
The Astrophysical Journal, 745:73 (22pp), 2012 January 20 doi:10.1088/0004-637X/745/1/73
C© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia
SUPERNOVAE USING ADAPTIVE MESH REFINEMENT

A. Nonaka1, A. J. Aspden1,2, M. Zingale3, A. S. Almgren1, J. B. Bell1, and S. E. Woosley4
1 Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2 School of Engineering, University of Portsmouth, Portsmouth, Hants, PO1 3DJ, UK
3 Department of Physics & Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA

4 Department of Astronomy & Astrophysics, The University of California, Santa Cruz, CA 95064, USA
Received 2011 August 4; accepted 2011 October 20; published 2011 December 29

ABSTRACT

We extend our previous three-dimensional, full-star simulations of the final hours of convection preceding ignition
in Type Ia supernovae to higher resolution using the adaptive mesh refinement capability of our low Mach number
code, MAESTRO. We report the statistics of the ignition of the first flame at an effective 4.34 km resolution and
general flow field properties at an effective 2.17 km resolution. We find that off-center ignition is likely, with radius
of 50 km most favored and a likely range of 40–75 km. This is consistent with our previous coarser (8.68 km
resolution) simulations, implying that we have achieved sufficient resolution in our determination of likely ignition
radii. The dynamics of the last few hot spots preceding ignition suggest that a multiple ignition scenario is not likely.
With improved resolution, we can more clearly see the general flow pattern in the convective region, characterized
by a strong outward plume with a lower speed recirculation. We show that the convective core is turbulent with a
Kolmogorov spectrum and has a lower turbulent intensity and larger integral length scale than previously thought
(on the order of 16 km s−1 and 200 km, respectively), and we discuss the potential consequences for the first flames.
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1. INTRODUCTION

For the Chandrasekhar mass white dwarf (single-degenerate)
progenitor model of Type Ia supernovae (SNe Ia), the location
of the first flames greatly affects the outcome of the explosion
(see, for example, Niemeyer et al. 1996; Plewa et al. 2004; Livne
et al. 2005; Garcı́a-Senz & Bravo 2005). The convective state
leading up to ignition is highly nonlinear and the ignition results
from a hot temperature perturbation near the center of the white
dwarf. Once the temperature exceeds ∼8 × 108 K, a hot spot
burns faster than it can cool via expansion (Nomoto et al. 1984),
igniting a flame. In earlier studies on white dwarf convection
in SNe Ia (Zingale et al. 2009, henceforth Z09; Zingale et al.
2011, henceforth Z11), we performed three-dimensional, full-
star simulations of the final ∼3 hr of convection in a white
dwarf leading up to the ignition of the first flames. We followed
the nonlinear rise in the temperature approaching ignition and
showed that the ignition is likely to take place off-center (50 km
is most favored, with a likely range of 40–75 km, and an outer
limit of 100 km) in an outward flowing parcel of fluid. Our
results differed from the two-dimensional wedge simulation of
Höflich & Stein (2002), who argued that the ignition is closer
to the center (∼30 km) and is driven by inflow compression.

It is important to understand how robust our results for the
likely ignition radius are to the resolution. With the recently
implemented adaptive mesh refinement (AMR) capability in
our low Mach number code, MAESTRO (Nonaka et al. 2010,
henceforth N10), we are now able to study the final minutes
of convection up to ignition at unprecedented resolution. We
are also interested in the likelihood of multiple ignition points.
Detailed visualizations of the evolution of the last few hot
spots preceding ignition will be used to examine this scenario.
Previous studies with an anelastic code showed that a dipole

flow dominates the flow (Kuhlen et al. 2006; also seen in the
follow-up studies shown in Woosley et al. 2007 and Ma 2011).
Our results for non-rotating white dwarfs also show this feature.
Here we examine this structure at higher resolution.

Higher resolution is also important for resolving the turbu-
lence and capturing the turbulent cascade. Simulations have
shown that the flame needs to accelerate considerably beyond
its laminar value for the resulting energetics to match observa-
tions. The primary mechanism for this acceleration is thought
to be instabilities and the interaction with turbulence (Mueller
& Arnett 1986; Livne 1993; Khokhlov 1995; Niemeyer &
Hillebrandt 1995; Niemeyer & Woosley 1997). A popular view
is that the flame interacts with turbulence generated by the flame
itself via instabilities. The vast majority of simulations to date
have only considered this flame-generated turbulence during the
explosion phase. Aspden et al. (2011) suggested that turbulent
entrainment was the dominant mechanism for enhancing the
burning rate, and that the local flame speed, whether laminar
or turbulent, was largely unimportant. As the flame encoun-
ters lower densities and broadens, the turbulence may be able
to directly affect the flame structure (at this point, the flame
is said to be in the “distributed burning regime”). The altering
of the flame by turbulence has been the subject of many stud-
ies, both semianalytic and one-dimensional calculations with
a model for turbulence (Lisewski et al. 2000; Pan et al. 2008;
Woosley et al. 2009) and multi-dimensional numerical simula-
tions (Röpke et al. 2004; Aspden et al. 2008a, 2010, 2011). If the
conditions are right, the flame may transition to a detonation in
this regime (Khokhlov et al. 1997; Niemeyer & Woosley 1997;
Woosley et al. 2009, 2011).

What are not well known are the characteristics of the
turbulence that already exists at ignition from the centuries-
long convective period. The very first flame(s) that ignite will

1

http://dx.doi.org/10.1088/0004-637X/745/1/73


The Astrophysical Journal, 745:73 (22pp), 2012 January 20 Nonaka et al.

form flame “bubbles” that buoyantly rise away from the center
as they burn outward. These bubbles will deform due to shear
instabilities and interact with the pre-existing turbulence and
wrinkle (Garcia-Senz & Woosley 1995; Bychkov & Liberman
1995; Iapichino et al. 2006; Zingale & Dursi 2007; Iapichino &
Lesaffre 2010; Aspden et al. 2011). If the turbulence is strong
enough, it could potentially disrupt the flames or even quench
them. Additionally, the initial convective velocity field has been
shown to introduce large asymmetries in the burning (Livne
et al. 2005).

In this paper, we expand upon our previous studies of the
final hours of convection leading up to the ignition of the first
flames in SNe Ia. In Z09, we used 13.2 km resolution; in Z11,
we used 8.68 km resolution. Here, we use the AMR capability of
MAESTRO to compute ignition statistics at 4.34 km resolution
and general flow field properties at 2.17 km resolution.

This paper is organized as follows. In Section 2, we give
an overview of the MAESTRO algorithm, including our latest
improvements for both regridding and adding an additional
level of refinement to a simulation in progress. In Section 3,
we describe our new high-resolution simulations. We examine
the ignition statistics and compare them to our previous results
in order to show that we have achieved sufficient resolution
in our determination of likely ignition radii. We determine
the likelihood of multiple ignition points by examining the
dynamics of the last few hot spots leading up to ignition. We
provide visualizations of the convective flow field to gain a
better understanding of the flow structure. We include a detailed
analysis of the turbulent nature of the flow field and discuss
the implications for the first flames. Finally, in Section 4, we
summarize and conclude.

2. NUMERICAL METHODOLOGY

MAESTRO is a finite-volume, AMR hydrodynamics code
for low Mach number astrophysical flows. In our low Mach
number formulation, sound waves have been analytically re-
moved, allowing for a time step based on the fluid velocity
Courant–Friedrichs–Lewy (CFL) constraint rather than the
sound speed CFL constraint, while retaining compressibility
effects due to background stratification, reaction heating, and
compositional changes. The algorithm is described in full detail
in N10. We note that the low Mach number equations do not en-
force that the Mach number remains small; rather, if the dynam-
ics of the flow are such that the Mach number does remain small,
then these equations are valid approximations for the evolution
of the flow. Thus, MAESTRO is not suitable for post-ignition
calculations, where we expect the Mach number to quickly ap-
proach or exceed unity. Also, our low Mach number approach as-
sumes that the background state is spherical; thus, any deforma-
tion due to rotation is not accounted for in the background state.

We now summarize the algorithm and then describe the new
procedures for dynamically changing the grids as well as adding
an additional level of refinement to a simulation in progress.
For the simulations in this paper, we begin with data from
Z11, in which we computed the last ∼3 hr of convection in
a non-rotating white dwarf up to the point of ignition using
8.68 km resolution (5763 computational cells; the problem
domain is 5000 km on a side) and no AMR. We expand
upon this simulation by adding a level of refinement a few
minutes before ignition and examining the ignition statistics for
a 4.34 km (11523 effective grid cells) resolution simulation.
Next, we will add an additional level of AMR to examine the
turbulent flow field in a 2.17 km (23043 effective grid cells)

resolution simulation. Computer allocation limits prevent us
from running 2.17 km resolution simulations to ignition, even
with the efficiency gains provided by AMR.

2.1. MAESTRO Overview

MAESTRO is based on the BoxLib software framework
(Rendleman et al. 2000), which provides infrastructure for
block-structured AMR applications, and includes linear solvers
that scale to 100,000 cores on the current generation of su-
percomputers (see Almgren et al. 2010 for details). We use a
finite-volume approach, where each computational cell stores
the average value of a state variable in that cell. The domain
is decomposed into a nested hierarchy of logically rectangular
Cartesian grids with computational cell width Δx� in each direc-
tion (the grids at the coarsest level are associated with level index
� = 1, the first level of refinement with � = 2, etc.), and a refine-
ment ratio of two in each spatial direction. We solve a system
of coupled partial differential equations containing advection
and reaction terms constrained by an equation of state that takes
the form of a divergence constraint on the velocity field. This
constraint is enforced using a projection method, which requires
linear solvers to solve a variable-coefficient Poisson equation.

One feature that makes MAESTRO different from standard
AMR hydrodynamics codes is the presence of base state
variables, which are functions of radius and time, (r, t), as
opposed to Cartesian grid quantities, which are functions of
all spatial dimensions and time, (x, t). We represent base state
variables using a one-dimensional, time-dependent array. The
base state array has a constant grid spacing, Δr = Δx�max/5,
where �max is the finest level in the simulation, and due to the
spherical nature of our problem does not directly align with the
Cartesian grid. Figure 1 shows a depiction of the Cartesian grid,
one-dimensional radial array, and a graphical representation of
how they relate to each other. Some base state variables are cell-
centered and others are defined on edges. Each of the base state
variables is computed directly from other base state variables
and/or Cartesian grid variables. The base state density obeys an
evolution equation within each time step (described below). We
require frequent mapping from the base state to the Cartesian
grid and vice versa. In N10, we describe how we interpolate
a base state quantity onto the Cartesian grid, as well as a
“lateral average” procedure that determines the average value
of a Cartesian grid quantity at a particular radius and maps that
value onto the radial array.

In the following overview, all variables are assumed to live on
the Cartesian grid, unless noted otherwise. MAESTRO solves
the equations of reacting flow constrained by an equation of
state in the form of a divergence constraint. The species are
evolved according to

∂(ρXk)

∂t
= −∇ · (ρXkU) + ρω̇k, (1)

where ρ is the density, Xk is the mass fraction of species k, U
is the velocity field, and ω̇k is the creation rate of species k due
to reactions. We note that the density can be determined at any
time using

ρ =
∑

k

(ρXk), (2)

and thus density does not have to be explicitly evolved in time.
We define a base state density, ρ0(r, t), that represents the

average value of density at a particular radius. The base state
density has its own evolution equation, as described below. The
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Figure 1. Left: for data on the Cartesian grid (shown here in two dimensions), we use a cell-centered convention to denote the average value over the computational
cell. Center: the base state variables live on a one-dimensional radial array and can live at cell centers or edges. Right: a graphical depiction of how the base state and
Cartesian grid are related. Note that there is no direct alignment between the radial cell centers and the Cartesian grid cell centers.

base state (thermodynamic) pressure, p0(r, t), is computed using
the condition of hydrostatic equilibrium,

∇p0 ≡ ∂p0

∂r
= −ρ0g, (3)

where the gravity, g(r, t), is computed by integrating ρ0 assum-
ing piecewise-constant profiles of ρ0 within each radial cell.

In general, given ρ and Xk, we could derive the temperature
from the specific enthalpy, h, evolved as

∂(ρh)

∂t
= −∇ · (ρhU) +

Dp0

Dt
+ ρHnuc, (4)

where Hnuc is the energy generation rate from reactions. In
practice, we adopt the prescription used in Z09 and Z11
and derive the temperature from ρ,Xk, and p0, effectively
decoupling the enthalpy from the problem. In the future, we will
seek ways to evolve the enthalpy in a manner that minimizes the
drift from the equation of state.

The velocity field is evolved according to

∂U
∂t

= −U · ∇U − 1

ρ
∇π − ρ − ρ0

ρ
ger , (5)

where π is the perturbational pressure, i.e., the local deviation
of the total pressure from p0, and er is the unit vector in the
outward radial direction. The evolution of the thermodynamic
variables (ρ,Xk , and p0) is constrained by the equation of state,
which we represent as a divergence constraint on the velocity
field,

∇ · (β0U) = β0

(
S − 1

Γ1p0

∂p0

∂t

)
. (6)

Here, β0(r, t) is a base state quantity that captures the expansion/
contraction of a fluid parcel as it changes altitude, and S is a
local source term that captures the compressibility effects due
to reactions and compositional changes. The quantity Γ1(r, t)
is a base state variable representing the average at constant
radius of Γ1 = ∂ log p/∂ log ρ|s , where s is the entropy. A
full derivation of this constraint, the form of β0 and S, and the
numerical projection can be found in Almgren et al. (2006a,
2006b, 2008).

The evolution equation for ρ0 is

∂ρ0

∂t
= −∂ (ρ0w0)

∂r
− ∂ηρ

∂r
, (7)

where w0(r, t) is the base state expansion velocity, which
accounts for the expansion of the atmosphere due to large-scale
heating. We compute this term by integrating a one-dimensional
version of the divergence constraint (Equation (6)). The quantity
ηρ(r, t) is a base state quantity that accounts for changes in
background stratification due to large-scale convection (see
Almgren et al. 2008 and N10).

The velocity field can be decomposed into the base state
velocity and a local velocity, Ũ(x, t), that governs the local
dynamics,

U(x, t) = w0(r, t)er + Ũ(x, t). (8)

We follow the approach in N10, where we compute the evolution
of these terms separately, and thus evolve Ũ subject to a
perturbational form of Equations (5) and (6).

We note that the base state quantities ρ0, p0, β0, Γ1, and ηρ

are stored on radial cell centers, whereas w0 is stored at radial
edges.

To summarize, we advance Equations (1), (5), and (7)
subject to Equations (2), (3), and (6). We use a second-
order predictor–corrector approach in which we discretize the
advection terms using an unsplit Godunov method, compute the
effect of reactions on a cell-by-cell basis using the VODE stiff
ODE package (Brown et al. 1989), and couple these processes
using Strang splitting. We enforce the divergence constraint on
velocity using a projection method, which uses multigrid to
solve a variable-coefficient Poisson equation for the update of
the perturbational pressure, π .

2.2. Regridding and Adding a Level of Refinement

Regridding is the process of redefining the AMR grid struc-
ture based on user-specified refinement criteria. The regridding
algorithm also uses interpolation stencils to initialize data on
newly created refined grids from underlying coarse data. Here
we have improved the regridding algorithm described in N10
and have also implemented a new algorithm for adding an ad-
ditional level of refinement to a simulation in progress. Our ap-
proach to AMR uses a nested hierarchy of logically rectangular
grids with successively finer grids at higher levels. This is based
on the strategy introduced for gas dynamics by Berger & Colella
(1989), extended to the incompressible Navier–Stokes equations
by Almgren et al. (1998), and extended to low Mach number
reacting flows by Pember et al. (1998) and Day & Bell (2000).
We refer the reader to these works for more details. The compli-
cation in applying these methods to MAESTRO is the presence
of the time-dependent base state variables. We refer the reader
to N10 for the MAESTRO-specific implementation including
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details on creating and managing the grid hierarchy, commu-
nication between levels, and the implementation of AMR with
time-dependent base state variables.

We note an error in the Cartesian grid regridding procedure
as described in Section 5.1 of N10. For problems with three or
more total AMR levels, we require that each grid at level � + 1
be a distance of at least four (not two as previously reported)
level � cells from the boundary between level � and level � − 1
grids; this allows us to always fill “ghost cells” at level � + 1
from the level � data (or the physical boundary conditions, if
appropriate).

The major change regarding the regridding of the Cartesian
grid data is in the way we interpolate coarse data to fill newly
created fine grids. Our piecewise-linear interpolation algorithm
applied to ρXk causes an artificial buoyancy term to appear in the
momentum equation, leading to spurious velocities emanating
from the coarse–fine interface. The basic idea of the improved
algorithm is to interpolate ρ ′ and Xk separately, rather than ρXk ,
to initialize data on the newly created refined grids.

The variables on the Cartesian grid that we need to interpolate
are U, ρ, ρXk , ∇π , and S. The base state does not change
structure, but we still need to recompute ρ0, p0, β0, and Γ1 to
be consistent with the data on the Cartesian grid. We keep the
original values of w0 and ηρ . Here are the steps for regridding.

1. Starting with level 1 and user-defined refinement criteria,
tag all level 1 Cartesian cells that satisfy the criteria for
refinement. Create the level 2 grids and initialize the level 2
data by copying from the previous grid structure where pos-
sible. Otherwise, use piecewise-linear interpolation from
underlying coarse cells to initialize any newly created re-
fined regions, including ghost cells. Continue to add addi-
tional levels of refinement in this way until all data on the
grids at level �max are filled in. There is a slight modification
to the interpolation procedure for ρXk, where we first in-
terpolate ρ ′ = ρ − ρ0 and Xk = (ρXk)/ρ to newly refined
regions and then construct ρXk = (ρ ′ + ρ0)Xk .

2. Recompute ρ0 by calling the lateral average routine, then
use Equation (3) to compute p0.

3. Recompute T and Γ1 on each Cartesian cell using the
equation of state. Recompute Γ1 by calling the lateral
average routine. Then, recompute β0 as described in N10.

4. Compute a new appropriate Δt .

The procedure for adding an additional level of refinement
to a simulation in progress is largely based on the standard
regridding procedure, except that now the base state array will
have twice as many cells since Δr is based on the resolution
of the finest Cartesian grid, i.e., Δr = Δx�max/5. To add one
additional level of refinement to a simulation in progress:

1. Perform step 1 in the regridding procedure defined above,
except allowing for an additional level of refinement.

2. Define a new base state array with twice the resolution, i.e.,
Δr = Δx�max/5. Call the lateral average routine to compute
ρ0 and use Equation (3) to recompute p0.

3. Recompute T and Γ1 on each Cartesian cell using the
equation of state. Call the lateral average routine to compute
Γ1. Then, recompute β0 as described in N10.

4. The base state variable w0 is edge-centered. We compute
w0 on the finer base state array using direct injection from
the previous coarser base state array on aligning edges, and
piecewise-linear interpolation on non-aligning edges.

5. The base state variable ηρ is cell-centered. We interpolate
ηρ onto the finer base state array using piecewise-linear
interpolation from the previous coarser base state array.5

6. Compute a new appropriate Δt .

3. RESULTS

We now focus on one particular simulation performed in Z11,
in which we computed the last ∼3 hr of convection up to the
point of ignition for a non-rotating white dwarf using 8.68 km
resolution (5763 computational cells) and no AMR. As before,
we define ignition as the time when the maximum temperature
exceeds 8 × 108 K. Here is a summary of our results from that
simulation.

1. The plots of peak temperature, peak radial velocity, and
peak Mach number as a function of time each exhibited a
gradual, nonlinear rise until the peak temperature exceeded
∼7 × 108 K. Then, the rise in each field became much
steeper, with ignition following shortly afterward.

2. The first cell to ignite was 25.7 km off-center and had an
outward radial velocity of 5.1 km s−1.

3. For the last ∼3 minutes preceding ignition, the average
radius of the hottest cell was 52.3 km with a standard
deviation of 25.5 km.

4. Histograms of the radius of the hottest cell during the final
∼3 minutes preceding ignition averaged over small time
intervals indicated that

(a) the favored ignition radius was 50 km, with a likely
range of 40–75 km and an outer limit of 100 km;

(b) nearly all of the hot spots had an outward radial
velocity; and

(c) these two results were consistent within any smaller
time window within the final ∼3 minutes.

5. Visualizations of the convective flow field showed a dipole
structure in the interior convectively unstable core, and a
sharp boundary between the interior and the stably stratified
outer portion of the star.

In this section, we examine the robustness of the ignition
results at higher resolution. Then, we use new visualization
techniques to follow the last few hot spots preceding ignition
to determine the likelihood of multiple ignition points. We also
visualize the overall convective flow field to show the detailed
fine-scale structure, as well as a more coherent picture of the
large-scale features. Finally, we analyze the turbulent spectrum
to quantify the extent to which we have resolved the turbulent
cascade and discuss the effect that turbulence could have on the
first few flames.

We note that we do not consider a high-resolution rotating
white dwarf at this time. A 5763 rotating simulation developed
high velocities on the surface of the star at the poles, likely due
to the deformation of the star. In our lower-resolution rotating
runs in Z11, we saw a similar feature, but the velocities did not
become large enough to restrict our time step as they do for
the higher-resolution runs. A potential future solution to this
would be to reformulate the base state in MAESTRO to deal
with equipotentials instead of a spherical radius.

5 In practice, we store ηρ on radial cell centers and edges as separate arrays.
We interpolate the radial cell-centered and edge-based arrays onto the finer
base state arrays separately, rather than simply interpolating the radial
cell-centered array onto the finer base state array, and then arithmetically
averaging to get the radial edge-centered array. In the future, we will run in the
latter mode for simplicity, noting that the effects of this change are very minor
and that both methods are second order.
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Figure 2. Grid structure for our three-level simulations. The base grid has 5763 grid cells (8.68 km resolution), and the refined grids have effective 11523 (4.34 km)
and 23043 (2.17 km) grid cells. The red, green, and blue outlines indicate boxes which can contain up to 643 grid cells. Left: the shaded region indicates the edge of
the star, defined by the location where ρ = 105 g cm−3 at r ≈ 1890 km. Right: in this zoom-in, the shaded region indicates the edge of the convective region, defined
by the location where ρ ≈ 1.26 × 108 g cm−3 at r ≈ 1030 km. The finest grids contain the entire convective region.

(A color version of this figure is available in the online journal.)

3.1. Problem Setup

The 8.68 km resolution simulation in Z11 followed the
last ∼10,500 s preceding ignition. The simulation required
∼6 million CPU hours on the Jaguarpf Cray XT5 at Oak Ridge
Leadership Computational Facility (OLCF). Assuming perfect
scaling and no AMR overhead, a 4.34 km simulation from t = 0
would require a factor of ∼4 more computational resources
(since the time step is a factor of two smaller, and with our
tagging criteria we have approximately the same number of
cells at levels 1 and 2, so there are twice as many total grid
cells). Due to computer allocation limits, running 4.34 km
resolution from t = 0 is infeasible, so instead we add an
additional level of refinement to an 8.68 km simulation at a
time corresponding to ∼250 s preceding ignition. The edge
of the star lies where ρ0 ≈ 1 × 105 g cm−3, corresponding
to a radius of r ≈ 1890 km. We refine all level 1 cells
where ρ > 5 × 107 g cm−3 (r ≈ 1225 km), which more
than encompasses the convective region (the convective region
boundary lies approximately where ρ0 ≈ 1.26 × 108 g cm−3,
with r ≈ 1030 km). This new simulation has 4.34 km resolution
(11523 effective grid cells). We note that since this problem is
highly nonlinear, we do not expect the ignition to occur at exactly
the same time. In fact, the 4.34 km simulation takes ∼350 s
to ignite. Approximately 100 s into the 11523 simulation, we
add another level of refinement, tagging all level 2 cells where
ρ > 1×108 g cm−3 (r ≈ 1080 km). This second new simulation
has 2.17 km resolution (23043 effective grid cells). We run the
2.17 km simulation for ∼80 s and not to ignition (again due to
computer allocation limits).

The resulting three-level grid structure is shown in Figure 2.
The grids adaptively change as the simulation progresses, but
since the overall base state density profile of the star is relatively
constant (as shown in Z11), the grids do not change significantly

over time. Some specific details concerning this grid structure
are as follows.

1. The red grids are at 8.68 km resolution. There are 1728 red
grids, each of which has 483 grid cells (∼191 million grid
cells total).

2. The green grids are at 4.34 km resolution. There are 1736
green grids of varying sizes, with a maximum of 483 cells
per grid. (∼141 million grid cells total).

3. The blue grids are at 2.17 km resolution. There are 3646
blue grids of varying sizes, with a maximum of 643 cells
per grid. (∼654 million grid cells total).

By contrast, a simulation without AMR at 2.17 km resolution
would contain 23043 = 12.2 billion grid cells, or a factor of
∼12 more grid cells than the AMR simulation.

For the simulations in this paper, we use the recently imple-
mented hierarchical approach to parallelism described in Alm-
gren et al. (2010). We use a coarse-grain parallelization strategy
to distribute grids to nodes, where the nodes communicate with
each other using standard Message Passing Interface (MPI). We
also use a fine-grain parallelization strategy in the physics-based
modules and the linear solvers, in which we use OpenMP to
spawn a thread on each core on a node. Each thread operates on
a portion of the associated grid. Grids at each level of refinement
are distributed independently. This approach allows for MAE-
STRO (in particular the linear solvers) to scale to ∼100,000
cores. All simulations were performed on the Jaguarpf Cray
XT5 at OLCF using 1728 MPI processes with six threads per
MPI process (10,368 total cores).

3.2. General Behavior

We begin by reproducing some of the diagnostics used in
Z11 using data from the 4.34 km and 2.17 km simulations. In
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Figure 3. Peak temperature leading up to ignition for the 8.68 km, 4.34 km, and 2.17 km simulations. The inset plot shows the long-time behavior of the 8.68 km
simulation originally presented in Z11.

Figure 3, we plot the peak temperature as a function of time for
the 4.34 km and 2.17 km resolution simulations, and also in-
clude original 8.68 km resolution data for comparison. First, we
see that over the last few minutes, the temperature profiles have
the same general trend. The peak temperature value steadily
grows with time, including fluctuations of several percent. Once
the star ignites, the peak temperature rapidly increases beyond
8 × 108 K. We consider the local temperature peaks preceding
ignition to be “failed” ignition points, i.e., hot bubbles that are
not quite hot enough to cause the temperature to run away. The
ignition time for the 8.68 km and 4.34 km simulations differ
by ∼100 s. Due to the highly nonlinear nature of this prob-
lem, this result is not particularly surprising. At the beginning
of the 4.34 km simulation, we notice that the peak temperature
curves track each other very well for the first ∼80 s (from time
range 10,200–10,280 s) before the curves begin to show differ-
ent behavior. This is not particularly surprising either since the
4.34 km solution begins as an interpolated imprint of the 8.68 km
simulation. After ∼80 s, we say that the peak temperature in the
4.34 km simulation has decorrelated from the 8.68 km simu-
lation, and we expect the statistical properties of the hot spots
near the center of the star to be consistent with an independent
4.34 km simulation initialized at time t = 0. We still expect
the general convective flow field to look qualitatively similar for
a longer period of time. The 2.17 km simulation shows similar
behavior; after initializing the simulation from the 4.34 km data,
it takes ∼40 s for the peak temperature curves to decorrelate.

We would like to comment on the time step used in these simu-
lations. Using an advective CFL number of 0.7, the average time
steps over the time range 10,300–10,380 s are approximately
0.027 s (for the 8.68 km simulation), 0.016 s (4.34 km), and
0.010 s (2.17 km). The time steps do not quite change by a factor
of two with refinement since the peak velocities do not necessar-
ily lie in the refined convective region. We also want to comment
on the efficiency of the low Mach number formulation as com-
pared to an explicit, fully compressible approach. In Nonaka
et al. (2011), we showed that the 8.68 km simulation took a time
step of a factor of ∼70 larger than a compressible code, yet a
low Mach number time step takes approximately 2.5 times as
long given the same computational resources, yielding an over-
all efficiency increase of ∼28 over a compressible code. This
comparison is especially meaningful because we compared to
the CASTRO (Almgren et al. 2010) compressible code, which is
based on the same BoxLib framework as MAESTRO, and uses
the same unsplit Godunov advection formalism, same equation
of state, and same reaction network ODE solver.

Next, in Figures 4 and 5 we plot the peak Mach number and
peak radial velocity as a function of time. We see the same
general behavior as in the 8.68 km simulation, where the peak
Mach number and radial velocity remain relatively constant until
the final seconds preceding ignition, where the values rapidly
increase.

The next quantities of interest are the radius of the first ignited
cell and its corresponding outward radial velocity. In the 4.34 km
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Figure 4. Peak Mach number leading up to ignition for the 8.68 km, 4.34 km, and 2.17 km simulations. The inset plot shows the long-time behavior of the 8.68 km
simulation originally presented in Z11.

simulation, the radius of the ignited cell is 41.3 km, with outward
radial velocity of 9.5 km s−1. We compare these values to those
reported in Table 1 of Z11; the 8.68 km simulation had an
ignition cell radius of 25.7 km with outward radial velocity of
5.1 km s−1.

We would also like to examine the ignition radius and radial
velocity if we were to define ignition as 1.1 × 109 K rather
than 8 × 108 K. However, by advancing the solution using
our advective CFL condition, the simulation quickly becomes
unphysical. Specifically, if we continue to let the white dwarf
evolve past 8×108 K, over the next ∼0.5 s (∼60 time steps), the
peak temperature steadily climbs to ∼9 × 108 K while the peak
Mach number holds steady at ∼0.1. Then, over the next few
time steps, the temperature unphysically spikes to ∼8 × 109 K,
with the peak Mach number quickly climbing to well over 1000.
Our low Mach number model has obviously broken down, so
these results are not physical. To remedy this situation, and to
advance our simulation to 1.1×109 K, we apply a heuristic time
step limiter, which attempts to reduce the time step so the peak
temperature does not increase by more than ∼1% each step. We
limit the time step using

Δt = min

[
ΔtCFL,

ΔtCFL

100

T n−1
max

T n
max − T n−1

max

]
, (9)

where ΔtCFL is the time step computed using our standard
advective CFL condition, T n

max is the maximum temperature in
the domain at the current time step, and T n−1

max is the maximum

temperature in the domain from the previous time step. In doing
this, we find that that we reach 1.1 × 109 K at 0.57 s after
8 × 108 K, the ignition point has advected to a larger radius
(48.9 km), and the ignition point radial velocity has increased
to vr = 14.0 km s−1. These results are not surprising, given the
ignition conditions at 8 × 108 K reported above.

In Z11 we studied the time history of the hottest cell over
the last few minutes. We gathered statistics to help us in
our determination of likely ignition radii and repeat the same
diagnostics here. In Figure 6, we show the radius of the hottest
cell as a function of time for the final seconds preceding ignition
for the 4.34 km simulation. In Table 2 of Z11, we computed the
average radius of the hottest zone, and its standard deviation,
for the last 200 s and 100 s preceding ignition. For the 4.34 km
simulation, over the last 200 s, the average hot spot radius and
standard deviation are 54.0 km and 22.1 km (as compared to
52.3 km and 25.5 km for the 8.68 km simulation). Over the last
100 s, the average hot spot radius and standard deviation are
54.7 km and 22.5 km (as compared to 54.7 km and 27.3 km for
the 8.68 km simulation). This tells us two things. First, the hot
spot statistics do not seem to change much whether we consider
the final 200 s or 100 s preceding ignition. Second, the results
are very similar to the 8.68 km simulation, implying that we
have sufficient resolution in our determination of likely ignition
radii.

Next, as in Z11, we break the final approach to ignition into
small time intervals and look at properties of the flow within each
time interval. We consider the last 200 s preceding ignition, and
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Figure 5. Peak radial velocity leading up to ignition for the 8.68 km, 4.34 km, and 2.17 km simulations. The inset plot shows the long-time behavior of the 8.68 km
simulation originally presented in Z11.

Figure 6. Radial location of the hottest cell as a function of time for the 4.34 km
simulation. Only the last 200 s before ignition are shown. Here we see that
right up to the end of the calculation the hot spot location changes rapidly. The
horizontal dashed line indicates the average radial position of the hot spot from
200 s to 1 s before ignition.

use time intervals of Δthist = 1.0 s and 0.5 s. Within each time
interval, we compute the average radius of the hottest cell, the
average temperature of the hottest cell, and the average radial
velocity of the hottest cell. We sort this data into histograms to
understand the statistics of the last few hot bubbles preceding
ignition. In each of the following figures, we show histograms

for both Δthist = 1.0 s and 0.5 s. Figure 7 shows histograms of
the hottest cell, sorted by radius, with the colors representing
the average temperature of the hottest cell over the averaging
interval. Figure 8 shows histograms of the hottest cell, sorted by
radius, with the colors representing the average radial velocity
of the hottest cell over the averaging interval. Figure 9 shows
histograms of the hottest cell, sorted by radius, with the colors
representing time to ignition. Overall, the results are consistent
with our observations in Z11, which we now summarize. Some
general observations are as follows.

1. From each set of histograms, we see that the hot spot is most
likely to be found between 40 km and 75 km off-center.
This is consistent with both Figure 6 and the histograms
from Z11. However, we do not see the slight extended tail
observed in Z11, which indicated a slight preference for the
hot spots to lie at larger radii within the distribution.

2. For each set of histograms, we observe that the results are
essentially the same regardless of whether Δthist = 1.0 s or
0.5 s is used as the averaging interval.

Some figure-specific observations are as follows.

1. In Figure 7, within each temperature interval, the overall
shape of the distribution appears roughly the same, with a
peak slightly greater than 50 km, indicating that hot spots of
all temperatures can appear at any radius in the distribution.

2. In Figure 8, nearly all of the hot spots have an outward radial
velocity. Also, there is a tendency for the hot spots at larger
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Figure 7. Histograms of the hottest cell, sorted by radius, with the colors representing the average temperature of the hottest cell over the averaging interval for the
4.34 km simulation with (left) Δthist = 1.0 s and (right) Δthist = 0.5 s.

(A color version of this figure is available in the online journal.)

Figure 8. Histograms of the hottest cell, sorted by radius, with the colors representing the average radial velocity of the hottest cell over the averaging interval for the
4.34 km simulation with (left) Δthist = 1.0 s and (right) Δthist = 0.5 s.

(A color version of this figure is available in the online journal.)
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Figure 9. Histograms of the hottest cell, sorted by radius, with the colors representing time to ignition for the 4.34 km simulation with (left) Δthist = 1.0 s and (right)
Δthist = 0.5 s.

(A color version of this figure is available in the online journal.)

Figure 10. Histograms of the hottest cell, sorted by radius, with the colors indicating whether the temperature of the hottest cell is increasing or decreasing with time
for the 4.34 km simulation with (left) Δthist = 1.0 s and (right) Δthist = 0.5 s.

(A color version of this figure is available in the online journal.)
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Figure 11. Peak temperature during the ∼200 s preceding ignition for the 4.34 km simulation. The dashed vertical lines indicate time ranges where we will examine
whether there are multiple hot spots. The inset plot is a zoom-in of the final ∼5 s preceding ignition. The black curve follows the maximum temperature for a simulation
where we disable burning in all cells with T > 8 × 108 K.

radii to be associated with larger values of vr as expected,
since the flow will carry them away from the center.

3. In Figure 9, we see a reasonably symmetric distribution for
all cases, indicating that the hot spot radius does not depend
strongly on time to ignition.

Next, we include a new histogram where we examine whether
the hottest cell is increasing or decreasing in temperature.
Figure 10 shows histograms of the hottest cell, sorted by radius,
with the colors indicating whether the temperature of the hottest
cell is increasing or decreasing with time. We observe that when
the hottest zone is within 40 km of the center it is almost
always heating up, and when the hottest zone is outside of
75 km it is almost always cooling down. This 40–75 km range
is consistent with the previous histograms. Another conclusion
is that it seems highly unlikely that ignition will occur outside
of 75 km since hot cells beyond that radius are most likely
cooling down. This is in contrast to our result from Z11,
where we claimed that 100 km was an outer limit for ignition
radii.

3.3. Hot Spot Analysis

We are interested in the likelihood of multiple ignition points,
so we now take a closer look at the dynamics of the last few hot
spots preceding ignition. In the diagnostics we have presented,
we have only been able to track the hottest cell in the simulation.
We do not know, for example, if there are other hot spots
elsewhere in the star that are almost as hot as the hottest zone.

It is possible that at the time of ignition, there are one or more
cells not directly connected to the ignition cell that have almost
reached the ignition threshold. In a multiple ignition scenario,
such cells could also ignite very shortly after the initial ignition.
Since the white dwarf explodes within a few seconds of ignition,
a multiple ignition scenario would require another ignition point
to develop within the early phases of the explosion for it to have
any meaningful impact. We wish to examine the temperature
field very close to the ignition time to get a feel of how likely
the multiple ignition scenario is.

We have previously defined a failed ignition point as a spike
in the plot of the peak temperature versus time that does not
run away. We begin by examining the temperature distribution
in the star during three failed ignition points preceding ignition.
Figure 11 is a zoom-in of Figure 3 for the final minutes preceding
ignition for the 4.34 km simulation. Three failed ignition points
preceding ignition are encapsulated within the green, blue, and
black dotted lines. We will examine the temperature distribution
in each of these time ranges to see if there are hot spots elsewhere
in the star.

Figure 12 shows contours of temperature within the green
dotted time region from Figure 11. We note that for all sub-
sequent temperature visualizations, the blue dot represents the
center of the star, and has a diameter of 4.34 km, corresponding
to the resolution of the simulation. Also, all visualization frames
are spaced at 0.2 s time intervals. The main observation is that
in the frames where an orange contour exists, indicative of a
hot spot, there are no other regions in the star with comparable

11



The Astrophysical Journal, 745:73 (22pp), 2012 January 20 Nonaka et al.

Figure 12. Temperature contours from t = 10,404.0 s to t = 10,407.8 s (corresponding to the green dotted time range in Figure 11) spaced at 0.2 s time intervals.
The contours are surfaces indicating where T = 7.15 × 108 K (green), T = 7.2 × 108 K (yellow), and T = 7.25 × 108 K (orange). The blue dot is at the center of the
star, and has a diameter of 4.34 km, which corresponds to the grid cell width for this simulation.

(A color version of this figure is available in the online journal.)
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Figure 13. Temperature contours from t = 10,454.6 s to t = 10,458.4 s (corresponding to the blue dotted time range in Figure 11) spaced at 0.2 s time intervals. The
contours are surfaces indicating where T = 7.24 × 108 K (green), T = 7.31 × 108 K (yellow), and T = 7.38 × 108 K (orange). The blue dot is at the center of the
star, and has a diameter of 4.34 km, which corresponds to the grid cell width for this simulation.

(A color version of this figure is available in the online journal.)
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Figure 14. Temperature contours from t = 10,559.2 s to t = 10,560.6 s (corresponding to the black dotted time range in Figure 11) spaced at 0.2 s time intervals.
The contours are surfaces indicating where T = 7.48 × 108 K (green), T = 7.54 × 108 K (yellow), and T = 7.6 × 108 K (orange). The blue dot is at the center of the
star, and has a diameter of 4.34 km, which corresponds to the grid cell width for this simulation.

(A color version of this figure is available in the online journal.)

temperature. This implies that if this hot spot were to run away,
there would be only one ignition point. Figure 13 shows con-
tours of temperature within the blue dotted time region. We do
see that in the frames where an orange contour exists, there are
other hot spots in different regions of the star. But as the hottest
spot floats away and cools off, the temperature of the other hot
spot does not increase. Again, this implies only a single ignition
point. Figure 14 shows contours of temperature within the black
dotted time region. This visualization is more like the green
dotted time region in that there are no regions of the star with
a peak temperature comparable to the main hot spot, implying
that there would be only one ignition point if this hot spot were
to run away.

Next, we perform another simulation, beginning at the point
of ignition, in which we have disabled burning for all cells
where T > 8 × 108 K. This will give us a picture of the
dynamics of nearby hot bubbles that did not initially ignite.
The idea here is to let the initial ignition point float away
and see if any other hot spots reach the ignition temperature
soon afterward. The peak temperature in this new simulation is
given by the black solid line in Figure 11. The visualization
of the temperature field within the pink dotted time region
from Figure 11 is shown in Figure 15. We see that the hot
bubble containing the ignition cell floats away from the center
of the star and cools off (because the burning is disabled) as
it breaks up. More importantly, none of the other hot bubbles
not connected to the ignition cell increase in temperature to
the point of ignition. Altogether, our analysis of the last few hot
spots does not seem to support multiple ignition points, implying
that this scenario is much less likely than a single ignition
point.

A caveat to this analysis is that our resolution is still several
kilometers. It is possible that if one could increase the resolution
far beyond what is possible today, even with AMR, then many

smaller hot spots could exist and the dynamics would be
different.

3.4. Convective Flow Pattern

In Z09 and Z11, we provided visualizations of the convective
flow field, noting the dipole feature observed in non-rotating
white dwarfs. We recall that the convectively unstable region
encompasses only an inner fraction (r � 1030 km) of the
star. Outside of this, the flow is stable against convection and
dominated by large-scale structures with high circumferential
velocities and a smaller radial component. Figure 16 shows
visualizations of the 8.68 km, 4.34 km, and 2.17 km flow
fields in the convective region at t = 10,380 s. As before, we
show contours of outward and inward radial velocity, as well as
contours of increasing burning rates. As expected, the burning
is strongest near the center of the star. Now, we see the effect
that resolution has on visualization of the velocity contours.
Both the large-scale nature of the flow as well as the smaller-
scale eddies are much clearer with increasing resolution. This
allows us to characterize the flow field as a plume, with a small
solid angle region and strong outward velocity, with a lower
speed recirculation. This is in contrast to a dipole, where we
would expect the magnitude of the outflow and inflow to be
more similar. In Figure 17, we highlight the plume structure by
showing the same 2.17 km flow field in more detail, where each
frame represents a 40◦ rotation from the previous.

In Figure 18 we observe that, for the 4.34 km simulation at the
time of ignition, the ignition point lies in a region with positive
vr (consistent with our earlier report that vr = 9.5 km s−1)
and is almost aligned with the strongest outward plume. We
expect this hot ignition point to accelerate radially outward to
a significant fraction of the sound speed within a small fraction
of a second; this does not give the parcel of fluid at the ignition
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Figure 15. Temperature contours from t = 10,562.0 s to t = 10,565.0 s (corresponding to the pink dotted time range in Figure 11) spaced at 0.2 s time intervals. The
contours are surfaces indicating where T = 7.5 × 108 K (green), T = 7.7 × 108 K (yellow), and T = 7.9 × 108 K (orange). The blue dot is at the center of the star,
and has a diameter of 4.34 km, which corresponds to the grid cell width for this simulation.

(A color version of this figure is available in the online journal.)

point enough time to change direction and align exactly with
the strong outward plume.

To get an idea of the structure of the flow outside of the
convective region, we visualize the flow field in the x–y plane.
In Figure 19, we plot the radial velocity (U · er ) as well as one
component of the circumferential velocity, U·eθ , where eθ is the
unit vector in the azimuthal direction in the x–y plane. Both plots
use the same scale for positive and negative velocities, so we see
that the circumferential velocities outside the convective region
are generally larger than the radial velocities within the core.
These circumferential velocities in the stably stratified region

may become important in explosion simulations in that they
may deform hot bubbles or flames passing through that region.

3.5. Turbulence Structure

Predictive models for SNe Ia, in particular turbulent flame
models, depend critically on the structure of the turbulence in
the star. In this section, we use the simulations to examine this
structure and extract estimates for the turbulent intensity and the
integral length scale. This will help us understand the state of
the turbulence that exists at the start of the explosion phase.
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Figure 16. Contours of nuclear energy generation rate (yellow to green to purple, corresponding to 4×1012, 1.27×1013, and 4×1013 erg g−1 s−1) and radial velocity
(red is outflow, corresponding to 3 × 106 and 6 × 106 cm s−1; blue is inflow, corresponding to −3 × 106 and −6 × 106 cm s−1) for the (clockwise, from top left)
8.68 km, 4.34 km, and 2.17 km simulations at t = 10,380 s. Only the inner r = 1000 km are shown.

(A color version of this figure is available in the online journal.)

The vast majority of literature on turbulence theory deals with
flows that are assumed to have constant density. In the present
context, the significant variation in density due to stratification
cannot be ignored and has to be dealt with carefully. Following
von Weizsäcker (1951), Fleck (1983, 1996) advocated casting
the energy balance equation in terms of energy density (energy
per unit volume) as opposed to specific energy (energy per unit
mass), and we note that the difference is inconsequential for
constant density turbulence. Thus, the fundamental quantity
relevant to the inertial range of a turbulent energy cascade
is the energy dissipation rate per unit volume εV , which
should be expected to scale with εV ∼ ρǔ3/l, where ǔ is
the turbulent intensity (rms velocity fluctuation) and l is the
integral length scale. Subsequently, Kritsuk et al. (2007) used
numerical simulation of compressible turbulence to demonstrate
that an appropriately density-weighted velocity spectrum obeys
a Kolmogorov-type five-thirds decay law. Consequently, we
consider a density-weighted velocity field,

Vn(x) = ρnU (gn cm1−3n s−1), (10)

and its Fourier transform,

V̂n(κ) = F[Vn(x)] (gn cm4−3n s−1). (11)

We then define a generalized energy density spectrum as

En(κ) = 1

Ω

∫
S(κ)

1

2
V̂n(κ) · V̂∗

n(κ) dS (g2n cm3−6n s−2), (12)

where Ω is the volume of the domain in physical space, the
domain of the integral, S(κ), is the spherical surface defined by
|κ | = κ , and ∗ denotes the complex conjugate. This generalized
energy density spectrum can only be made dimensionless using
εV and κ for n = 1/3, resulting in the dimensionless group
ε

−2/3
V κ5/3E1/3(κ). Therefore, plotting E1/3(κ) should present a

five-thirds decay. Henceforth, we only present energy density
spectra appropriately weighted and omit the 1/3 suffix. We also
note that only n = 1/2 corresponds to a real energy density.

In the diagnostics in this section, we consider the local
velocity, Ũ, rather than the total velocity, Ũ + w0er . In Z11,
we showed that the maximum magnitude of w0 at ignition is
∼0.013 km s−1, so the effect of w0 is insignificant on the scales
we are interested in.

Energy density spectra from the 2.17 km simulation at
t = 10,380 s are shown in Figure 20(a). The density-weighted
velocity field has been decomposed into different components,
specifically, the Cartesian components, Vx, Vy, and Vz, and
spherical polar components (using the convention that θ is
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Figure 17. Same data as Figure 16, but here we only show the 2.17 km grid cell simulation and each image represents a view rotation of 40◦ of the data from t =
10,380 s.

(A color version of this figure is available in the online journal.)

the azimuthal angle with respect to the x–y plane and ϕ is the
inclination angle measured from the z-axis),

Vr = xVx + yVy + zVz

r
, Vθ = −yVx + xVy

R
,

Vϕ = xzVx + yzVy − R2Vz

rR
, (13)

where r2 = x2 + y2 + z2 and R2 = x2 + y2. Three energy
density spectra are plotted: first, the mean of the Cartesian com-
ponents (individual components do not differ significantly from
that shown); second, the radial component; and third, the cir-
cumferential component. This decomposition demonstrates that

there is significantly less energy in the radial component than in
the other components. This is due to the large circumferential
velocities in the layers outside the convection zone; although
the density is lower here, the volume is sufficiently large that
the resulting energy has a significant contribution to the spec-
trum. It also appears that the radial component decays with an
exponent close to five-thirds (if slightly smaller), and the other
components have a slightly higher exponent.

To circumvent the issue of large circumferential velocities in
the stably stratified region, and to remove the signal from the
coarse–fine interfaces at wavenumbers around 1152 and 576,
the energy density spectra of a subdomain were constructed.
This was achieved by applying a smoothing function to the
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Figure 18. Planar slice from the 4.34 km simulation at the time of ignition,
oriented so that the center of the star (black dot), the ignition location (green
dot), and the center of the strongest outward plume lie in the plane. The dots
each have a radius of 20 km. Red corresponds to vr > 60 km s−1 and blue
corresponds to vr < −60 km s−1. Only the inner r = 1000 km is shown.

(A color version of this figure is available in the online journal.)

velocity and density fields in such a way that the data outside
the convection zone were set to zero. Specifically, each field was
multiplied by the hyperbolic tangent function (1 − tanh[(r −
r0)/δ])/2, where r0 = 875 km and δ = 30 km. All of the
resulting non-trivial data were at the finest AMR level, and
the resulting energy density spectra are shown in Figure 20(b).
Now, each spectrum collapses to a single curve, especially for
κ � 20, which corresponds to a length of about 250 km.
The decay exponent of each spectrum is close to five-thirds
and presents the characteristic “bump” between the inertial
and dissipation ranges expected from developed homogeneous
isotropic turbulence (e.g., Saddoughi & Veeravalli 1994; Porter
et al. 1994; Kaneda et al. 2003; Aspden et al. 2008b).

To explore the effect of resolution on the turbulence in the
convective core, Figures 20(c) and (d) present the total kinetic
energy density spectra for the three resolutions, first without
scaling (c), and then scaled (d). The spectra are scaled according
to computational cell width and in keeping with a constant
energy dissipation rate. Specifically, the 4.34 km simulation
spectrum is shifted to higher wavenumbers by a factor of
two, and to lower energy density by a factor of 2−5/3, and
the 8.68 km spectrum has been shifted by factors of 4 and
4−5/3, respectively. The unscaled spectra demonstrate that the
large scales are independent of resolution (as expected) in the
sense that increasing the resolution does not lead to an increased
level of turbulent intensity. This kind of convective motion is
not dominated by small-scale processes, and integral quantities
are well captured even at moderate resolutions. The 8.68 km
simulation has a short inertial range, but this is more extensive
at higher resolutions. The scaled spectra demonstrate that the
dissipation range depends on the computational cell width as
expected from an implicit large eddy simulation (ILES)-type
simulation. In particular, there is an effective Kolmogorov length
scale that is a function of the cell width; the collapse is not exact,

Figure 19. Top: plot of radial velocity (U · er ) in the x–y plane from the 2.17 km
simulation at t = 10,380 s. Bottom: plot of U · eθ in the x–y plane from the
same data set. In both plots, red = +100 km s−1 and blue = −100 km s−1. The
outer dark contour indicates the edge of the star, where ρ0 ≈ 1 × 105 g cm−3

(r ≈ 1030 km). The inner dark contour indicates the edge of the convective
region, where ρ0 ≈ 1.26 × 108 g cm−3 (r ≈ 1890 km).

(A color version of this figure is available in the online journal.)

but is consistent with previous work (see Aspden et al. 2008b
for example) which also contains further discussion of the ILES
approach and dependence on resolution.

The rms velocity in the convective core (r < 875 km), ǔ, was
found by direct measurement to be approximately 14 km s−1

(the data ranged from 12 km s−1 to 18 km s−1 depending
on component and resolution); note that no density weighting
was used. Even though this estimate is smaller than previously
suggested (∼100–500 km s−1), we argue that it is actually an
upper bound for the turbulence produced by convection because
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Figure 20. (a) Energy density spectra of the entire domain at 2.17 km resolution for t = 10,380 s. Note how the radial spectrum is much lower than the other
components. This is due to the large circumferential velocities outside the convective core. (b) Energy density spectra for the convective core. Note how the curves
have collapsed to a single profile, especially for κ � 20, corresponding to about 250 km. (c) Comparison of the energy density spectra at the three different resolutions.
(d) Same as (c), but scaled to demonstrate that the effective Kolmogorov length scale is proportional to the computational cell width.

it includes a large-scale plume-like flow, which artificially
inflates the estimate.

To determine the integral length scale in the convective core,
the longitudinal correlation functions were evaluated for the
Cartesian components of the velocity field, along with the
correlation functions of the radial velocity in each Cartesian
direction, where the (second-order) velocity correlation function
(two-point, one-time) is defined as

Qij (r, t) = 1

Ω

∫
Ω

Ui(x, t)Uj (x + r, t) dx, (14)

where r denotes the separation vector. The integral length scale
in the x direction, for example, is then defined as the integral of
the longitudinal velocity correlation function

lx = 1

ǔ2
x

∫
Qxx(rex) dr. (15)

The correlation functions were evaluated both for the density-
weighted and non-weighted velocities (by replacing Ui by Vi
in Equation (14) and the appropriate normalization factor in
Equation (15)) and are compared in Figure 21 by solid and
dashed lines, respectively. The weighted and non-weighted
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Figure 21. Longitudinal correlation functions for the turbulence in the con-
vective core at 2.17 km resolution for t = 10,380 s. Density-weighted and
non-weighted correlation functions are shown by solid and dashed lines, re-
spectively. The x component presents a larger correlation because there is a
plume-like structure roughly aligned with the x-axis. The integral length scales
are denoted by the vertical lines of the corresponding color.
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Figure 22. Schematic showing the various features with associated velocities and length scales in the white dwarf at the end of convection/start of flame propagation.

(A color version of this figure is available in the online journal.)

correlation functions are in close agreement, suggesting that
measuring the integral length scale is not affected by the
variations in density. By integrating each correlation (ignoring
the negative parts), integral length scales for each component
were evaluated and are shown by the vertical lines with the
corresponding line style. The x component appears to not be
consistent with the other components, probably because there
is a large plume-like structure roughly aligned with the x-axis.
Taking this to be an outlier, the mean integral length scale was
found to be approximately 169 km (with a standard deviation of
approximately 8.4 km).

Averages and standard deviations of integral length scale and
rms velocity were evaluated using seven time points over 350 s
at the 4.34 km resolution, and were found to be approximately
200 ± 50 km and 16 ± 3 km s−1, respectively.

Taking the integral length scale to be 200 km and the turbu-
lent intensity to be 16 km s−1, the specific energy dissipation
rate ε = ǔ3/l is approximately 2 × 1011 cm2 s−3. The corre-
sponding estimates that were suggested to be necessary for a
spontaneous detonation by Woosley et al. (2011) were 10 km
and 500 km s−1, respectively (see also Lisewski et al. 2000;
Röpke et al. 2007a; Timmes & Woosley 1992). This gives ε ∼
1017 cm2 s−3, six orders of magnitude larger. The present sim-
ulations suggest that the turbulent intensity required for a spon-

taneous detonation cannot be produced by convection within
the core.

4. CONCLUSIONS AND DISCUSSION

Overall, our high-resolution simulations agreed with the
findings of Z11 regarding the ignition radius of 50 km with
a likely range of 40–75 km. We do note that the outer limit of
100 km reported in Z11 is probably too large, as we do not
see any hot bubbles at that radius that are still increasing in
temperature. By looking closely at the dynamics of the last few
hot spots, we conclude that the multiple ignition scenario is
unlikely. With improved resolution, we now describe the large-
scale coherent structure in the convective field as a plume, rather
than a jet, and have a better understanding of the turbulent nature
of the flow.

These findings, together with those from Z11, indicate that a
single-point, off-center ignition is the most likely scenario for
SNe Ia. At the radii where we find ignition to be most likely,
the initial flame will float away faster than it can burn toward
the center (see, e.g., Plewa et al. 2004; Zingale & Dursi 2007),
making for an asymmetric explosion. This scenario has been
explored in explosion calculations, potentially giving rise to the
“gravitationally confined detonation” (Plewa et al. 2004; Jordan
et al. 2008), although other groups suggest that this mechanism
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may not be robust (Röpke et al. 2007b). If a single off-center
ignition fails to blow up the star, then it is possible that we
would need to wait for the next ignition point, perhaps tens of
seconds later, or cycle through many widely spaced ignitions
until we ignite closer to the center (i.e., many successive false
starts). Alternately, some type of pulsational model may ensue
(Ivanova et al. 1974; Khokhlov 1991; Bravo & Garcı́a-Senz
2006). With these results, the challenge to the explosion model-
ers is to demonstrate that the single-degenerate Chandrasekhar
mass white dwarf model can produce robust explosions resulting
from single-point, off-center ignition. Observations may show
support for asymmetric models (Maeda et al. 2010), but some ra-
diative transfer calculations seem to preclude extreme amounts
of asymmetry (Blondin et al. 2011).

We conclude by summarizing the various components of
the convecting white dwarf and give characteristic length and
velocity scales for each; Figure 22 presents this information
in a schematic form. Buoyancy drives a large-scale flow in
the convective core, which extends to a radius on the order of
1000 km. This large-scale flow is composed of plumes around
100 km wide and several hundred km long with a bulk velocity
around 100 km s−1. These plumes drive turbulence in the core
with an rms velocity and integral length scale that were estimated
to be on the order of 16 km s−1 and 200 km, respectively.
This level of turbulence is far below than that required for a
spontaneous detonation to occur. The stably stratified region
outside the convective core, extending from ∼1000 km to
∼1900 km, is made up of circumferential shear layers, with
a smaller radial velocity component. These shear layers are
on the order of 100 km deep, several hundred km long, with
typical velocities on the order of 100 km s−1 and peak velocities
that may be in excess of 250 km s−1. The burning of a single
off-center ignition would be dominated at early times by the
laminar flame speed (on the order of 50 km s−1) and the level
of turbulence in the core is unlikely to deform the flame very
much at all. Furthermore, Aspden et al. (2011) found that large-
scale entrainment was the dominant process in the evolution
of a burning bubble and that the flame speed (turbulent or
laminar) even up to 100 km s−1 did not significantly affect the
evolution. Therefore, the turbulence produced by convection in
the core is unlikely to play a significant role in the explosion.
As the bubble reaches the edge of the convective core, it will
be ∼500 km across moving with a rise speed on the order of
1000 km s−1. The turbulence within the bubble itself is likely to
have an rms velocity on the order of 100 km s−1 on an integral
length scale of a few tens of kilometers. In the past, it has
been suggested that the convective boundary lies at the density
suggested for a deflagration-to-detonation transition (Piro &
Chang 2008). Although the velocities in the core are unlikely to
affect the bubble as it rises, the circumferential velocities in the
stable region are much greater and may interact strongly with
the bubble as it passes through this region. We plan to investigate
this interaction in future work.
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