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We present an adaptive projection method for modeling unsteady, low-Mach reacting flow in an
unconfined region. The equations are based on a model for low-Mach number combustion that
consists of evolution equations coupled with a constraint on the divergence of the flow. The
algorithm is based on a projection methodology in which we first advance the evolution equations
and then solve an elliptic equation to enforce the divergence constraint. The adaptive mesh
refinement (AM R) scheme uses a time-varying hierarchy of rectangular grids. The integration
scheme is a recursive procedure in which coarse grids are advanced, fine grids are advanced to the
same time as the coarse grids, and the coarse and fine grid data are then synchronized.

The method is currently implemented for laminar, axisymmetric flames with a reduced kinetics
mechanism and a Lewis number of unity. Three methane-air flames, two steady and one
flickering, are presented as numerical examples.

Keywords: Laminar diffusion flames; unsteady combustion; fluid dynamic aspects in combus­
tion; numerical modeling

1. INTRODUCTION

The computational modeling of reacting flows with limited computer
resources can be made difficult by the presence of multiple length scales and
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by the large number of species in a sufficiently detailed reaction mechanism.
The problem of limited resources has generally been overcome in com­
bustion modeling by using globally refined, nonuniform structured grids
or by using unstructured grids.

In this paper we present a method based on a different approach, a
structured grid, local adaptive mesh refinement (AMR) scheme. We develop
an AMR algorithm to solve a system of equations for unsteady low-Mach
number reacting flow in an unconfined region. This syitem is based on a
generalization of the low-Mach number combustion model in Rehm and
Baum (1978) and Majda and Sethian (1985). The system includes evolution
equations for density, velocity, enthalpy, and species concentrations, cou­
pled with a constraint on the divergence of the flow.

Our approach to AMR uses a hierarchical-grid, structured approach first
developed by Berger and Oliger (1984) and Berger and Colella (1989) for
hyperbolic conservation laws. The grid structure is dynamic in time and is
composed of nested uniform rectangular grids of varying resolution. By
using grids of finer resolution in both space and time in the regions of most
interest, AMR allows one to model large problems more efficiently. The
integration algorithm on the grid hierarchy is a recursive procedure in which
coarse grids are advanced, fine grids are advanced multiple steps to reach the
same time as the coarse grids, and the coarse and fine grids are syn­
chronized. The method is valid for multiple grids on each level and for multi­
ple levels of refinement.

The methodology presented here is based on a single grid algorithm
developed by Pember et at. (1995, 1996). The single grid method is a
fractional step scheme in which we first advance the evolution equations and
then solve an elliptic equation to enforce the divergence constraint and
update pressure. The solution of the evolution equations essentially follows
the approach due to Almgren et at. (1996,1998). In order that the method be
second-order accurate in time for nonlinear differential equations with
source terms, however, a sequential, predictor-corrector treatment of the
equations is used. The sequential approach ensures that all implicit finite
difference equations are linear and can be solved by standard multigrid
techniques (Wesseling, 1992), while the predictor-corrector formulation
guarantees second-order accuracy in time. A simple extension of the second­
order approximate projection algorithm presented in Almgren et at. (1996,
1998) to low-Mach number compressible flows is employed to enforce the
divergence constraint and update the pressure.
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The single grid algorithm is coupled to an extension of IAMR, the conser­
vative adaptive mesh refinement scheme for variable density, constant vis­
cosity incompressible flow developed by Almgren et al. (1995, 1998). In the
present paper the IAMR algorithm is extended to account for the thermal
expansion of the flow due to heat transfer and combustion, i.e., the non-zero
divergence of the velocity. Additional enhancements ensure that the various
relationships among the state quantities, in particular, density, enthalpy, tem­
perature, and species concentrations, are always satisfied by the numerical
solution. The treatment of scalars is also extended to account for evolution
equations such as those for enthalpy and species concentrations. These two
sets ofextensions ensure that the method is freestream preserving with respect
to primitive quantities as well as discretely conservative and freestream
preserving with respect to conserved quantities. Spatial and temporal varia­
tion of viscosity and of thermal and mass diffusivity are also accounted for.

The method is currently implemented for laminar, axisymmetric flames
with a reduced kinetics mechanism. Results from three numerical examples,
a steady methane-air diffusion flame (Smooke et al., 1989), a steady
methane-air diffusion flame in which the fuel is diluted with N z (Smooke
et al., 1992; Xu et aI., 1993; Smooke et al., 1996; Bennett, 1997; Bennett and
Smooke, 1997), and a flickering methane-air flame (Smyth et al., 1993;
Yam et al., 1995; Smyth, 1997), are presented.

There are numerous references to the use of globally refined, non-uniform
grids in combustion modeling. We refer the reader to Bennett (1997),
Bennett and Smooke (1997), and the references therein. Local adaptive mesh
refinement and local rectangular refinement methods have been used to
model steady, low-Mach number combustion. In addition to the two
references above, see Coelho and Pereira (1993), de Lange and de Goey
(1994), Mallens et al. (1995), Smooke et al. (1988), and Somers and de Goey
(1995). The authors are unaware of any previous work using local adaptive
mesh refinement to model unsteady low-Mach number combustion. Projec­
tion methods without mesh refinement have been developed for the unsteady
case; see Dwyer (1990), Lai (1993), Lai et al. (1993), Najm (1996a, I996b),
Yam et al. (1995), and Hilditch and Colella (1996).

The remainder of this paper is organized as follows. In Section 2, we
discuss the model for low-Mach number combustion and the governing
equations solved with our approach. We describe the single grid algorithm
in Section 3 and the adaptive algorithm in Section 4. Numerical results are
shown in Section 5.
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2. MODEL FOR LOW-MACH NUMBER COMBUSTION
AND GOVERNING EQUATIONS

The system of equations for reacting flow considered here is based on a
model for low-Mach number combustion (Rehm and Baum, 1978; Majda
and Sethian, 1985), which we now briefly review.

For flow in a spatially open domain, the underlying assumption in the
low-Mach number model is that M is sufficiently small (say M < .3) that the
pressure P can be written as the sum of a temporally and spatially constant
part Po and a dynamic part 71",

p(r, z, I) =Po + 7I"(r, Z,I), (2.1)

where 7I"/Po = O(M2
) . All thermodynamic quantities are considered to be

independent of 71". The perfect gas law for a multi-component gas in a flow
satisfying the low-Mach number assumption is then

Differentiating (2.2) with respect to time and using continuity, the following
constraint on the divergence of the velocity is obtained:

1 DT 1 DY,
'il. U=--+ WL:---=S.

T Dt I W, Dt
(2.3)

We consider flows that are axisymmetric without swirl. In addition, we
assume a Lewis number of unity and neglect radiative heat transfer-.The
system of governing differential equations thus consists of the divergence
constraint (2.3) and the following evolution equations for density, velocity,
enthalpy, temperature, and species concentrations:

ap-+ 'il. pU = 0at

DU T
PDt = -p(O,g) - 'ilp + 'il. T

(2.4)

(2.5)

(2.6)
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The above system of equations is overdetermined in three ways. We
account for these redundancies numerically in order to either ensure that the
numerical scheme is discretely conservative with respect to p, ph, and pY/, or
to simplify the solution strategy. Equations (2.6) and (2.7) are redundant
because the enthalpy h is defined by

(2.9)

Equation (2.9) is used only to define the initial and inlet values of h;
otherwise, h is found as the solution of (2.6) to ensure discrete numerical
conservation of enthalpy. Moreover, Eq. (2.7) is used solely to define inter­
mediate values of T; otherwise, T is computed using h, Y{, and (2.9). The
specific heat of the gas mixture cp is found by

(2.10)

Equations (2.4) and (2.8) are also overdetermined because p = E/p Y/. We
account for this redundancy by computing 'il'pU as E/'il·pUY/. We can then
advance p prior to updating the mass fractions. This allows us to use a
simpler discretization of (2.8) and thereby to use a simpler solution strategy;
see Section 3.2.2 for further discussion. Note that we could also have
resolved this redundancy by using the relation YN = I - E/<N Y/ instead of
(2.8) for the N-th of N species. We have chosen not to do so in order to
ensure that the adaptive algorithm (see Section 4) is freestream preserving,
in particular, that it not introduce trace amounts of a species in a region
where that species is not present. For the non-adaptive algorithm (Section 3)
the two formulations are equivalent.

Equations (2.4) and (2.2) represent the last redundancy. The use of (2.4)
ensures discrete numerical conservation of mass. The sequential approach
used in our algorithm makes it impossible, in general, to simultaneously
satisfy the continuity equation and the equation of state. A pressure
relaxation term is added to the numerical representation of the divergence
constraint to account for this; see Section 3.1 for further discussion.
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The diffusivities J.L, D, and A are in general considered to be functions of p,
T, and Yt. For the calculations shown in this paper, the viscosity J.L iscomputed
by the curve fit J.L = J.Lo(TITo)·7 (Kanuary, 1982), where J.Lo = 1.85 X 10- 5 kg
ltn-scc and To = 298 K. pD and A/cp are determined from J.L by pD = A/cp = J.LI
Pro Following Smooke et al. (1989), we use Pr = .75.

The assumptions of unity Lewis number and negligible radiative heat
transfer warrant some discussion. The Lewis number is approximately one
in many gases (Kuo, 1986; Williams, 1985). Moreover, in non-sooty laminar
flames, radiative heat losses are small compared to the heat of reaction (Liu
and Rogg, 1996). Nevertheless, these assumptions are approximations and
may result in qualitatively different predictions (for example, higher flame
temperatures). We make these assumptions in this paper as a first step
toward a more general methodology. In particular, in future work we will
consider both radiation and multicomponent diffusion coefficients.

3. SINGLE GRID ALGORITHM

The algorithm used to advance the solution from time t" to In + 6.1 = ('" 1

on a single grid follows the general approach used in Pember et al. (\ 995) for
the case of simple boundaries and incorporates many of the details of the
single grid algorithm used in TAMR (Almgren et al., 1998). The reader is
referred to earlier works (Chorin, 1969; Bell et al., 1989; Bell et al., 1991; Bell
and Marcus, 1992; Almgren et al., 1996; Pember et al., 1996) for additional
discussion. We use a uniform grid of rectangular cells with widths 6.r and
6.z indexed by i and j. At the beginning of the time step, the numerical
solution, except for pressure, represents the flow at time In at cell centers.
The solution for pressure, p7;i/2~j+'/2' represents the pressure at the previous
half-time step, I n-I/2, on cell corners.

The method is essentially a second-order projection method (Bell et al.,
1989). The overall approach, then, is that of a fractional step scheme. In the
first step (which we refer to as the convection-diffusion-reaction step), values
of p, h, T, and Y, are computed at time r: 1 using a higher-order upwind
method for the convective terms and Crank-Nicolson differencing for the
diffusive and the reactive terms. In addition, values of U, denoted by U' or
(u', v"), are computed in this step which do not necessarily satisfy the
divergence constraint at In + I. In the second step (the projection step), the
divergence constraint is imposed on the velocity via a node-based projection
(Almgren et al., 1996). This step yields tr" 1 and p7:i/;'j+,/2' the pressure at
I n+ 1/2.
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The first step uses a predictor - corrector formulation and consists of the
following steps:

(I) Compute t:>.t:

. (t:>.r t:>.zt:>.t=amm·· -­
lj u'!' v']. '

Y I)

2min(t:>.r, t:>.z)p )

1(0, _g)T - (Gp)i,jl
(3.1 )

where the Courant number a satisfies a < I.
(2) Compute discrete approximations of the convective terms in the

governing equations at time t" + I::>.t/2 with an explicit higher-order
upwind method:

('\7. pUcp)ij+I/2 for e = h, Y,

and

( )"+1/ 2 rU· '\7cp ij ror e = u, v, T.

(3) Compute

"+1 " A ~(M Uy)"+1/2Pij = Pij - ut LV' P 'ij, (3.2)

d "+1/2 _ (" "+1)/2an Pij - Pij + Pij .
(4) Compute predicted values cp"+ l,p of the solution at r: 1 for the flow

quantities ip = Y" T, and h using Crank-Nicolson temporal differencing
of the diffusion terms in conjunction with the time-centered convective
terms found in Step (2). In this step, diffusivities and thermochemical
properties at time n + 1 are evaluated using the state at time n.

(5) Compute corrected values of Y" T, and h and values of (u*, v') to
provide the solution at time r: I, again using Crank-Nicolson differ­
encing. Properties at time n + 1 are evaluated here using the predicted
state found in Step (4).

In Step (2), a MAC projection (Harlow and Welch, 1964) is performed so
that the edge velocities used to form the convective derivatives satisfy the
divergence constraint. In Steps (4) and (5) the equations for each of the flow
quantities Y" h, T, and (u', v') are solved sequentially so that only linear
systems ofequations result from the Crank-Nicolson differencing. The update
for (u', v") is a coupled solve due to the tensor nature of T. Note that the
velocity is not predicted in Step (4) because predicted values of the velocity are



130 R. B. PEMBER et al.

not needed in Step (5). In the predictor step, T is advanced using (2.7); this
approach is typically less computationally expensive than solving (2.9) for
T"+ I,p, In the corrector step, Til + I is found by solving (2.9) for T. Note that
together Steps (4) and (5) form a predictor-corrector scheme for the evolu­
tion equations. Step (4) is a first-order update because it approximates
the diffusivities and thermochemical properties at time n + I with values at
time n. Step (5) recovers second-order accuracy by using the predicted time
II + I values from Step (4) to evaluate the properties at time n + I.

The species update is itself performed sequentially in two steps, one
accounting for convection and diffusion and the other for kinetics, in order to
facilitate the use of complex kinetics mechanisms. In the kinetics update, the
system of equations apYi/at = WI is integrated with an implicit difference
scheme. Because simple splitting of the reaction terms is used, our algorithm is
formally first-order accurate when reactions are present. The use ofStrang (or,
symmetric) splitting (Strang, 1968) in this step would make the scheme
formally second-order accurate. However, there are unresolved issues in­
volved in using symmetric splitting in conjunction with a projection method,
especially in an adaptive setting, which will be considered in future work.

The spatially implicit finite difference equations that arise in the MAC
projection, the Crank-Nicolson differencing steps, and the nodal projection
are solved with multigrid techniques (Wesseling, 1992; Almgren et al., 1998):
The cell-centered solves use V-cycles with red-black Gauss-Seidel relaxa­
tion and conjugate gradient at the bottom of the V-cycle. The nodal solve
uses a similar approach.

In the remainder of this section, we present details of the above algorithm.
We note here that the details of the algorithm are modified for the first

time step. We follow the procedure used in IAMR; in particular, before any
time steps are taken, the initial velocity field is projected to ensure that it
satisfies the divergence constraint.

3.1. Numerical Divergence Constraint

The right hand sides of Eqs. (2.7) and (2.8) can be used to obtain the
following expression for S:

(3.3)
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Numerically, wt/p is approximated by!:;.yt/!:;.t, where A Y, is the change in Y,
due to chemical reactions during the time step. The other terms are ap­
proximated by central differences.

If Eq. (3.3) is used without modification, however, the algorithm may
suffer from a mild instability arising because the sequential approach cannot
simultaneously conserve mass and enforce the constraint Po = pRT; at the
very least, the solution drifts from this constraint. (Analytically, this is not
an issue; the equation of state and the continuity Eq. (2.4) are equivalent
(Majda and Sethian, 1985).) In our approach, expression (3.2) guarantees
conservation of mass. To stabilize the method, we add an extra term to the
discrete form of the divergence constraint (3.3) which accounts for the
discrepancy between the value of p found by continuity and that found using
the equation of state. The value of the right hand side of the divergence
constraint used numerically, S, is found by incrementing S as follows,

(3.4)

where Pij = RijpijTij andfis a constant satisfyingf < 1.0. The extra term in
the numerical divergence constraint is found by approximating DpjDt in the
enthalpy equation for non-isobaric flow (Kuo, 1986) by (Pij - Po)/!:;.t,
rewriting the resultant equation in terms of T, and using (2.3). The term
f(pij - Po)/!:;.t acts to drive the solution toward the constraint Pij =Po. The
goal of using Eq. (3.4) is for P to converge to Po, and, hence, for \l·U to
converge to S, as the mesh is refined. Similar treatments have been used in
numerical petroleum reservoir simulation (Trangenstein and Bell, 1989).

Equation (3.4) is evaluated once per time step, immediately prior to the
projection step, to determine Sn+l. s» is used whenever an evaluation of
\l·Un is needed.

For the MAC projection, we also need an estimate of as/at in order to
approximate Sat r: 1{2. We use

(3.5)

3.2. Convection-diffusion-reaction Step

3.2.1. Computation of Convective Derivatives

The approximation of the convective derivatives generally follows the
approach used in IAMR (Almgren et al., 1998); see Bell et al. (1991) for
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additional discussion. There are two primary components to this computa­
tion: a higher-order upwind scheme (Colella, 1990) to determine edge states
and a MAC projection (Harlow and Welch, 1964) to enforce the divergence
constraint on the edge velocities.

The general procedure can be summarized as follows:

(1) C I f n+I/2 d n+I/2 II d II dompute va ues 0 Ui+I/2,j an Vi,j+I/2' on a r- an z-ce e ges, re-
spectively, using the higher-order upwind scheme.

(2) Compute advection velocities utr~'f2,j and 1j~i/2 by projecting the edge
velocities found in (1) so that they satisfy the divergence constraint.

(3) R n+I/2 d n+I/2 d n+I/2 n+I/2 n+I/2
ecompute U i+I/2,j an Vi,j+I/2' an compute vi+I/ 2,j ' Ui,j+I/2' T i,+1/2,j'

T;;~{~2' (pYtCUi,p (pYt);;~{~2' (phCi/i,p and (ph);;~{~2 using the

higher-order upwind scheme.
(4) Form discrete approximations of convective terms.

The first step follows the approach in IAMR. First, time-centered left and
right edge states, u;++i//2

2
L and u~++i//; . R' at all r-cell faces and bottom and.r. r ,J,

d n+I/2 d n+I/2 II 11 r: found wi htop e ge states, vi,j+1/2,L an Vi,j+1/ 2, R' at a z-ce laces are roun Wit
Taylor expansions that use monotonicity-limited approximations to the
spatial derivatives in the convective terms. (Other spatial derivatives are
evaluated by standard central difference approximations.) The time-centered
edge states u;:Ui,j at all r-cell faces and V~;~{~2 at all z-cell faces are then
found by an upwinding procedure.

In Step (2), we use a MAC projection to enforce the divergence constraint
(3.4). The equation

(DMAC ~ GMAC A..) = (DMACUn+I/2) .. _ (s~.+ t:>.tas
n

) (3.6)
p" 0/.. V v 2 a~

y y

is solved for ¢, where s» and as/at" are given by (3.4) and (3.5), and DM A C

and GM A C are the standard discretizations of the divergence and gradient
operators on a staggered MAC grid (Almgren et al., 1998). The advection
velocities are then computed by

t!:'.DV _ n+I/2 1 (GMACA..)'
i+I/2,j - ui+ I/2,j - -;;;-- 0/ i+I/2,j

l'i+I/2,j

ADV _ n+ 1/2 I (GMAC A..)Z
Vi,j+I/2 - Vi,j+1/2 - -;;;-- 0/ i,j+1/2'

l'i,j+1/2

(3.7)

where the edge values of p are averages of the adjacent cell centered values.



UNSTEADY LOW MACH NUMBER COMBUSTION 133

S (3) n+I/2 d n+I/2 d n+I/2In tep ,we recompute ui+ I/2,j an vi,HI/2' an compute, vi+I/2,j'

n+I/2 T n+I/2 T n+I/2 (Y )n+I/2 d ( y)n+I/2. h
uU +I/2' i+I/2,j' i,j+1/2' P I i+I/Z,j' an P I i,j+1/2' again uSI~g t e
approach in IAMR. In this step, the upwind states are found using the
MAC projected edge velocities from Step (2).

(ph);:ifi,j and (ph)7,;~{~2 are computed in a slightly different manner. The
edge values of T are used to compute edge values of hl(T) for all species l.
These values of hi and the edge values of pY I are then used to compute edge
values of ph using (2.9).

In Step (4), the convective derivatives are approximated by

0DV ()n+I/2 ADV ( )n+I/2

(
'"' )n+1/2 _'i_+--,I/_2--..:..:i+...:I!.:./2~,J,--·_P_'P--":.,:·+.-"I/c:2::<,j_--,---'_i-_I;.../2_U..:.i-_I:.c/",2,"-j_P_'P--,-i---,I'1.../Z"",,j
v . UP'P .. =

ij ,;6.,

ADV ( )n+I/2 0DV ( )n+I/2+ Vi,j+I/2 PcP i,HI/2 - i.j-I/Z PcP i,j-I/2

6.z
for e = h, YI and (3.8)

(
ADV + 0DV ) (n+I/2 n+I/2 )

(
U . V' )~+1/2 = ui+I/ 2,j ;-1/2,j 'Pi+I/2,j - 'Pi-I/2,j

'P ij 26.,

( 0 DV + 0 DV ) (n+I/2 n+I/2 )+ i,HI/2 i,j+1/2 'Pi,HI/2 - 'Pi,j-I/2

26.z
for e = u, v, T. (3.9)

The higher-order upwind scheme used in Steps (I) and (3) uses a second­
order Taylor series expansion in time and space about ('i, Zj, 1") to determine
left and right (bottom and top) states at time r: 1/2 at r- (z-) edges. The time
derivative in the Taylor expansion is expressed in terms of the spatial
derivatives and lower order terms by using a quasilinear form of the
appropriate governing equation. The particular form of the quasi linear
equation for a given state variable 'P depends on whether we compute PCP or
'P at edges. In the former case, PcP is computed directly - there is not a
separate computation of p - and in the quasi linear equation, V'. pU'P is
expressed as U· V'(p'P) + P'PV'· U. Note that in the case of ph we omit
the WI term from the quasilinear equation because of the operator split
treatment of the kinetics.

The edge values of ph are computed in the manner described above
to ensure that the numerical scheme is freestream preserving with respect
to temperature in the presence of multiple species. The convection scheme
uses van Leer slope limiting (van Leer, 1979) in the approximation of the
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first-order spatial derivatives. The scheme is hence monotonicity preserving
but also necessarily nonlinear (Leveque, 1990). In particular, then, if the
edge values of ph were computed in the same manner as pY, edge values of
pY, and ph would not necessarily satisfy (2.9) under isothermal conditions;
the scheme might then incorrectly generate a non-constant temperature
field.

3.2.2. Crank-Nicolson Differencing

In Steps (4) and (5) of the convection-diffusion-reaction step we solve
difference equations obtained by applying the Crank-Nicolson method to
the governing equations. The difference equations are solved using standard
multigrid techniques (Wesseling, 1992). By using a sequential approach and
a predictor-corrector formulation, these difference equations are linear and
uncoupled in the sense that we can solve for T, h, Y" and (u', v') separately.
In Step (4), we compute predicted values of temperature, species mass frac­
tions, and enthalpy at time n + I. Note that we do not need to find predicted
values of (u', v") because the equations have no coupled or nonlinear
dependencies on the velocity; in particular, we do not need predicted values
of the velocity to compute predicted values of /-L, D, and >.. In Step (5), we
compute corrected values of T, Y" and h, as well as (u', v"). In the corrector
step, T"+ I is found directly by solving (2.9) given values of h"+ I and Y7+ 1•

We now summarize the difference equations for Y" h, T and U; the cell
indices ij are suppressed. The details of the discretizations of the divergence
and gradient operators, except in the case of V' . or, are discussed in Almgren
et al. (1998). The discretization of V'. or uses similar strategies and is dis­
cussed in Appendix A. Note that in all the discretizations, edge-based values
of the appropriate diffusivity are needed. These are found by simple aver­
ages of the cell-based values.

The discretization of the evolution equation for Y, used in the corrector is

In the predictor, (pD)" is used instead of (pD)"+ I.p. Note that w is not
included because of the operator split treatment of kinetics. Note also that
because p"+ I has already been computed in (3.2), the species difference
equations are not implicit with respect to p and each species can be updated
independen tly of the others. The discretizations of the enthalpy equation
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have a similar form. The form of the difference equation for temperature
used in the predictor is slightly different because of the terms accounting for
enthalpy transport due to interdiffusion of species in (2.7):

As in the case of the species equation, w is not included. Finally, the
discretization of the momentum equation is a coupled difference equation
for U· = (u·, v"):

(3.10)

The viscosities in ('\7. r)" and ('\7. r)"+ 1 are evaluated using T" and r:: I,p,

respectively. Note that the pressure gradient is lagged.

3.3. Projection Step

A projection (Almgren el a/., 1996) is now used to approximately enforce the
divergence constraint (3.4) and determine r: 1/2. In the convection­
diffusion-reaction step, we use (3.10) and a time-lagged pressure gradient
to compute a velocity that does not necessarily satisfy the divergence
constraint (3.4). In the projection we enforce

un+1 - U". I
p,:/1/2 ij t:.1 ij=2(('\7·r)"+('\7.rt+ l)

_ pn+I/2(U. '\7U)~+1/2 _ ('\7p)~+1/2

('\7 . U)n+1 = g:+1
IJ lJ·

From (3.10) and (3.11), we see that

(3.11)

(3.12)
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(3.13)

(3.14)

h e - n+I/2 n-I/2 T ki h di f(3 2)were Vi+I/2,/+1/2 - Pi+I/2,j+1/2 - Pi+I/2,/+1/2· a mg t e Ivergence 0 .1 ,
we obtain the following equation,

(
I ) (u~.,n+1 - u~.) o5~+l - s:

V'. --(V'fJ). =V'. lj lj - lj lj
n+I/2 lj b.t b.t'

Pij

which we solve using a standard finite-element bilinear discretization. tr" I

and r: 1/2 are then found by

n+1 * b.t (-)
U ij = U ij - n+I/2 GfJ ij

Pij
n+I/2 _ n-I/2 c

Pi+I/2,/+1/2 - Pi+I/2,/+1/2 + Vi+l/2,/+1/2

where (GfJ)ij represents the cell average of GfJ over cell ij.

An additional step is needed because S may be underresolved, in
particular, if there are extremely steep gradients in the temperature field or
in any of the species concentration fields, or if the flame is very thin with
respect to the grid spacing. In such situations, the velocity found above may
contain spurious modes in the regions where S is underresolved. The modes
can persist in time even after the underresolved gradients have dissipated; in
particular, V'. U may be non-zero in a region where S is uniformly zero but
where it was underresolved at an earlier time. We believe this problem arises
due to the approximate nature of the projection. To correct it, we modify
the value of U found in (3.14) by using the following filter,

U~+I .= U~+I + l"b.rb.zV'((V' . U)~+I - o5n.+I)
lj. y Jl lj lj' (3.15)

whereJ is a constant satisfyingJ < 1.0. This update has the effect of relaxing
U back to the constraint V' . U = S. We use (3.15) in all computational cells.

We note that in theory adaptive mesh refinement should make the use of
the filter described above unnecessary. In practice, even with AMR it may
be computationally impractical to adequately resolve all the regions in
which steep gradients occur. We use (3.15) so that the single grid integration
scheme is robust regardless of the level of resolution.

4. EXTENSION TO ADAPTIVE MESH REFINEMENT

In this section we describe the extension of the single grid algorithm to an
adaptive hierarchy of nested rectangular grids. The methodology is based on
the IAMR algorithm described by Almgren et at. (1998). Many of details of
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the present algorithm are identical, or very nearly so, to those of the IAMR
algorithm. The reader is referred to the above reference for these. In the
following subsections we review the features common to both algorithms to
provide context but otherwise emphasize those that are specific to the
modeling of low-Mach number reacting flow.

4.1. Grid Hierarchy and Overview of Time-stepping Procedure

The adaptive mesh refinement (AMR) algorithm uses a hierarchical grid
structure, which changes dynamically, composed of rectangular, uniform
grids of varying resolution. The collection of grids at a given resolution is
referred to as a level. By definition, level 0 covers the entire problem domain.
The widths of the cells in the level egrids differ from those at e+ 1 by a even
integer factor Recalled a refinement ratio; R, is typically 2 or 4. In space, the
levels are properly-nested, i.e., there must always be a region at least one cell
wide at level e+ 1 separating levels eand e+ 2. (See Fig. 1).

On the full adaptive mesh, the AMR timestep consists of separate
timesteps on each of the levels, plus synchronization operations to insure
correct behavior at the coarse-fine interfaces, plus regridding operations
which permit the refined grids to track complex and/or interesting regions of
the flow. The ratio of the leveleand the level e+ I time steps is R I . Figure 2
shows a space-time diagram of a single level 0 timestep, during which a
regridding operation moves the interface between levels I and 2. The

levelo
level,

level-
I
I

I
I
I
I p-
I

FIGURE I A properly nested hierarchy of grids.
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FIGURE 2 Multilevel timestep structure.

x

timestep is a recursive procedure which proceeds as follows on level e:

1. Advance level e, using boundary information from level e- I as needed
but ignoring levels e+ I and higher.

2. Advance level e+ I R, times. (This involves advancing levels e+ 2 and
higher, recursively.)

3. Synchronize levels eand e+ 1.
4. If the appropriate regridding interval has passed, tag cells at level ethat

require refinement according to some predefined user criteria, determine
new level e+ I grids to cover this region, and transfer data to new grids
(using conservative interpolation from level eif necessary).

In the remainder of this section, we refer to Steps 1 and 2 as a complete
coarse level advance or time step; Step I is referred to as a level advance or a
level eadvance.

The algorithm to advance a single level uses the same sequence of steps as
the single grid algorithm presented in Section 3. Note that the MAC pro­
jection, the Crank-Nicolson solves, and the nodal projection must be done
on all grids in a level simultaneously.

A detailed treatment of boundary conditions for the level advance is
presented in Almgren et al. (1998). For our purposes, we need only mention
that boundary conditions for the convection and the Crank-Nicolson steps
are essentially implemented by filling ghost cells of the grids. The ghost cells
which are interior to the problem domain but exterior to all of the level grids
are filled by conservative interpolation from the underlying coarser levelgrids.

4.2. Managing the Grid Hierarchy

In the adaptive algorithm, the flow quantities whose values must persist
from one time step to the next are the dependent variables in the evolution
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equations, in particular, p, U, T, ph and p'Y, and the pressure p, (Tcould be
recomputed at the beginning of each step; we let the value of T persist
simply to avoid an extra solution of (2.9)).

The variables S and as/at are also treated as persistent. The values of
these at a given level £ are computed by (3.3) and (3.5) only before the
projection step during the level advance. Otherwise they are computed by
averaging down (at the end of a complete level £ time step in cells covered by
level £ + I cells) or by conservative interpolation to level £ cells (in level £
cells that are newly created by regridding or that are ghost cells not
contained within existing level £ grids). Values ofas/at are persistent simply
because computing as/at at time n requires values of Sat ('-I as well as t".

Within a single level, S could be recomputed at the beginning of each time
step. To do so, however, would require a reevaluation of the reaction rates
used in the previous time step; we wish to avoid this computation since it can
be expensive. For fine grid cells that are newly created during regridding and
for coarse grid cells that underlay fine grid cells, the same argument applies.
We note that at the beginning of a time step, the velocity U may not satisfy
V' . U = S in newly created fine grid cells and in underlying coarse grid cells.
However, during the subsequent time step, the divergence of U is driven
toward S by the filter (3.15).

The treatment of the primitive quantities T, Y" and h also requires dis­
cussion. Whenever ph and p'Y, have been defined by conservative inter­
polation or redefined by synchronization, T is recomputed according to
(2.9). Within a given level, Y, and h are defined in the obvious way. In ghost
cells completely exterior to a level, Y, and h are defined by first conserva­
tively interpolating p, p Y" and ph.

The conservative interpolation of the quantities p, ph and ph is the final
area requiring general discussion. As in the single level convection step, the
conservative interpolation algorithm uses van Leer slope limiting (van Leer,
1979) in the approximation of spatial derivatives. For the same reasons
discussed in Section 3.2.1, if the conservative interpolation scheme were used
without modification, interpolated values of ph and p Y, would not
necessarily satisfy (2.9) under isothermal conditions. Further, interpolated
values of p and p Y, might not satisfy p = L:, p Y,. In order to overcome these
shortcomings, we modify the slope calculation procedure used in the
interpolation scheme. In a given cell, we compute van Leer-limited slopes
and unlimited central-difference slopes of p, pY, and ph. We then compute
the minimum of the ratios of the limited slopes to the unlimited slopes,
where the ratio is defined to be one if the slope is zero. The slopes o<p, ip = p,

ph, pY" used in interpolation are then defined to be this minimum ratio
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times the unlimited slopes, i.e.,

< . (OlimPh DlimP . ( DlimPY, )) <o<p=mm ,---,mm Ounlim<P, for <P = p,ph,pY"
DUnlimph DUnlimP / DUnlimPY,

(4.1 )

where Dlim and Dunlim denote the van Leer limited and the unlimited slopes.
In the synchronization step, corrections for P, ph, and p'Y, at a given level
may need to be interpolated to finer levels. The interpolation of these
corrections follows the same strategy.

4.3. Synchronization

The general synchronization issues for the present algorithm are roughly the
same as those for IAMR (Almgren et al., 1998). Before discussing details
specific to low-Mach number combustion, we briefly review these.

The advance of a single level entails a number of convective and diffusive
solves as well as projections. During the advance of a given fine level, we use
Dirichlet boundary data for each such operation from the next coarser level
at coarse-fine interfaces. Even though the solution within each level is
consistent, there is a mismatch at the coarse-fine interface at the end of a
complete coarse grid advance prior to the synchronization step. Specifically,
there are four mismatches between a coarse and a fine level after a complete
coarse level time step (we adopt the notation from Almgren et al. (1998»:

(M.l) The solution in coarse cells underlaying fine grid cells is not
synchronized with the overlying fine grid solution.

(M.2) The composite advection velocity, properly defined, does not satisfy a
properly defined composite divergence constraint at the coarse-fine
interface.

(M.3) The convective and diffusive fluxes from the coarse and the fine levels
do not agree along the coarse-fine interface.

(M.4) The coarse and fine cell-centered velocity do not satisfy a properly
defined composite divergence constraint at the coarse-fine interface.

The purpose of the synchronization step is to correct the effects of each
mismatch. We use the notation (S.n) to refer to the correction for mismatch
(M.n). In the remainder of this section we discuss the correction strategies.

(M.l) is corrected by averaging the fine grid data onto the coarse grid data
as in IAMR. Note that here we average Sand aSj8t onto the coarse grid as
well. We also average T onto the coarse grid to provide the temperature
used to compute diffusivities in (S.3).
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Mismatch (M.2) is corrected with the same approach used in IAMR.
During the coarse and fine grid level advances, the differences between the
coarse and the fine grid advection velocities at a given cell edge along the
interface are accumulated in a time and area weighted fashion.

In (S.2), the accumulated differences appear as the right hand side of a
MAC sync solve whose result is a correction to all the coarse grid advection
velocities. Because the coarse and fine grid velocities both satisfy the
divergence constraint within their respective levels, the velocity correction is
divergence free; hence, the elliptic equation that is solved in this step is
identical to that solved in IAMR for incompressible flow. Because the
advection velocities used in the original coarse level advance did not contain
this correction, we repeat the coarse level convection step to generate flux
corrections that account for the convective transport due to the advective
velocity corrections. Note that in this computation, which we call the MAC
sync convection step, we follow the same prescription for ph as was used in
Section 3.2.1.

The correction for (M.3) uses the same general approach as in IAMR.
There are, however, a number of modifications and additional details. For a
given coarse cell edge along the coarse-fine interface, the differences between
the coarse and fine level fluxes (both convective and diffusive) are accu­
mulated. A cell-centered correction field is defined on the coarse grid cells by
combining the accumulated flux differences, which are associated with the
coarse cells along the interface outside the fine grids, and the advection
updates arising from the corrections to the advection velocities in the MAC
sync convection step.

Unlike (S. I), (S.3) affects the solution at the entire coarse level and all
finer levels. We first define the coarse grid corrections to the scalar fields. We
denote the scalar correction fields by RHS p , RHS ph , and RHSpY,. The values
of the state quantities after (S.I) but prior to (S.3) are denoted by on+I,S.I.

First, we redefine RHS p to be L/ RHSpY, ~+I is then found by

pn+1 = pn+I,S.1 + RHS
p

•

For ip = h, Y/, we can write

(pcp)n+1 _ (pcp)"+I,S.1 = RHSp<p

= pn+1 (cpn+1 _ cpn+I,S.I) + cpn+I,S.1 (pn+1 _ pn+I,S.I).

(4.2)

We see that there are two components to the correction to pip: a correction
to p and a correction to cp. The correction to pcp therefore has two steps, We
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first solve the difference equation

for <Pcom where <Pcorr denotes <pn+ J - <pn+ I,S.I (p<p)"+ I is then computed by

(p<p)"+1 = (p<p)"+I,S.1 + pn+l<Pcorr + <pn+I,S.1 (pn+1 _ pn+I,S.I).

The coarse grid velocity correction in (S.3) follows the same approach
used in lAM R, with straightforward modifications for non-constant vis­
cosity and the tensor form of r: see Appendix A for details. All the coarse
grid corrections are conservatively interpolated to the overlying fine grid
cells in all finer levels. Finally, T is recomputed on the coarse and all finer
levels using Eq. (2.9).

The final mismatch, (MA), is corrected with a similar approach to that
used in IAMR. During the coarse and fine grid level advances, a composite
residual is accumulated at the coarse nodes at the coarse-fine interface that
measures the extent to which the level projections fail to satisfy the
composite projection equations at the interface.

Unlike the case of the MAC projection, there is a contribution to this
residual due to the compressibility of the flow. At a given coarse node at the
coarse-fine interface, there is a contribution to the residual from the value of
as/at (3.5) in each coarse cell outside the fine grid which shares the node
and each fine cell bordering any of these coarse cells. The total residual
Res~~urse (the "SP" subscript denotes sync projection) equals the residual
Res~~~~eu=o for incompressible flow (Almgren et al., 1998) plus the finite­
element weighted contributions of as/at from the coarse cells, plus the time
and space averaged finite-element weighted contributions from the fine cells,
i.e.,

Rescourse = Rescourse + coarse grid ~St- contributionsSP SP, ';7. u=o u

Roo. -
I ~ n id as ibuti+~ L.J me gn "contn uuons.

o-coarse k=) ut

Note that the fine grid contributions are first computed at the fine nodes and
then averaged to the coarse node. See Figure 3 for an example.

The remainder of (S.4) is identical to the same step in IAMR. The compo­
site residual is combined with the divergence of the velocity corrections
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FIGURE 3 Schematic showing contributions of coarse and fine grid cell-centered values of
8S/8t to the node-based residual for a refinement ratio 2.

found in (S.3) to form the right hand side of a multilevel sync projection.
Corrections to both the velocity and the pressure at the coarse and all finer
levels result.

5. COMPUTATIONAL RESULTS

In this section we present numerical results demonstrating the methodology
described above. Three methane-air flames are computed, two steady and
the other flickering. These examples serve as an initial validation of the
algorithm. In all cases, we use square computational cells (llr = llz) and a
Courant number (see (3.1» of 0.4.

For these computations, we consider two different compositional models.
In the first, the gas is composed of three species:

CH 4 , air, product. (5.1)

Thermochemical properties are defined by polynomial curve fits for cp •o.n

cp,pn (Rhine and Tucker, 1991) and cpJu (Glasstone, 1947), and a heat of
formation of 4.855 x 107 J/kg for natural gas (Rhine and Tucker, 1991). A
one-step reaction mechanism (Khalil et al., 1975) for methane oxidation is
used:

CH 4 + 9.57 air -> 10.57 product, (5.2)

The adiabatic flame temperature for this reaction is 2222 K for a base
temperature of 298 K. The rate of fuel consumption is given by

(5.3)
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where A = 10IOm3j(kg-sec) and Ea/R = 1.84 X 104 K (Khalil et al., 1975).
We refer to this compositional model and the accompanying reaction mecha­
nism as model I.

The second compositional model uses 6 species:

(5.4)

Enthalpies, heat capacities, and heats of formation are computed with GRI­
Mech thermochemical data (Frenklach et al., 1994). The following two-step
reaction mechanism is used:

CH4 + (3/2)02 -> CO + 2H20
CO + 1/202 <-> C02.

(5.5)

We also consider a modification of this mechanism in which we neglect the
reverse reaction in the CO oxidation step. The adiabatic flame temperature
for the complete forward reaction is 2317 K for a base temperature of 298 K.
We consider two different expressions for the rate of CH 4 oxidation, the first
due to Zimont and Trushin (1969),

where Ea = 39895caljgmole, and the second due to Dryer and Glassman
(1972),

where Ea = 48400caljgmole. We use the following rate for the forward CO
oxidation step (Dryer and Glassman, 1972),

and the following reverse rate (Westbrook and Dryer, 1981),

- d[C021 = 5 x 108 exp( -Ea/RT)[C02J gmoles cm-3sec- l , (5.9)
dl

where Ea = 40000 caljgmole. We refer to the complete two-step mechanism
with (5.6) as model 2 and with (5.7) as model 3. The corresponding models
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in which the reverse CO oxidation step is neglected are referred to as models
2n and 3n.

The five composition/mechanism/rate models are summarized in Table I.
In the results reported below, we follow the approach used by Smooke

et al. (1989) and define flame length as the z-coordinate of the center of the
cell along the axis of symmetry corresponding to the first temperature
maximum. We use the same definition for the flame height of a lifted flame.
We additionally follow the approach of Bennett and Smooke (1997) and
define the lift-off height of a lifted flame as the cell-center z-coordinate of the
cell closest to the inlet plane for which T ~ 1000K.

The boundary conditions used in all three test problems are inflow at the
lower z-boundary, outflow at the upper z-boundary, symmetry at r = 0, and
slipwall conditions at the upper r-boundary.

5.1. Steady Laminar Methane-Air Diffusion Flame

The first example is the calculation of the steady, unconfined coflowing
methane-air diffusion flame previously computed by Smooke et al. (1989).

The experimental configuration is illustrated in Figure 4. The radius of the
inner fuel jet is .2em and the radius of the coflowing air jet is 2.54 em.

At the inlet, the temperature is 298 K and the fuel velocity is u = 0,
v = 5.0em/sec. The inlet air velocity is u = 0, v = 25.0em/sec; Re ":l60 for a
reference length equal to the diameter of the fuel jet.

In our computation, the flame is ignited by a small hot patch (T = 1500K)
next to the inlet. We use a 16 x 40 level 0 grid to cover a 2.56cm by 6.4 em
problem domain. There are three additional levels of refinement. The
refinement ratio R, = 2 for e= 0, 1,2, so that the equivalent uniform grid is
128 x 320. The inlet boundaries are refined to level 3 so that they align with
level 3 grid lines. Additionally, the region T > 1800K is refined to level 2.

We compute this flow with each of the five models in Table I. We first
discuss results obtained using model 1. Figure 5 shows the early devel­
opment of the flame. The unsteady phase is characterized by a vortex ring

TABLE I Compositional models, reaction mechanisms, and reaction rates used in the
numerical examples

Model Composition Reaction mechanism Reaction rates

I 5.1 5.2 5.3
2 5.4 5.5 5.6,5.8,5.9
2n 5.4 5.5 5.6, 5.8, d[CO,j/dt = 0
3 5.4 5.5 5.7, 5.8, 5.9
3n 5.4 5.5 5.7,5.8, d[CO,j/dt = 0
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FIGURE 4 Sketch of specification of unconfined coflowing methane-air diffusion flame.

which appears as a "mushroom" shape in the plots. The ring forms due to
the initial expansion of gas following ignition and ultimately rises out of the
computational domain. The boundaries of the "levell, 2, and 3 grids are
shown as thin lines in the plots. We note that because of the initial velocity
projection and the use of a hot patch to ignite the flame, the figure is merely
representative of the development of the flame at early time.

Figure 6 shows the flame at steady-state. We calculate a flame length and
a maximum temperature of 1.43em and 2208 K, respectively; Smooke et al.,
compute values of 1.25ern and 2053 K. Qualitatively, our calculation shows
the same general flame shape and the same rapid increase of axial velocity
along the centerline. We speculate that our temperatures may be higher due
to using a reduced kinetics mechanism and/or species-independent mass
diffusivities. Note that we have plotted pRT to show how well the scheme
meets the constraint Po = pRT. The two values differ significantly only along.
the edge of the flame, and the maximum percentage deviation from Po is less
than 10%.
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We now compare the solution obtained with model I with solutions for the
other four models. Table II shows the values of flame length, maximum tem­
perature, and maximum axial velocity, and the range of pRT for each of these
models. The results for models 2, 2n, 3, and 3n have higher maximum
temperatures than model 1 because of the higher adiabatic flame temperature
for the associated compositional model. Models 2 and 3, in turn, produce
lower peak temperatures than models 2n and 3n due to the reverse CO
oxidation step. The values are otherwise comparable. Figure 7 shows the
temperature fields at steady state for the five models.

5.1.1. Timings

We now present timings of the code for model 1 for the steady laminar
flame problem discussed above. Five cases are reported: a 16 x 40 base grid
with three levels of refinement (R, = 2, f = 0, 1,2), a 32 x 80 base grid with
one level (Ro = 4), a 32 x 80 base grid with two levels (R, = 2, f = 0, I), a
64 x 160 base grid with one level (Re = 2), and a uniform 128 x 320 grid. In
the adaptive cases, the inlets are refined to the finest level and the region
T > 2000 K is refined to level 2 or the finest level, whichever is smaller. The
calculations are all run on a single 300 MHz processor of a four processor
DEC Alpha workstation to a final time of .10412sec. Table III shows the
CPU time used to complete the calculation, the total number of cells
advanced, the CPU time per cell, and the approximate peak memory usage.
The total number of cells advanced is the sum over all levels of the number
of cells advanced at that level. The numbers show that the adaptive mesh
refinement scheme can reduce the computational cost in terms of both CPU
time and memory usage. For the examples run, however, the CPU time per
cell does increase with the number of levels of refinement; the time for the
level three case is nearly triple that of the level zero case. The results suggest
that the refinement strategy used must be judicious; if too large a portion of

TABLE II Comparison of steady flame results for the five composition/mechanism/rate
models

Model

I
2
2n
3
3n

2208.4
2264.8
2303.8
2270.5
2310.5

Flame length (m)

0.0143
0.0159
0.0159
0.0143
0.0143

Vmax(m{sec)

1.680
1.774
1.755
1.703
1.688

pRT(kPa)

93.3-109.1
90.3-111.6
90.5-111.5
91.5-109.5
91.8-109.6
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By eliminating the hot patch from the initial conditions we avoid having the
underresolution of the patch affect the convergence results.

We compute solutions on 32 x 80, 64 x 128, and 128 x 512 uniform
grids. The errors in the solution for p, u, v, h, T, Yju, Yo." Ypn and pRT on
the 32 x 80 and 64 x 128 grids are computed at t = 0.025 and 0.05 seconds.
With the exception of the last quantity, there is no exact solution. Hence, we
estimate the error in the numerical solution by comparing solutions at
successive resolutions. We first compute the error eij in a single coarse grid
computational cell as the difference of the coarse grid result and the average
of the solution in the overlying fine grid cells. For pRT, we compute the
difference of the coarse grid solution and Po. The L, error on the entire
coarse domain (assuming 6.r = 6.z) is then defined by

L~r = ~)r~+'/2 - rL/2)6.reij.
ij

The convergence rate q is computed by comparing errors on the 32 x 80 and
64 x 128 grids using

q = log, (Li'~rI L~r).

The errors and convergence rates are shown in Table IV.
The results show second order convergence for all quantities except u, Yju,

and pRT. The errors in radial velocity and fuel concentration are
concentrated primarily at the edge between the air and fuel inlets, while
errors in pRT are located along the edge of the flame. Hence, the
convergence rate for axial velocity may be due to the discontinuity in
velocity and density at that edge. The first-order convergence rates for Yju
and pRT, on the other hand, are more likely due to the first-order operator

TABLE IV L, errors and convergence rates for the steady methane-air diffusion flame
problem

Quantity t = .025 t = .05
32 x 80 q 64 x 160 32 x 80 q 64 x 160

p 3.76 x 10- 7 1.87 1.02 x 10- 7 3.85 X 10- 7 2.15 8.67 x 10- 8

u 6.18x 10- 8 1.01 3.07 x 10- 8 4.15 X 10- 8 0.80 2.38 x 10- 8

3.16x 10- 7 1.62 1.03 x 10- 7 3.15x 10- 7 1.57 1.06 x 10- 7

h 5.15 X 10- 1 2.04 1.25 x 10- 1 5.37 X 10-' 2.36 1.06 x 10- 1

T 4.01 X 10-' 1.94 1.05 x 10-' 4.20 X 10-' 2.27 8.72 x 10-'
Yju 1.76 X 10-" 1.05 8.49 x 10- 10 8.46 X 10- 10 1.05 8.46 x 10- 10

Y ox 1.76 X 10- 7 2.01 4.36 x 10- 8 1.76 X 10- 7 2.50 3.11 x 10- 8

Y pr 1.77 X 10- 7 2.01 4.42 x 10- 8 I. 77 X 10- 7 2.48 3.18 x 10- 8

pRT 2.59 x 10- 3 1.00 1.31 X 10- 3 2.49 X 10- 3 0.96 1.28 x 10- 3
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split treatment of the reaction terms. We believe that we see second-order
convergence in the other quantities because the reactions occur primarily in
a thin zone. The effect of the lower-order treatment of the reaction terms on
the error is then less than if the reaction zone were broader.

5.2. Steady Methane-Air Diffusion Flame with N2-diluted Fuel

The second example is a steady, unconfined coflowing methane-air
diffusion flame in which the fuel jet is composed of methane diluted with
nitrogen. The experimental configuration is again illustrated by Figure 4.
The fuel jet molar composition is 65% CH 4 and 35% N2. The radius of the
inner fuel jet is .2 em and the radius of the coflowing air jet is 2.5 em. At the
inlet, the temperature is 298 K. The velocity of both inlet streams is u = 0.0,
v = 35.0 em/sec. Re se90 for a reference length equal to the diameter of the
fuel jet.

This flow has been previously studied both experimentally (Smooke et al.,
1992) and computationally (Smooke et al., 1992; Xu et al., 1993; Smooke
et al., 1996; Bennett, 1997; Bennett and Smooke, 1997). Experimentally
determined values for the flame include a liftoffheight of004 em, a flame height
of approximately 3Acm, and a maximum temperature of approximately
1949K (Bennett, 1997). Computed values of the liftoff height vary from
0.34cm (Bennett and Smooke, 1997) to nearly I ern (Smooke et al.,
1992) depending on, among other factors, the detailed reaction mechanism
used. Additionally, the liftoff height is seen to depend on the resolution of the
calculation (Bennett and Smooke, 1997). Maximum computed temperatures
are roughly 1940K (Smooke et al., 1996; Bennett and Smooke, 1997) if
radiative losses are accounted for, but jump to approximately 2040 K if these
losses are neglected (Smooke et al., 1992; Xu et al., 1993). The computed
flame heights are all approximately 3- 3.5 em.

In our computation, we neglect radiative losses. The flame is ignited by a
small hot patch (T= 1500K) next to the inlet. We use a 16 x 48 level 0 grid
to cover a 3.2cm by 9.6cm problem domain. There are three additional
levels of refinement. The refinement ratio R, = 2 for e= 0, 1,2, so that the
equivalent uniform grid is 128 x 384. The inlet boundaries are refined to
level 3 so that they align with level 3 grid lines. The region T > 1800K is
also refined to level 3.

We compute the steady flame with models 2, 2n, 3, and 3n (see Tab. I) by
timestepping to a steady state. The results are summarized in Table V. The
temperature fields for the four models are shown in Figure 8. Note the
"wishbone"-like structure of the peak temperature region (we show half of
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5.3. Flickering Methane-Air Diffusion Flame

The last example is the calculation of a flickering, unconfined coflowing
methane- air diffusion flame. The computation models the coannular burner
used by Smyth et al. (1993, 1994, 1997) in a flame study performed to help
develop better models of soot formation. They report results that include the
effect of acoustic forcing (Smyth et al., 1993) and those that do not (Smyth,
1994;Smyth, 1997).The latter case is the one computed here. Yam et al. (1995)
have also simulated this flow using a single grid projection method.

The experimental configuration is conceptually similar to those modeled
in the previous two sections. The coannular burner consists of a fuel inlet
with a radius of 0.55 em surrounded by an annulus of coflowing air with an
outer radius of 5.1em. The velocity of both inlet streams is 7.9cmjsec.
Re ~ 55 for a reference length equal to the diameter of the fuel jet. The flow
for this configuration can be summarized as follows. During its early
development, the flame grows in length and oscillates in a non-periodic
manner. After a short time, the flame reaches a "steady-state" in which it
exhibits a periodic oscillatory behavior best described as flickering. The
flame oscillations are caused by a buoyancy-induced Kelvin - Helmholtz
type of instability.

In our computations, the flame is ignited by a small hot patch
(T = 1500K) next to the inlet. We use a 16 x 64 level 0 grid to cover a
6.4cm by 25.6cm problem domain. There are three additional levels of
refinement. The refinement ratio R, = 2 for e= 0, 1,2, so that the equivalent
uniform grid is 128 x 512. The inlet boundaries and the region T > 1800K
are refined to level 3. Additionally, the region in which the magnitude of the
vorticity exceeds 50sec- I is refined to level 1.

We compute the flow with each of the five models in Table I. All the
computed flames establish periodic flickering by t = I sec. For each comput­
ed flame, we calculate the flickering frequency and the time-averaged flame
length by using the complete flickering cycles (measured peak length to peak
length) between t = I sec and t = 2.5 sec.

We first report results for model I. Figure 10 shows a time history of the
flame length. Figure 11 displays the temperature field during a single flame
oscillation. We compute a flickering frequency of 11.94Hz; Smyth et al.,
report a value of 12Hz (Smyth, 1994). The computed time-averaged flame
height is 6.66cm; the experimental value is 7.9cm. (The flame height
reported by Smyth et al., is the axial location of the end of the soot burnout
region, which is typically beyond the maximum temperature location
(Smyth, 1997)). Yam et al., compute values of 15.7Hz and 5.51em. As in the
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calculation reported in the previous section, we compute temperatures that
are high compared to those previously reported; see the discussion above.
We also compute a larger flame height oscillation (roughly 3 ern) than do
Yam et al. (1 em),

We now compare the results for the other four models with those for
model I. In Table VI, we compare the flickering frequencies and flame
lengths obtained using the models. The average flame lengths found with
models 3 and 3n are longer than those for the other three models. The
results are otherwise comparable. Figure 12 compares the temperature fields
for the five models at comparable times during the flickering cycle. The
shapes of the flames agree fairly well. There are, however, secondary
instabilities along the edges of the flame for models 2 and 3; we are uncertain
why these features appear.

5.3.1. Conservation

We now present conservation results of the algorithm for model I. To test
for conservation, we modify the problem discussed above by increasing the
radius of the fuel inlet to 0.8 ern. We compute the solution on a 16 x 64
uniform grid. At each time step, we compute the change in mass, enthalpy,
fuel mass, air mass, and product mass by

total change in q = L (qij+1 - qij)1l'(r7+1/2 - rf_I/2)ilz,
ij

(5.10)

where q is p, ph, or p Y" I = fu, ox, pr, as appropriate. We also compute the
total amount of each quantity convectively and diffusively fluxed through
the top and the bottom boundaries of the domain, plus, in the case of the
species, the total amount created due to chemical reactions as follows,

total of fluxes and

_ il "(( U)n+I/2 ( )n+I/2 )
- t LJ P i,-1/2 - pU i,Jm.,+1/2 Ai, q=p

TABLE VI Comparison of flickering flame results for the five composition/mechanism/rate
models

Model

I
2
2n
3
3n

Flickering frequency (sec-')

11.94
12.01
11.92
12.13
11.83

Flame length (m)

0.0666
0.0662
0.0664
0.0684
0.0682
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FIGURE 13 Conservation results for mass, enthalpy, and fuel for the flickering flame test
problem. The three upper curves show the relative conservation error. while the three lower
ones show the absolute errors. (Because the error functions themselves are fairly noisy, we
actually plot the upper envelope of each error given by the sliding 50 point maximum of the
corresponding values). The units of the absolute error curves are kg (for mass and fuel) and J
(for enthalpy).

errors are plotted for p, ph, and p Yj u in Figure 13. The error curves for
oxidizer and product are not plotted because they lie near those for density
and fuel, respectively. The results verify that the algorithm is discretely
conservative with respect to mass, enthalpy, and composition.

6. CONCLUSIONS AND DISCUSSION

We have presented an adaptive projection method for computing unsteady,
low-Mach number combustion. The adaptive mesh refinement scheme
incorporates a higher-order projection methodology and uses a nested
hierarchy of rectangular grids which are refined in both space and time. The
algorithm is currently implemented for laminar, axisymmetric flames with a
reduced kinetics mechanism and a Lewis number of unity. Numerical results
for three test problems are favorable. The examples also demonstrate a
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significant reduction in CPU and memory usage over a uniform grid
calculation. The computed temperatures are higher, however, than those
reported elsewhere for the same flows. We speculate that the high
temperatures may be due to the use of a reduced kinetics mechanism and/or
species-independent mass diffusivities. Although our current treatment of
the reaction terms is formally first-order accurate, our algorithm computes
second-order accurate results for most quantities for a selected test problem.
We believe this is due to the thinness of the reaction zone in this particular
case. The algorithm is also shown to be discretely conservative in mass,
enthalpy, and composition.

Future directions for this work include developing automatic refinement
criteria, incorporating detailed chemistry and species dependent mass
diffusivities, accounting for radiative heat transfer (Howell et al., 1998),
and extending the methodology to three-dimensional and turbulent flows
and to realistic engineering geometries. We will also examine how to
incorporate Strang splitting (Strang, 1968) of the reaction terms into the
adaptive projection methodology in order to improve the formal accuracy of
the scheme.
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cp,,(T)
cp(T)
D
D/DI
Eo
fu
Gp
g

h

h,(T)

i,j
I
Le
M
ox

P
Po
Pr
pr

n
R

Re
r,

r.; 1/2

Re
r
s
S
Sc
T
In

In+I/2

U

specific heat of species I at P = Po
specific heat of the gas mixture at P = Po
molecular mass diffusivity
0/01 + U· V'
activation energy in Arrhenius law
subscript denoting fuel
a cell-centered gradient for a node-based pressure p

magnitude of acceleration due to gravity: 9.81 m/sec2

enthalpy of gas mixture, L,h,(T)Y,
specific enthalpy of species I at p = Po, including the heat of
formation
cell indices in r-, z-directions
subscript denoting species
Lewis number, Sc/Pr = >.jpDcp

Mach number
subscript denoting oxidizer
pressure
ambient pressure: 101325 N/m2

Prandtl number, JlCp / >.
subscript denoting product
universal gas constant
gas constant of mixture
ratio of level f. + 1 cell widths to the level f. cell widths
r-coordinate of center of cell ij, itJ.r
r-coordinate of upper r-edge of cell ij
Reynolds number, pUL/Jl
radial coordinate
right hand side of divergence constraint
right hand side of the numerical divergence constraint
Schmidt number, Jl/pD
temperature
time at the end of the !loth time step
t" + tJ.I/2
velocity
radial component of velocity
axial component of velocity
mass fraction of species I
axial coordinate
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Greek Symbols
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P
T

WI

cell width in r-direction
cell width in z-direction
time step used to advance solution from t" to t" + I

thermal conductivity
viscosity
dynamic pressure, p - Po

density
stress tensor
specific mass production rate of species I by chemical reactions

Subscripts and Superscripts

n+l,. n+I, ...
Ujj l vij

o;;+I,P

0;;+1/2

( )
11 + 1/ 2

· i+I/2,)

( )
11 + 1/ 2

· i,}+1/2

( )
"+ 1/ 2

· i+I/2,}+1/2

0;;+1

Other

[.]

value at center of cell ij at time t"
or average value over cell ij at t"
axial and radial components of velocity
before enforcement of divergence constraint
predicted value at center of cell ij at time t"
value at center of cell ij at time t" + I1t/2

value at upper r-edge of cell ij at time t" + I1t/2

value at upper z-edge of cell ij at time t" + I1t/2

value at upper corner of cell ij at time t" + I1t/2

value at center of cell ij at time t" + I1t

molar concentration, gmoles/crrr'
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APPENDIX A: DETAILS OF TENSOR LEVEL SOLVES

We present here the details of the tensor level solve used in solving both the
difference equation (3.10) during a single level advance and the correspond­
ing difference equation used in step (S.3) during the adaptive synchroniza­
tion step. The discussion below is for two-dimensional rectangular
coordinates; the extension to cylindrical coordinates is straightforward.

Unlike viscous velocity solves in a homogeneous constant-temperature
medium, the algorithm presented in this paper require solving a parabolic
tensor equation. The goal is to solve an equation of the form

where r is the tensor

a(x)v - \1 . (.B(x)r(v)) = rhs (6.1 )

(6.2)

In practical application, fl(x) would be viscosity, which is position
dependent because of temperature variations.

In most respects, this parabolic tensor equation may be solved in exact
analogy with the scalar cell-centered level solves discussed in Almgren et al.
(1998). Both are cell-centered single-level solves defined on the union of
rectangles. The system is solved using standard multigrid methods (V-cycles
with multi-color Gauss - Seidel relaxation). The restriction operator is
volume-weighted averaging; the multigrid interpolation is piecewise
constant. In the following, we will concentrate upon the single difference:
the discretization of the operator near the boundaries of each individual
rectangle in the union.

We use a finite-volume discretization of Eq. (6.1), so that the term
\1 . (fl(x)r(v)) is represented by differences of flr(v) evaluated upon the
faces of a unit cell. r(v) contains both derivatives which are normal to the
cell face, and derivatives which are tangential to the cell face. The normal
derivatives may be treated in exact analogy to the treatment in the IAMR
algorithm (Almgren et al., 1998) and will not be further discussed. In the
interior of the rectangles, where the finite difference stencil is completely
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contained within the rectangle, the tangential derivative is computed with an
"H-shaped" stencil, for example

(
OU ) = Ui+l,j+1 + Ui,j+1 - Ui+I,j-1 - Ui,j-I

oy i+I/2,j 4D.y
(6.3)

Care is required in computing the tangential derivative when the "H­
shaped" stencil extends outside one of the rectangles.

In IAMR, the operator is evaluated in the outer row of cells in a rectangle
by placing second-order accurate values in a row of cells immediately
exterior to the rectangle (ghost cells) and applying the same stencil operator
as is applied in the interior. Values are provided for these "ghost" cells from
one of three possible sources: (I) copying from adjacent rectangles in the
union of rectangles; (2) interpolation from the next coarsest level of
refinement; (3) application of physical boundary conditions. Unfortunately,
the straightforward use of ghost cells will provide inconsistent values of the
tangential derivatives. Figure 14 shows that using ghost cells will cause two
adjoining grids to compute different values of the same tangential derivative.

1

~

° <P>

@ a °a b c

,..,
L.

d
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FIGURE 14 Where two rectangles in a level adjoin each other, each rectangle may compute a
different value for a tangential derivative if ghost cells are used. In this 2D example, the
horizontal derivative is needed at the cell edge indicated by the solid circle. The H-stencil of
the vertical derivative requires values at locations indicated by open circles. In rectangle l, the
values at coarse grid locations a, b, and c and the fine grid locations indicated by triangles
contribute to the ghost cell value. In rectangle 2, coarse grid locations a, d, and e and the fine
grid locations indicated by squares contribute.
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Suppose it is desired to compute an x-derivative at the location of the solid
circle. Because this location is shared by both rectangle I and 2, it is
necessary for consistency that both grids compute the same value for the x­
derivative. The "H-stencil" will require values at the locations of the open
circles. One of the open circles is not covered by either rectangle I or 2, and
must be filled by interpolation. As explained in Almgren et al. (1998),
computations on rectangle I will fill in a ghost-cell value using coarse cell
values at a, b, and c, plus the fine grid values indicated with small triangles.
However, computations on rectangle 2 will fill in a ghost-cell values using
coarse cells values at a, d, and e, plus the fine grid values indicated with
small squares. Both values for the ghost cell will be second-order accurate,
but they will not, in general, be identical. This will lead to different values
for the shared wall flux.

In order to maintain consistency of tangential derivatives computed on
different rectangles, we will avoid ghost cells in computing tangential
derivatives, and instead modify the stencil where appropriate. Our general
principle is to utilize fine grid information when it is available from other
rectangles. If there is not enough information to evaluate the H-stencil, the
stencil will be modified to use one-sided differences which are totally
contained within the union of rectangles. If there is not enough fine level
data to support the one-sided differences, then derivative information is
interpolated from a coarser level, or from physical boundary conditions.
Mask arrays are maintained with each rectangle of the union that indicate if
adjoining cells are covered by fine grid data.

Consider first cell edges which are located on the perimeter of the
rectangle. The edge derivative is computed as linear interpolation of (I) a
cell centered derivatives located in the cell just interior to the edge, and (2) a
derivative centered exterior to the rectangle. For example,

au A- 1/2 au I au
-;:---= -+---
aYi+I/2,j A aYi,j 2A OYi+A,j

(6.4)

where A parameterizes the location of the derivative centered exterior to the
rectangle. When fine grid data is available exterior to the rectangle, A would
be one. When coarse level data is used, A would be determined by the
location of the coarse cell centers. With obvious meaning, we will refer to
the derivatives on the right-hand side of the above as the inside and outside
derivatives. Linear interpolation will provide a second order accurate
approximation to the derivative if the inner and outer derivatives are second
order accurate.
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In the case of the inside derivative, we compute it with centered
differences unless the centered stencil requires a cell value which is not found
on the fine level. In the case where the centered difference cannot be used, a

, second-order accurate one-sided derivative whose stencil is contained within
the rectangle is used. Rectangles are not allowed to become small enough
that the one-sided derivative is not covered by the rectangle. In the case of
the outer derivative, we consider the same sequence of possible stencils: first
the centered difference and then two possible one-sided differences. If none
of these three possible stencils are usable, the outer derivative is computed
by a second-order accurate interpolation from the coarse grid. In this last
case, consistency of the tangential derivative is not a problem because two
rectangles are not adjoining at this point.

We must also compute tangential derivatives on cell edges which are not
on the perimeter of the rectangle. However, since none of these edges are
shared between rectangles, the problem of consistency does not arise. It
should be possible to use ghost cells in the computation of these tangential
derivatives. However, to maintain consistency with the programming struc­
ture used for the tangential derivatives on the perimeter, we continue to use
modified stencils for these derivatives as well.

These modified stencils produce second-order accurate approximations to
the tangential derivatives, which reduce the accuracy of the parabolic
operator at some of the boundary cells to first order, compared to the
second order accuracy in the interior of the rectangles. However, since the
first-order errors are localized at the boundary of the union of rectangles,
the overall scheme is still second order.




