside function allows for more gradual
transition to zero number densities on face




Small Number of Molecules

e Using Hy, vs. H
(discontinuous Heaviside),
here is the distribution of = |
number densities in a
diffusion-only test with an
average N = 5.

0.1F

* Reactions — use continuous-range number densities
with law of mass action correction, ensuring each rate
IS non-negative; e.qg.,
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Schlogl Model — Thermodynamic Equilibrium
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* Single-species Schlogl model 2X k;‘l 3X O k:‘g X
2 4

* We have performed detailed analysis demonstrating we
match the structure factor and equilibrium distribution for
~10 molecules per cell.
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Turing-like Pattern Formation

* We compare our new approach with an RDME Scheme
(Strang splitting; multinomial diffusion + SSA)
— The movie shows the time evolution of n;
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Turing-like Pattern Formation

* Baras-Pearson-Mansour (BPM) Model
— 3 Species, 7 Reactions
— Diffusion coefficient and reaction rates correspond to a

limit cycle
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* We initialize the system by choosing a point on the limit
cycle and perturbing the data with a Poisson distribution




Turing-like Pattern Formation

* Analysis of pattern formation time scales, comparing
strong fluctuations (A=1), weak fluctuations (A=10), and
deterministic

— All simulations use the same random initial perturbation
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Front Propagation

* 2 species, 4 reaction model (Lemarchand)
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* 3D simulation comparing deterministic vs. stochastic
evolution

— Parallel implementation using BoxLib allows for scalability
on leadership class computing facilities.

* We initialize a spherical bubble with interior/exterior
equilibrium states and perturb with Poisson noise.




Front Propagation

Deterministic Stochastic




Conclusions / Future Work

* Our implicit diffusion, two-stage, tau-leaping scheme
compares favorable to RDME for large fluctuations, and
can seamlessly handle the deterministic limit.

— SSA can be used for rapid reactions

* Implementation of reactions into existing FHD models
containing more physics (advection, multicomponent
diffusion, thermal gradients, barodiffusion, charged
particles).

— See the next talk by J. Peraud, Low Mach Number
Fluctuating Hydrodynamics for Electrolytes

* Reference: C. Kim et. al, Stochastic Simulation of
Reaction-Diffusion Systems: A Fluctuating-

Hydrodynamics Approach, accepted, J. Chem. Phys.
(on arXiv, or ccse.lbl.gov)
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