Stochastic Simulation of Reaction-Diffusion Systems: A Fluctuating-Hydrodynamics Approach

Andy Nonaka – Lawrence Berkeley National Laboratory

Collaborators

- Lawrence Berkeley National Laboratory
 - <u>Changho Kim</u>
 - John Bell
- San Jose State University
 Alejandro Garcia
- Courant Institute
 - Aleksandar Donev

SJSU SAN JOSÉ STATE UNIVERSITY

Introduction

- We are interested in numerical simulation of stochastic reaction-diffusion systems
- Thermal fluctuations drive movement and collision of individual molecules

- Applications include:
 - Front propagation acceleration and/or directional changes
 - Pattern formation transient and steady state
 - Fluctuation-induced instabilities
 - Cell biology / cellular function

Introduction

- We seek a seamless approach that is efficient and accurate:
 - Our primary interest is for weak fluctuations (macroscopic scales and/or large particle count).
 - Also of concern are strong fluctuations (mesoscopic scales and/or small particle count)
- Particularly useful when populations of chemical species have different orders of magnitude, including dilute solvent-solute models.
- We use techniques developed independently for stochastic reactions and stochastic diffusion, and create new temporal integrators that combine these techniques

Reactions

- Three classes of algorithms developed for single-cell stochastic chemistry for solving the Chemical Master Equation (CME).
 - Stochastic Simulation Algorithm (SSA): track each individual reaction event sequentially by repeatedly drawing from exponential random variables.
 - Exact sampling of CME, but prohibitively expensive for many zones and large particle counts
 - Chemical Langevin Equation (CLE): augment the reaction rates with Gaussian random noise.
 - Very efficient, but fails to produces results predicted by statistical mechanics.
 - Tau Leaping: track the total number of events over a time step by drawing from a Poisson random variable
 - Efficient and accurate, as long as the chemistry is not too stiff

Diffusion

- Three classes of algorithms developed for stochastic diffusion:
 - SSA: track each individual intercell "hop" sequentially by repeatedly drawing from exponential random variables.
 - Exact sampling, but prohibitively expensive for many zones and large particle counts
 - Multinomial: track the total number of hops over a time step by drawing from a Poisson random variable
 - Efficient, accurate, but limited by explicit diffusion time step
 - Fluctuating Hydrodynamics (FHD): augment diffusive fluxes with Gaussian noise using the Landau/Lifshitz formalism
 - Efficient, accurate, and allows for both explicit and implicit temporal discretization for very large time steps

"Best of Both Worlds" Approach

- Finite volume formulation.
 - Number densities expressed as averages over Cartesian grid cells
- Fluctuating Hydrodynamics diffusion approach.
 - Diffusive fluxes augmented by Gaussian White Noise, using the Landau/Lifshitz formalism
 - Implicit diffusion treatment that can greatly exceed time step for hopping and other explicit treatments
- Reactions treated as a Poisson process, 2 choices:
 - Tau-leaping (primary option)
 - SSA also an option if chemistry is stiff.
- We develop unsplit temporal integrators that are secondorder in the deterministic limit, and capture the correct spectrum of equilibrium fluctuations

Spatial Discretization

- Finite volume approach
- Number densities, n_s (for species "s") are cell-averaged.

• Diffusive and stochastic fluxes are face-averaged.

Diffusion Model

 We can express the stochastic diffusion-only system as a system of stochastic ODEs for the number density in each cell:

• When discretized in space and time one possible scheme (forward Euler) is

face-averaged Gaussian white noise

$$n_s^{k+1} - n_s^k = \Delta t D_s \nabla_{\mathrm{d}}^2 n_s^k + \sqrt{\frac{2D_s \Delta t}{\Delta V}} \nabla_{\mathrm{d}} \cdot \left(\sqrt{\tilde{n}_s^k} \boldsymbol{W}\right)^k$$

discrete Laplacian (and divergence)

cell volume

face-averaged number densities

Reaction Model

Chemical Langevin equation (CLE) for stochastic \bullet reactions: λτ

$$\frac{dn_s}{dt} = \sum_{r=1}^{N_r} \nu_{sr} \left(a_r(\boldsymbol{n}) + \sqrt{a_r(\boldsymbol{n})} \mathcal{Z}_r^{(R)} \right)$$

Gaussian white

stoichiometric propensity function coefficient (reaction rate) noise We have previously shown that describing reactions as a \bullet Markov jump process (Poisson noise) is consistent with equilibrium statistical mechanics.

(tau leaping)
$$\frac{dn_s}{dt} = \sum_{r=1}^{N_r} \frac{\nu_{sr} \mathcal{P}(a_r(n)\Delta V dt)}{\Delta V dt}$$
 Poisson random variable
• We also have an option to use SSA:
$$\frac{dn_s}{dt} = \frac{\Re_s(n, dt)}{dt}$$

Temporal Discretization

 Putting diffusion and reactions together, we have developed a 2-stage, implicit, tau-leaping scheme that is second-order deterministically, and produces third-order structure factors. (ImMidTau)

$$n_{s}^{\star} = n_{s}^{k} + \frac{D_{s}\Delta t}{2} \nabla_{d}^{2} n_{s}^{\star} + \sqrt{\frac{D_{s}\Delta t}{\Delta V}} \nabla_{d} \cdot \left(\sqrt{\tilde{n}_{s}^{k}} \boldsymbol{W}_{s}^{(1)}\right) + \sum_{r=1}^{N_{r}} \frac{\nu_{sr} \mathcal{P}^{(1)}(a_{r}^{k}\Delta V\Delta t/2)}{\Delta V}$$

$$n_{s}^{k+1} = n_{s}^{k} + D_{s}\Delta t \nabla_{d}^{2} \left(\frac{n_{s}^{k} + n_{s}^{k+1}}{2}\right)$$

$$+ \sqrt{\frac{D_{s}\Delta t}{\Delta V}} \nabla_{d} \cdot \left(\sqrt{\tilde{n}_{s}^{k}} \boldsymbol{W}_{s}^{(1)}\right) + \sqrt{\frac{D_{s}\Delta t}{\Delta V}} \nabla_{d} \cdot \left(\sqrt{\tilde{n}((2n_{s}^{\star} - n_{s}^{k})^{+})} \boldsymbol{W}_{s}^{(2)}\right)$$

$$+ \sum_{r=1}^{N_{r}} \frac{\nu_{sr} \mathcal{P}^{(1)}(a_{r}^{k}\Delta V\Delta t/2)}{\Delta V} + \sum_{r=1}^{N_{r}} \frac{\nu_{sr} \mathcal{P}^{(2)}((2a_{r}^{\star} - a_{r}^{k})^{+}\Delta V\Delta t/2)}{\Delta V}$$

 We also have a stiff chemistry integrator that uses SSA (ImMidSSA)

Structure Factor for Model Equations

• The static structure factor quantifies the spectrum of fluctuations at equilibrium. For a single-species model:

$$S(\mathbf{k}) = \langle (\delta \hat{n}_{\mathbf{k}}) (\delta \hat{n}_{\mathbf{k}}^*) \rangle, \quad \delta \hat{n}_{\mathbf{k}} = \mathcal{F}(n - \bar{n})$$

 We take the Fourier transform of the linearized reactiondiffusion equations:

$$\frac{d}{dt}\delta\hat{n}_{k} = -Dk^{2}\delta\hat{n}_{k} + \sqrt{2D\bar{n}} ik \cdot \hat{\boldsymbol{Z}}_{k}^{(D)} - r\delta\hat{n}_{k} + \sqrt{2\bar{\Gamma}}\hat{\boldsymbol{Z}}_{k}^{(R)}$$

$$r = -a'(\bar{n}), \quad \bar{\Gamma} = \frac{1}{2}\sum_{r}^{N_{r}}\nu_{r}^{2}a_{r}(n)$$
Use the Ornstein-Uhlenbeck equation to obtain
$$S(\boldsymbol{k}) = \frac{D\bar{n}k^{2} + \bar{\Gamma}}{Dk^{2} + r}$$

Dr

Schlögl Model

- Single-species Schlögl model $2X \stackrel{k_1}{\rightleftharpoons} 3X \quad \varnothing \stackrel{k_3}{\rightleftharpoons} X$
- Consider an out-of-equilibrium monostable case.
- We have analyzed the discrete structure factors for our 2-stage implicit diffusion schemes (and other 2-stage explicit-diffusion schemes) and compared to the continuum result:

Schlögl Model - Structure Factor

Small Number of Molecules

• Diffusion – pure arithmetic averaging of number densities to faces used to multiply stochastic fluxes is problematic.

$$\frac{dn_s}{dt} = D_s \nabla_{\mathrm{d}}^2 n_s + \sqrt{\frac{2D_s}{\Delta V}} \nabla_{\mathrm{d}} \cdot \left(\sqrt{\tilde{n}_s} \mathcal{V}_s\right)$$

 We need stochastic fluxes to "shut off" as the number density in either face approaches zero (in order to avoid driving the number densities negative)

$$\tilde{n}(n_1, n_2) = \left(\frac{n_1 + n_2}{2}\right) H_0(n_1 \Delta V) H_0(n_2 \Delta V)$$

$$\xrightarrow{H_0(x)}_{1 \to 1} x$$
- Smoothed Heaviside function allows for more gradual transition to zero number densities on face

Small Number of Molecules

Using H₀, vs. H

 (discontinuous Heaviside),
 here is the distribution of
 number densities in a
 diffusion-only test with an
 average N = 5.

 Reactions – use continuous-range number densities with law of mass action correction, ensuring each rate is non-negative; e.g.,

$$2X \stackrel{k_1}{\overleftarrow{k_2}} 3X$$
$$a(n) = k_1 n^+ (n - \frac{1}{\Delta V})^+ - k_2 n^+ (n - \frac{1}{\Delta V})^+ (n - \frac{2}{\Delta V})^+$$
$$n^+ = \max(n, 0)$$

Schlögl Model – Thermodynamic Equilibrium

- Single-species Schlögl model $2X \stackrel{k_1}{\rightleftharpoons} 3X \quad \varnothing \stackrel{k_3}{\rightleftharpoons} X$
- We have performed detailed analysis demonstrating we match the structure factor and equilibrium distribution for ~10 molecules per cell.

Turing-like Pattern Formation

- We compare our new approach with an RDME Scheme (Strang splitting; multinomial diffusion + SSA)
 - The movie shows the time evolution of n_U

FHD, ∆t = 0.1

RDME, $\Delta t = 0.01$

Turing-like Pattern Formation

- Baras-Pearson-Mansour (BPM) Model
 - 3 Species, 7 Reactions
 - Diffusion coefficient and reaction rates correspond to a limit cycle

$$U + W \xrightarrow{k_1} V + W, \qquad 2V \stackrel{k_2}{\rightleftharpoons} W,$$
$$U \stackrel{k_4}{\rightleftharpoons} \varnothing, \qquad V \stackrel{k_6}{\rightleftharpoons} \varnothing.$$

• We initialize the system by choosing a point on the limit cycle and perturbing the data with a Poisson distribution

Turing-like Pattern Formation

- Analysis of pattern formation time scales, comparing strong fluctuations (A=1), weak fluctuations (A=10), and deterministic
 - All simulations use the same random initial perturbation

Front Propagation

• 2 species, 4 reaction model (Lemarchand)

$$A \xrightarrow{k_1} \varnothing, \quad 2A + B \xrightarrow{k_2} 3A, \quad B \xrightarrow{k_3}_{k_4} \varnothing.$$

- 3D simulation comparing deterministic vs. stochastic evolution
 - Parallel implementation using BoxLib allows for scalability on leadership class computing facilities.
- We initialize a spherical bubble with interior/exterior equilibrium states and perturb with Poisson noise.

Conclusions / Future Work

- Our implicit diffusion, two-stage, tau-leaping scheme compares favorable to RDME for large fluctuations, and can seamlessly handle the deterministic limit.
 - SSA can be used for rapid reactions
- Implementation of reactions into existing FHD models containing more physics (advection, multicomponent diffusion, thermal gradients, barodiffusion, charged particles).
 - See the next talk by J. Peraud, Low Mach Number
 Fluctuating Hydrodynamics for Electrolytes
- Reference: C. Kim et. al, Stochastic Simulation of Reaction-Diffusion Systems: A Fluctuating-Hydrodynamics Approach, accepted, J. Chem. Phys. (on arXiv, or ccse.lbl.gov)