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Introduction
• We are interested in numerical simulation of stochastic 

reaction-diffusion systems
• Thermal fluctuations drive movement and collision of 

individual molecules

• Applications include:
– Front propagation acceleration and/or directional changes
– Pattern formation – transient and steady state
– Fluctuation-induced instabilities
– Cell biology / cellular function



Introduction
• We seek a seamless approach that is efficient and 

accurate:
– Our primary interest is for weak fluctuations (macroscopic 

scales and/or large particle count).
– Also of concern are strong fluctuations (mesoscopic scales 

and/or small particle count)

• Particularly useful when populations of chemical species 
have di erent orders of magnitude, including dilute ff
solvent-solute models.

• We use techniques developed independently for 
stochastic reactions and stochastic diffusion, and create 
new temporal integrators that combine these techniques



Reactions
• Three classes of algorithms developed for single-cell 

stochastic chemistry for solving the Chemical Master 
Equation (CME).
– Stochastic Simulation Algorithm (SSA): track each 

individual reaction event sequentially by repeatedly 
drawing from exponential random variables.

• Exact sampling of CME, but prohibitively expensive for many 
zones and large particle counts

– Chemical Langevin Equation (CLE): augment the reaction 
rates with Gaussian random noise.

• Very efficient, but fails to produces results predicted by 
statistical mechanics.

– Tau Leaping: track the total number of events over a time 
step by drawing from a Poisson random variable

• Efficient and accurate, as long as the chemistry is not too stiff



Diffusion

• Three classes of algorithms developed for stochastic 
diffusion:
– SSA: track each individual intercell “hop” sequentially by 

repeatedly drawing from exponential random variables.
• Exact sampling, but prohibitively expensive for many zones 

and large particle counts

– Multinomial: track the total number of hops over a time 
step by drawing from a Poisson random variable

• Efficient, accurate, but limited by explicit diffusion time step

– Fluctuating Hydrodynamics (FHD): augment diffusive 
fluxes with Gaussian noise using the Landau/Lifshitz 
formalism

• Efficient, accurate, and allows for both explicit and implicit 
temporal discretization for very large time steps



“Best of Both Worlds” Approach
• Finite volume formulation.

– Number densities expressed as averages over Cartesian 
grid cells

• Fluctuating Hydrodynamics diffusion approach.
– Diffusive fluxes augmented by Gaussian White Noise, 

using the Landau/Lifshitz formalism
– Implicit diffusion treatment that can greatly exceed time 

step for hopping and other explicit treatments

• Reactions treated as a Poisson process, 2 choices:
– Tau-leaping (primary option)
– SSA also an option if chemistry is stiff.

• We develop unsplit temporal integrators that are second-
order in the deterministic limit, and capture the correct 
spectrum of equilibrium fluctuations



• Finite volume approach
• Number densities,      (for species “s”) are cell-averaged.

• Diffusive and stochastic fluxes are face-averaged.

Spatial Discretization



• We can express the stochastic diffusion-only system as 
a system of stochastic ODEs for the number density in 
each cell:

• When discretized in space and time one              
possible scheme (forward Euler) is

Diffusion Model

diffusion 
coefficients

discrete Laplacian 
(and divergence) cell volume face-averaged 

number densities

Spatio-temporal 
Gaussian white noise

face-averaged 
Gaussian white 

noise



• Chemical Langevin equation (CLE) for stochastic 
reactions:

• We have previously shown that describing reactions as a 
Markov jump process (Poisson noise) is consistent with 
equilibrium statistical mechanics.

Reaction Model

Poisson random 
variable

propensity function 
(reaction rate)

stoichiometric 
coefficient

Gaussian white 
noise

• We also have an option to use SSA:

(tau leaping)



Temporal Discretization
• Putting diffusion and reactions together, we have 

developed a 2-stage, implicit, tau-leaping scheme that is 
second-order deterministically, and produces third-order 
structure factors. (ImMidTau)

• We also have a stiff chemistry integrator that uses SSA 
(ImMidSSA)



Structure Factor for Model Equations

• The static structure factor quantifies the spectrum of 
fluctuations at equilibrium.  For a single-species model:

• We take the Fourier transform of the linearized reaction-
diffusion equations:

• Use the Ornstein-Uhlenbeck equation to obtain



• Single-species Schlögl model

• Consider an out-of-equilibrium monostable case.

• We have analyzed the discrete structure factors for our 
2-stage implicit diffusion schemes (and other 2-stage 
explicit-diffusion schemes) and compared to the 
continuum result:

Schlögl Model



Schlögl Model - Structure Factor

(penetration depth)

(explicit diffusion Courant number)



Small Number of Molecules
• Diffusion – pure arithmetic averaging of number densities 

to faces used to multiply stochastic fluxes is problematic.

– We need stochastic fluxes to “shut off” as the number 
density in either face approaches zero (in order to avoid 
driving the number densities negative)

– Smoothed Heaviside function allows for more gradual 
transition to zero number densities on face



Small Number of Molecules
• Using H0, vs. H 

(discontinuous Heaviside), 
here is the distribution of 
number densities in a 
diffusion-only test with an 
average N = 5.

• Reactions – use continuous-range number densities 
with law of mass action correction, ensuring each rate 
is non-negative; e.g.,



• Single-species Schlögl model

• We have performed detailed analysis demonstrating we 
match the structure factor and equilibrium distribution for 
~10 molecules per cell. 

Schlögl Model – Thermodynamic Equilibrium



Turing-like Pattern Formation
• We compare our new approach with an RDME Scheme 

(Strang splitting; multinomial diffusion + SSA)
– The movie shows the time evolution of 

FHD, Δt = 0.1 RDME, Δt = 0.01



Turing-like Pattern Formation
• Baras-Pearson-Mansour (BPM) Model

– 3 Species, 7 Reactions
– Diffusion coefficient and reaction rates correspond to a 

limit cycle

• We initialize the system by choosing a point on the limit 
cycle and perturbing the data with a Poisson distribution



Turing-like Pattern Formation
• Analysis of pattern formation time scales, comparing 

strong fluctuations (A=1), weak fluctuations (A=10), and 
deterministic
– All simulations use the same random initial perturbation

RDME



• 2 species, 4 reaction model (Lemarchand)

• 3D simulation comparing deterministic vs. stochastic 
evolution
– Parallel implementation using BoxLib allows for scalability 

on leadership class computing facilities.

• We initialize a spherical bubble with interior/exterior 
equilibrium states and perturb with Poisson noise.

Front Propagation



Front Propagation
StochasticDeterministic



Conclusions / Future Work
• Our implicit diffusion, two-stage, tau-leaping scheme 

compares favorable to RDME for large fluctuations, and 
can seamlessly handle the deterministic limit.
– SSA can be used for rapid reactions

• Implementation of reactions into existing FHD models 
containing more physics (advection, multicomponent 
diffusion, thermal gradients, barodiffusion, charged 
particles).
– See the next talk by J. Peraud, Low Mach Number 

Fluctuating Hydrodynamics for Electrolytes

• Reference: C. Kim et. al, Stochastic Simulation of 
Reaction-Diffusion Systems: A Fluctuating-
Hydrodynamics Approach, accepted, J. Chem. Phys. 
(on arXiv, or ccse.lbl.gov)
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