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ABSTRACT

We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the
comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for
solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid
with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized
grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split
into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects
the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source–sink terms. The
hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes,
whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation
solver works for both neutrino and photon radiation.
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1. INTRODUCTION

Numerical simulations are a useful tool for many radiation hydrodynamic problems in astrophysics. However, numerical modeling
of radiation hydrodynamic phenomena is very challenging for a number of reasons. To achieve a highly accurate description of the
system usually requires a multidimensional treatment with high spatial resolution. It is also desirable to handle the radiation frequency
variable properly because radiation transport is a frequency-dependent process. Moreover, the numerical algorithms for radiation
hydrodynamics must be stable and efficient.

Core-collapse supernovae are such complex phenomena (Bethe 1990; Kotake et al. 2006; Janka et al. 2007; Janka 2012) that neutrino
radiation hydrodynamics simulations have been indispensable in helping to understand the explosion mechanism. Various algorithms
have been developed to solve neutrino radiation hydrodynamics equations. Because of the complexities involved in the problem and
the limited computer resources available, various tradeoffs have to be made. Many of these algorithms are one-dimensional (1D; e.g.,
Bowers & Wilson 1982; Bruenn 1985; Mezzacappa & Bruenn 1993; Burrows et al. 2000; Liebendörfer et al. 2004; O’Connor & Ott
2010), or have used the so-called “ray-by-ray” approach, which does not truly perform multidimensional transport (e.g., Burrows et al.
1995; Rampp & Janka 2002; Buras et al. 2006; Takiwaki et al. 2012). The two-dimensional (2D) code of Miller et al. (1993) is a gray
flux-limited diffusion (FLD) code that does not include order O(v/c) terms, where v is the characteristic velocity of the system. The
2D multigroup multiangle code of Livne et al. (2004) does not include all order O(v/c) terms, and in particular it lacks direct coupling
among radiation groups. The 2D algorithm of Hubeny & Burrows (2007) is based on a mixed-frame formulation of a multigroup
two-moment system that is correct to order O(v/c), but it remains to be implemented in a working code. Swesty & Myra (2009) have
developed a fully coupled 2D multigroup FLD code based on a comoving-frame formulation that is correct to order O(v/c). Besides
the grid-based methods, smoothed particle hydrodynamics (SPH) methods have also been applied to multidimensional neutrino
radiation hydrodynamics simulations of core-collapse supernovae (e.g., Herant et al. 1994; Fryer & Warren 2002; Fryer et al. 2006),
but the SPH scheme has not yet been extended to a multigroup. Recently, Abdikamalov et al. (2012) developed a Monte Carlo method
for neutrino transport, but hydrodynamics and radiation transport are not yet coupled in the scheme.

In this paper, we present a numerical algorithm for solving multidimensional multigroup photon and neutrino radiation
hydrodynamics equations in the comoving frames that are correct to order O(v/c). Radiation quantities that are of interest are
the radiation energy density, radiation flux, and radiation pressure tensor. It is more accurate to evolve both the radiation energy
density and the radiation flux especially when the radiation is highly anisotropic and optically thin. However, the two-moment approach
is very expensive in terms of computer time and memory for multidimensional multigroup radiation hydrodynamics simulations.
Thus, we have adopted the FLD approach (Alme & Wilson 1973) for computational efficiency. In the FLD approach, only the radiation
energy density needs to be evolved over time, and the radiation flux is derived through a diffusion approximation. Furthermore, we
use an analytic closure for the radiation pressure tensor. We have adopted a multigroup method, in which the radiation frequency
is discretized into multiple groups. The equations that we solve are similar to those in Swesty & Myra (2009). However, we have
neglected inelastic scattering of neutrinos on matter, which is currently treated as elastic scattering. Since the total cross sections for
the latter at the neutrino energies near and outside the neutrinospheres are ∼20–100 times smaller than the cross sections for scattering
off nucleons and nuclei, not including inelastic effects at this stage has a minor effect on the qualitative behavior of collapse, bounce,
and shock dynamics. Nevertheless, the approach of Thompson et al. (2003) to handle inelasticity and energy redistribution can be
incorporated into our scheme. Another difference between our scheme and the scheme of Swesty & Myra (2009) is that we have
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developed a Godunov scheme in which radiation is fully coupled into a characteristic-based Riemann solver for the hyperbolic part
of the system.

Many multigroup neutrino transport codes use a fixed Eulerian grid. However, it is difficult to achieve sufficient resolution in
multidimensional simulations with this simple approach. To efficiently achieve high resolution, we use a Eulerian grid with block-
structured adaptive mesh refinement (AMR). The AMR algorithm we use has a nested hierarchy of logically rectangular variable-sized
grids and refines simultaneously in both space and time. AMR techniques have been successfully used in multidimensional multigroup
photon radiation transport (Gittings et al. 2008; van der Holst et al. 2011). However, to the best of our knowledge, this is the first
time that AMR has been employed in a multidimensional multigroup neutrino solver. Besides AMR, the arbitrary Lagrange–Eulerian
(ALE) method is an alternative approach for mesh refinement. We note that ALE has been successfully employed in multidimensional
multigroup neutrino transport (Livne et al. 2004; Burrows et al. 2007; Ott et al. 2008) and photon transport (Marinak et al. 2001).

We have implemented our algorithm in the compressible astrophysics code, CASTRO. This is the third paper in a series on the
CASTRO code and its numerical algorithms. In our previous papers, we describe our treatment of hydrodynamics, including gravity
and nuclear reactions (Almgren et al. 2010, henceforth Paper I), and our algorithm for flux-limited gray radiation hydrodynamics
based on a mixed-frame formulation (Zhang et al. 2011, henceforth Paper II). Here, we describe our algorithm for flux-limited
multigroup radiation hydrodynamics based on a comoving-frame formulation.

In Section 2, we present the multigroup radiation hydrodynamics equations that CASTRO solves. We show that the system can
be divided into a hyperbolic subsystem (Section 2.3), a subsystem of advection in frequency space (Section 2.4), and a parabolic
subsystem for radiation diffusion (Section 2.5). Analytic results for the mathematical characteristics of the hyperbolic subsystem
are also presented in Section 2.3. The hyperbolic and the frequency space advection steps are solved by an explicit solver, whereas
the parabolic subsystems are solved by an iterative implicit solver. We describe the explicit solvers in Section 3.1, followed by a
description of the implicit solver in Section 3.2. We also discuss acceleration schemes that can greatly improve the convergence rate
of the iterative implicit solver (Section 3.2.4). In Section 4, we present results from a series of test problems. A scaling test is shown
in Section 5 to demonstrate the scaling behavior of the multigroup radiation solver. Finally, the results of the paper are summarized
in Section 6.

2. MULTIGROUP RADIATION HYDRODYNAMICS

In this section, we present the multigroup radiation hydrodynamics equations that CASTRO solves. Our formulation is based on a
comoving-frame approach, unlike our gray radiation hydrodynamics solver presented in Paper II. In the comoving-frame approach,
the radiation quantities, and the opacities are measured in the comoving frames. The set of equations are correct to order O(v/c). We
then derive the multigroup radiation hydrodynamics equations using frequency space discretization. We also analyze the mathematical
characteristics of the system. Here we present the results in terms of neutrino radiation and indicate modifications needed for photon
radiation.

2.1. Frequency-dependent Radiation Hydrodynamics Equations

The system of neutrino radiation hydrodynamics that is correct to order O(v/c) can be described by

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p =

∫ ∞

0

χ

c
Fνdν + FG, (2)

∂(ρE)

∂t
+ ∇ · (ρEu + pu) = u ·

∫ ∞

0

χ

c
Fνdν +

∫ ∞

0
(cκEν − 4πη)dν + u · FG, (3)

∂(ρYe)

∂t
+ ∇ · (ρYeu) =

∫ ∞

0
ξ (cκEν − 4πη)dν, (4)

∂Eν

∂t
+ ∇ · (Eνu) = − ∇ · Fν − (cκEν − 4πη) +

∂

∂ ln ν
(Pν : ∇u) (5)

(Buchler 1983; Mihalas & Mihalas 1999; Castor 2004; Swesty & Myra 2009). Here, ρ, u, p, and E are the mass density, velocity,
pressure, and total matter energy per unit mass (internal energy, e, plus kinetic energy, u2/2), respectively. Ye is the electron fraction
defined to be the net electron number (electrons minus positrons) per baryon. FG is the external force on the fluid (e.g., gravitational
force). Eν , Fν , and Pν are the monochromatic radiation energy density, radiation flux, and radiation pressure tensor at frequency ν,
measured in the comoving fluid frame, respectively. The speed of light is denoted by c. The absorption coefficient is denoted by κ ,
and the total interaction coefficient including conservative scattering is given by χ . The emission coefficient is denoted by η. For
photon radiation ξ is zero, whereas for neutrinos ξ is given by

ξ = s
mB

hν
, (6)
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where mB is the baryon mass, h is the Planck constant, and s = 1 for νe neutrinos, s = −1 for ν̄e neutrinos, and s = 0 for other flavor
neutrinos. Also note that for neutrino radiation with multiple species, the integrals over frequency imply summation over the species.
The colon product : in Pν : ∇u indicates contraction over two indices as follows:

Pν : ∇u = (Pν)ij (∇u)ij . (7)

The system of the radiation hydrodynamics (Equations (1)–(5)) is closed by an equation of state (EOS) for matter, the diffusion
approximation for radiation flux, and a closure relation for radiation that computes the radiation pressure tensor from radiation energy
density and radiation flux. In the FLD approximation (Alme & Wilson 1973), the monochromatic radiation flux is written in the form
of Fick’s law of diffusion,

Fν = −cλ

χ
∇Eν, (8)

where λ is the flux limiter at frequency ν. We have implemented a variety of choices for the flux limiter (e.g., Minerbo 1978; Bruenn
et al. 1978; Levermore & Pomraning 1981). For example, one form of the flux limiter in Levermore & Pomraning (1981) is

λ = 2 + R

6 + 3R + R2
, (9)

where

R = |∇Eν |
χEν

. (10)

In the optically thick limit, R → 0, λ → 1/3, and the flux approaches the classical Eddington approximation Fν ≈ −(c/3χ )∇Eν .
In the optically thin limit, R → ∞, λ ≈ 1/R, and Fν ≈ cEν as expected for streaming radiation. For the radiation pressure tensor,
we use an approximate closure (Minerbo 1978; Levermore 1984)

Pν = 1

2
(1 − f )Eν I +

1

2
(3f − 1)Eν n̂n̂, (11)

where
f = λ + λ2R2 (12)

is the scalar Eddington factor, I is the identity tensor of rank 2, and n̂ = ∇Eν/|∇Eν |. There are other choices for the scalar Eddington
factor. For example, Kershaw (1976) has suggested

f = 1

3
+

2

3
λ2R2. (13)

Note that in the optically thick limit, f → 1/3, and in the optically thin limit, f → 1.
Using the FLD approximation and the approximate closure, the equations of the radiation hydrodynamics now become

∂ρ

∂t
+ ∇ · (ρu) = 0, (14)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p = −

∫ ∞

0
λ∇Eνdν + FG, (15)

∂(ρE)

∂t
+ ∇ · (ρEu + pu) = − u ·

∫ ∞

0
λ∇Eνdν +

∫ ∞

0
(cκEν − 4πη)dν + u · FG, (16)

∂(ρYe)

∂t
+ ∇ · (ρYeu) =

∫ ∞

0
ξ (cκEν − 4πη)dν, (17)

∂Eν

∂t
+ ∇ · (Eνu) = ∇ ·

(
cλ

χ
∇Eν

)
− (cκEν − 4πη)

+
∂

∂ ln ν

(
1 − f

2
Eν∇ · u +

3f − 1

2
Eν n̂n̂ : ∇u

)
. (18)

2.2. Multigroup Radiation Hydrodynamics Equations

To numerically solve Equations (14)–(18), we first discretize the system in frequency space by dividing the radiation into N energy
groups. We define the radiation energy density in each group as

Eg =
∫ νg+1/2

νg−1/2

Eνdν, (19)
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where νg−1/2 and νg+1/2 are the frequency at the lower and upper boundaries, respectively, for the gth group. For clarity,
∫ νg+1/2

νg−1/2
dν is

denoted by
∫
g
dν hereafter.

In the multigroup methods, various group mean coefficients are introduced to the system. For example, the Rosseland mean
interaction coefficient is defined as

χ−1
g =

∫
g
χ−1(∂Bν/∂T )dν∫
g
(∂Bν/∂T )dν

, (20)

where Bν = η/κ . In this paper, we will simply assume that

κg = κ(νg), (21)

χg = χ (νg), (22)

where νg is the representative frequency for the gth group. Our simple treatment of group mean coefficients is sufficient for the
transport of continuum radiation. In particular, it is sufficient for neutrino transport in the core-collapse supernova problem because
the monochromatic opacities and emissivities of neutrinos are smooth functions of neutrino frequency. It should, however, be
emphasized that our algorithm for radiation hydrodynamics does not rely on the simple treatment of group mean coefficients used
in this paper. We also assume that the flux limiter is approximately independent of frequency within each group, and denote the flux
limiter and the scalar Eddington factor for the gth group as λg and fg, respectively. As for the emissivity, we define

jg = 4π

c
η(νg)Δνg, (23)

where Δνg = νg+1/2 − νg−1/2 is the group width. However, in the case of photon radiation, we have adopted the polylogarithm
function-based method of Clark (1987) for computing the group-integrated Planck function. Thus, assuming local thermodynamic
equilibrium, we have for photon radiation

jg = 4π

c
κgBg, (24)

where Bg = ∫
g
Bνdν.

Using these definitions and approximations, we obtain the multigroup radiation hydrodynamics equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (25)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p +

∑
g

λg∇Eg = FG, (26)

∂(ρE)

∂t
+ ∇ · (ρEu + pu) + u ·

∑
g

λg∇Eg =
∑

g

c(κgEg − jg) + u · FG, (27)

∂(ρYe)

∂t
+ ∇ · (ρYeu) =

∑
g

cξg(κgEg − jg), (28)

∂Eg

∂t
+ ∇ ·

(
3 − fg

2
Egu

)
− u · ∇

(
1 − fg

2
Eg

)
= −c(κgEg − jg) + ∇ ·

(
cλg

χg

∇Eg

)
,

+
∫

g

∂

∂ν

[(
1 − f

2
∇ · u +

3f − 1

2
n̂n̂ : ∇u

)
νEν

]
dν − 3fg − 1

2
Eg n̂n̂ : ∇u, (29)

where g = 1, 2, . . . , N , ξg = ξ (νg),
∑

g denotes
∑N

g=1.

2.3. Mathematical Characteristics of the Hyperbolic Subsystem

The system of multigroup radiation hydrodynamics (Equations (25)–(29)), similar to the system of gray radiation hydrodynamics
we have studied in Paper II, has a hyperbolic subsystem,

∂ρ

∂t
+ ∇ · (ρu) = 0, (30)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇p +

∑
g

λg∇Eg = FG, (31)
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∂(ρE)

∂t
+ ∇ · (ρEu + pu) + u ·

∑
g

λg∇Eg = u · FG, (32)

∂(ρYe)

∂t
+ ∇ · (ρYeu) = 0, (33)

∂Eg

∂t
+ ∇ ·

(
3 − fg

2
Egu

)
− u · ∇

(
1 − fg

2
Eg

)
= 0, (34)

where g = 1, 2, . . . , N . Since Ye is just an auxiliary variable that does not alter the characteristic wave speeds of the hyperbolic
subsystem, we will neglect it in the remainder of this subsection for simplicity. Gravitational force terms are source terms, and
thus they are not included in the following analysis. The term −[(3fg − 1)/2]Eg n̂n̂ : ∇u in Equation (29) is not included in the
analysis of the hyperbolic subsystem here even though it becomes comparable to the term ∇ · {[(3 − fg)/2]Egu} in Equation (34)
in the streaming limit where fg → 1. The first reason for not including the term is that the main purpose of including radiation in
the hyperbolic subsystem is to improve the accuracy in the optically thick limit where the radiation can affect the hydrodynamics
significantly. The term −[(3fg − 1)/2]Eg n̂n̂ : ∇u is not significant in the optically thick limit where fg → 1/3. The second
reason is that in the streaming limit, where λ → 0, radiation force has little impact on the motion of matter. Thus, radiation is
essentially decoupled from the hydrodynamics of matter in the streaming limit. Moreover, in the streaming limit the diffusion term
∇ · [(cλg/χg)∇Eg] (Equation (29)) will dominate the term −[(3fg − 1)/2]Eg n̂n̂ : ∇u and all the terms in Equation (34). Therefore,
the term −[(3fg − 1)/2]Eg n̂n̂ : ∇u is insignificant in both the diffusion limit and the streaming limit.

In CASTRO, we solve the hyperbolic subsystem with a Godunov method, which utilizes a characteristic-based Riemann solver (see
Section 3.1 for details). The Godunov method requires that we analyze the mathematical characteristics of the hyperbolic subsystem.
For simplicity, let us consider the system in one dimension, which can be written in terms of primitive variables as

∂Q

∂t
+ A

∂Q

∂x
= 0, (35)

where the primitive variables are

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
u
p
E1
E2
...

EN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

and the Jacobian matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u ρ 0 0 0 . . . 0
0 u 1/ρ λ1/ρ λ2/ρ . . . λN/ρ
0 γp u 0 0 . . . 0
0 E1(3 − f1)/2 0 u 0 . . . 0
0 E2(3 − f2)/2 0 0 u . . . 0
...

...
...

...
...

. . .
...

0 EN (3 − fN )/2 0 0 0 . . . u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

where γ is the adiabatic index of the matter. This system is hyperbolic because the Jacobian matrix is diagonalizable with N + 3 real
eigenvalues,

u − cs, u + cs, u, u, u, . . . , u. (38)

Here

cs =
√√√√γ

p

ρ
+
∑

g

(
3 − fg

2

)(
λgEg

ρ

)
=

√
c2
m +

∑
g

c2
g (39)

is the radiation modified sound speed, where cm = √
γp/ρ is the sound speed without radiation and cg = √

[(3 − fg)/2](λgEg/ρ)
is the contribution to the sound speed from each group. The corresponding right eigenvectors are⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−cs/ρ
γp/ρ

c2
1/λ1

c2
2/λ2
...

c2
N/λN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
cs/ρ
γp/ρ

c2
1/λ1

c2
2/λ2
...

c2
N/λN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−λ1
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−λ2
0
1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−λN

0
0
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)
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and the corresponding left eigenvectors are

(0, −ρ/2cs, 1/2cs
2, λ1/2cs

2, λ2/2cs
2, . . . , λN/2cs

2),
(0, ρ/2cs, 1/2cs

2, λ1/2cs
2, λ2/2cs

2, . . . , λN/2cs
2),

(1, 0, −1/cs
2, −λ1/cs

2, −λ2/cs
2, . . . , −λN/cs

2),
(0, 0, −ω1/λ1, 1 − ω1, −ω1λ2/λ1, . . . , −ω1λN/λ1),
(0, 0, −ω2/λ2, −ω2λ1/λ2, 1 − ω2, . . . , −ω2λN/λ2),

... ,
(0, 0, −ωN/λN, −ωNλ1/λN, −ωNλ2/λN, . . . , 1 − ωN ),

(41)

where

ωg = c2
g

c2
s

. (42)

These N + 3 eigenvectors define the characteristic fields for the 1D system. By computing the product of the right eigenvectors and
the gradients of their corresponding eigenvalues (LeVeque 2002), we find that the first and second fields are genuinely nonlinear
corresponding to either a shock wave or a rarefaction wave. The rest of the fields are linearly degenerate corresponding to a contact
discontinuity in either density or radiation energy density of one group moving at a speed of u. Note that there is also a jump in fluid
pressure such that the total pressure, ptot = p +

∑
g λgEg , is constant across the contact discontinuity. Obviously, in three dimensions,

there are two additional contact discontinuities for transverse velocities just like the case of pure hydrodynamics.

2.4. Advection in Frequency Space

The integrals in Equation (29) form the following system:

∂Eg

∂t
=

∫
g

∂

∂ν

[(
1 − f

2
∇ · u +

3f − 1

2
n̂n̂ : ∇u

)
νEν

]
dν, (43)

which can also be written in the conservation law form
∂q1

∂t
+

∂(aqq1)

∂ ln ν
= 0, (44)

where q1 = νEν and aq = −[(1−f )/2](∇ ·u)− [(3f −1)/2]n̂n̂ : ∇u. Here we have used Equation (19). Equation (44) describes the
advection of q1 in logarithmic frequency space with an advection speed of aq. Because

∫
q1d ln ν is the integrated radiation energy,

the system conserves energy.
Various terms in Equation (29) have been split between the hyperbolic subsystem (Section 2.3) and the system for the advection

in the frequency space (Section 2.4). There is, however, another way to look at Equation (29). The evolution of the radiation energy
density (Equation (29)) without the diffusion term ∇ · [(cλg/χg)∇Eg] and the source–sink term −c(κgEg − jg) can also be split as

∂Eg

∂t
= − ∇ · (Egu), (45)

∂Eν

∂t
= ∂

∂ ln ν

[(
1 − f

2
∇ · u +

3f − 1

2
n̂n̂ : ∇u

)
Eν

]
. (46)

Equation (46) also represents an advection in logarithmic frequency space and can be written in the form

∂q2

∂t
+

∂(aqq2)

∂ ln ν
= 0, (47)

where q2 = Eν . Here the conserved quantity is the number of radiation particles (i.e.,
∫

Eν/ν dν). This new way of splitting will be
further discussed later in Section 3.1.

2.5. Multigroup Radiation Diffusion

The parabolic part of the system consists of the radiation diffusion and source–sink terms, which were omitted from the discussion
of the hyperbolic subsystem (Section 2.3) and advection in frequency space (Section 2.4),

∂(ρe)

∂t
=

∑
g

c(κgEg − jg), (48)

∂(ρYe)

∂t
=

∑
g

cξg(κgEg − jg), (49)

∂Eg

∂t
= − c(κgEg − jg) + ∇ ·

(
cλg

χg

∇Eg

)
, (50)

where e is the specific internal energy of the fluid, and g = 1, 2, . . . , N . The term c(κgEg − jg) represents the energy exchange in the
comoving frame between the matter and the gth radiation group through absorption and emission of radiation. Note that the terms on
the right-hand side (RHS) of Equations (48)–(50) all contain the speed of light c. Thus, these are order O(1) terms in v/c. An implicit
treatment for these equations is usually necessary because of their stiffness. For photon radiation, Equation (49) is not needed.
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3. NUMERICAL METHODS

CASTRO uses a nested hierarchy of logically rectangular, variable-sized grids with simultaneous refinement in both space and
time. The AMR algorithms for hyperbolic and radiation diffusion equations in CASTRO have been described in detail in Papers I and
II, respectively. The multigroup solver does not require any changes in the AMR algorithms. Thus, we will not describe them again
in this paper.

In this section, we describe the single-level integration scheme. For each step at a single level of refinement, the state is first
evolved using an explicit method for the hyperbolic subsystem (Equations (30)–(34)) and advection in frequency space (Section 3.1).
Then an implicit update for radiation diffusion and source–sink terms is performed (Section 3.2). In Section 3.2.4, we describe two
acceleration schemes for speeding up the convergence rate of the implicit solver for multigroup radiation diffusion equations.

3.1. Explicit Solver for Hyperbolic Subsystem and Advection in Frequency Space

The hyperbolic subsystem (Section 2.3) is treated explicitly. Our Godunov algorithm for the hyperbolic subsystem of the multigroup
radiation hydrodynamics is an extension of the hyperbolic solver for the gray radiation hydrodynamics presented in Paper II, which
in turn is based on the hydrodynamics algorithm presented in Paper I of this series. We refer the reader to Papers I and II for a detailed
description of the integration scheme, which supports a general equation of state, self-gravity, nuclear reactions, the advection of
nuclear species and electron fraction. Here we will only present a brief overview of the Godunov scheme.

The time evolution of the hyperbolic subsystem can be written in the form

∂U
∂t

= −∇ · F, (51)

where U = (ρ, ρu, ρE,E1, E2, . . . , EN )T denotes the conserved variables and F is their flux. The conserved variables are defined at
cell centers. We predict the primitive variables, including ρ, u, p, ρe, Eg, where g = 1, 2, . . . , N , from cell centers at time tn to edges
at time tn+1/2 and use an approximate Riemann solver to construct fluxes, Fn+1/2, on cell faces. This algorithm is formally second
order in both space and time. The time step is computed using the standard Courant–Friedrichs–Lewy (CFL) condition for explicit
methods, and the sound speed used in the computation is now the radiation-modified sound speed cs (Equation (39)). The time step
is also limited by maximally allowed changes in temperature and electron fraction in the implicit solver. Additional constraints for
the time step are applied if additional physics, such as burning, is included. CASTRO solves the hyperbolic subsystem of radiation
hydrodynamics with an unsplit piecewise parabolic method (PPM) with characteristic tracing and full corner coupling (Miller &
Colella 2002). An approximate Riemann solver based on the Riemann solver of Bell et al. (1989) and P. Colella et al. (unpublished),
which utilizes the eigenvectors of the system, is used to compute the Godunov states and fluxes at the cell interface.

Advection in frequency space (Section 2.4) can also be treated explicitly because its timescale is comparable to that of the hyperbolic
subsystem. One approach is to adopt an operator-splitting method and to evolve Equation (44) with a Godunov method. This is the
approach taken by van der Holst et al. (2011) in the CRASH code for photon radiation. The term −[(3fg − 1)/2]Eν n̂n̂ : ∇u can be
treated as a source term of Equation (44). The success of this approach for a number of test problems has been demonstrated by van der
Holst et al. (2011). We have also found that this approach can produce satisfactory results for all the photon test problems in Section 4.
However, we have found that erroneous results were obtained for core-collapse supernova simulations (Section 4.2), probably due
to operator-splitting errors. One difficulty in core-collapse supernova simulations is that the divergence of velocity can be significant
because there is a strong shock and the typical velocity in front of the shock is ∼0.1–0.2 c. In the case of core-collapse supernovae,
the negative divergence of velocity will shift neutrinos toward high frequency (Equation (44)). The stronger conservative scattering at
higher frequency can further amplify the neutrino energy density due to the work term u · ∇{[(1 − fg)/2]Eg} (Equation (34)). These
two processes can combine to cause unphysical results due to splitting errors. However, the origin of the various terms involved in
these two processes is the term ∂(Pν : ∇u)/∂ ln ν in Equation (5). To avoid operator-splitting errors, it is therefore desirable to treat
the term ∂(Pν : ∇u)/∂ ln ν without splitting it. On the other hand, the term can also make a significant contribution to the hyperbolic
subsystem in the optically thick limit, and we do not wish to sacrifice accuracy of the hyperbolic subsystem by taking the traditional
approach of leaving out radiation from the Riemann solver for the hydrodynamics.

To avoid the operator-splitting without sacrificing the accuracy of the hyperbolic subsystem, we have adopted a new approach based
on splitting the radiation energy density equation into Equations (45) and (46). Note that the radiation diffusion and source–sink terms
will be treated separately by an implicit solver (Section 3.2). Our new approach still utilizes the Godunov scheme for the hyperbolic
subsystem governed by Equations (30)–(34). After the Godunov states and fluxes at the cell interfaces are obtained, all variables in
the hyperbolic system except the radiation energy density are updated as usual. For the radiation energy density, two steps are taken.
The radiation energy density is first updated according to Equation (45) with its RHS computed using the Godunov states. Then
another Godunov solver is used to evolve Equation (47), which is equivalent to Equation (46). The conversion between Eg and Eν is
performed according to Eg = Eν(νg)νgΔ ln νg . The Godunov states at time tn+1/2 of the first Godunov solver are used in computing
∇ · u and ∇u to obtain the wave speed aq in the frequency space advection. The second Godunov scheme for the frequency space
advection is a standard approach based on the method of lines. For time integration we use the third-order total variation diminish
Runge–Kutta scheme of Shu & Osher (1988). We use the piecewise linear method with a monotonized central slope limiter (van Leer
1977) to reconstruct q2 and aq in order to achieve high order in (logarithmic frequency) space. The reconstructed variables are used to
compute the HLLE flux (Harten et al. 1983; Eisenstat 1981). The frequency space advection has its own CFL condition for stability.
Since CASTRO uses the hydrodynamic CFL condition with other additional constraints for the time steps, if necessary, subcycling
in time is employed in order to satisfy the frequency space CFL condition.
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3.2. Implicit Solver for Radiation Diffusion and Source–Sink Terms

The implicit solver evolves the radiation and matter according to Equations (48)–(50) with the results of the explicit update
(Section 3.1) as the initial conditions. Our scheme is based on a first-order backward Euler method.

3.2.1. Outer Newton Iteration

We solve the parabolic subsystem (Equations (48)–(50)) iteratively via Newton’s method. We define

Fe = ρe − ρe− − Δt
∑

g

c(κgEg − jg), (52)

FY = ρYe − ρY−
e − Δt

∑
g

cξg(κgEg − jg), (53)

Fg = Eg − E−
g − Δt ∇ ·

(
cλg

χg

∇Eg

)
+ Δt c(κgEg − jg), (54)

where the − superscript denotes the state following the explicit update, and g = 1, 2, . . . , N . The desired solution is for Fg, Fe, and
FY to all be zero. We approach the solution by the Newton iteration, and in each iteration step we solve the following system:⎡

⎢⎣
(∂Fe/∂T )(k) (∂Fe/∂Ye)(k) (∂Fe/∂Eg)(k)

(∂FY /∂T )(k) (∂FY /∂Ye)(k) (∂FY /∂Eg)(k)

(∂Fg/∂T )(k) (∂Fg/∂Ye)(k) (∂Fg/∂Eg)(k)

⎤
⎥⎦

⎡
⎣ δT (k+1)

δY (k+1)
e

δE(k+1)
g

⎤
⎦ =

⎡
⎣ −F (k)

e

−F
(k)
Y

−F (k)
g

⎤
⎦ . (55)

Here, δT (k+1) = T (k+1) − T (k), δY (k+1)
e = Y (k+1)

e − Y (k)
e , and δE(k+1)

g = E(k+1)
g − E(k)

g , where the (k) superscript denotes the stage of
the Newton iteration. The exact Jacobian matrix in Equation (55) is very complicated. For simplicity, we neglect the derivatives of
the diffusion coefficient cλg/χg . This is a common practice in radiation transport and does not appear to significantly degrade the
convergence rate. With the approximate Jacobian matrix, we can eliminate δT and δYe from Equation (55) and obtain the following
equation for E(k+1)

g :

(
cκg +

1

Δt

)
E(k+1)

g − ∇ ·
(

cλg

χg

∇E(k+1)
g

)
= cjg +

E−
g

Δt
+ Hg

⎡
⎣c

∑
g′

(
κg′E

(k+1)
g′ − jg′

)
− 1

Δt
(ρe(k) − ρe−)

⎤
⎦

+ Θg

⎡
⎣c

∑
g′

ξg′
(
κg′E

(k+1)
g′ − jg′

)
− 1

Δt

(
ρY (k)

e − ρY−
e

)⎤⎦ . (56)

To reduce clutter, we have dropped the (k) superscript for λg , κg , χg , and jg. The newly introduced variables in Equation (56) are
given by

Hg =
(

∂jg

∂T
− ∂κg

∂T
E(k)

g

)
ηT −

(
∂jg

∂Ye

− ∂κg

∂Ye

E(k)
g

)
ηY , (57)

Θg =
(

∂jg

∂Ye

− ∂κg

∂Ye

E(k)
g

)
θY −

(
∂jg

∂T
− ∂κg

∂T
E(k)

g

)
θT , (58)

where

ηT = cΔt

Ω

[
ρ + cΔt

∑
g

ξg

(
∂jg

∂Ye

− ∂κg

∂Ye

E(k)
g

)]
, (59)

ηY = cΔt

Ω

[
cΔt

∑
g

ξg

(
∂jg

∂T
− ∂κg

∂T
E(k)

g

)]
, (60)

θT = cΔt

Ω

[
ρ

∂e

∂Ye

+ cΔt
∑

g

(
∂jg

∂Ye

− ∂κg

∂Ye

E(k)
g

)]
, (61)

θY = cΔt

Ω

[
ρ

∂e

∂T
+ cΔt

∑
g

(
∂jg

∂T
− ∂κg

∂T
E(k)

g

)]
, (62)

Ω =
[
ρ

∂e

∂T
+ cΔt

∑
g

(
∂jg

∂T
− ∂κg

∂T
E(k)

g

)][
ρ + cΔt

∑
g

ξg

(
∂jg

∂Ye

− ∂κg

∂Ye

E(k)
g

)]

−
[
ρ

∂e

∂Ye

+ cΔt
∑

g

(
∂jg

∂Ye

− ∂κg

∂Ye

E(k)
g

)][
cΔt

∑
g

ξg

(
∂jg

∂T
− ∂κg

∂T
E(k)

g

)]
. (63)

Here all the derivatives are computed from the results of the previous Newton iteration (i.e., the (k) state).
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3.2.2. Inner Iteration

We now present our algorithm for solving Equation (56), which is actually a set of N equations coupled through the summation
terms on the RHS of Equation (56). The system is usually too large to be solved directly. Instead, we solve it by decoupling the groups
and utilizing an iterative method. Note that the iteration here for solving Equation (56) is different from the Newton iteration for
solving the entire parabolic subsystem. The inner iteration here is embedded inside the outer Newton iteration step. In our algorithm,
we avoid the coupling by replacing the radiation energy density in the coupling terms with its state from the previous inner iteration.
Thus, each step of the inner iteration solves

(
cκg +

1

Δt

)
E�+1

g − ∇ ·
(

cλg

χg

∇E�+1
g

)
= cjg +

E−
g

Δt
+ Hg

⎡
⎣c

∑
g′

(
κg′E�

g′ − jg′
) − 1

Δt
(ρe(k) − ρe−)

⎤
⎦

+ Θg

⎡
⎣c

∑
g′

ξg′
(
κg′E�

g′ − jg′
) − 1

Δt

(
ρY (k)

e − ρY−
e

)⎤⎦ , (64)

where � is the inner iteration index. Here, we have dropped the (k + 1) superscript for E�+1
g and E�

g to reduce clutter. For the first inner
iteration, the state of the previous inner iteration is set to the result of the previous outer iteration. The inner iteration for Equation (64)
is stopped when the maximum of

∑
g |(E�+1

g − E�
g)|/∑

g E�+1
g on the computational domain is below a preset tolerance (e.g., 10−6).

CASTRO can solve equations in the following canonical form (Paper II):

AE�+1
g −

∑
i

∂

∂xi

(
Bi

∂E�+1
g

∂xi

)
+
∑

i

∂

∂xi

(
CiE

�+1
g

)
+
∑

i

Di

∂E�+1
g

∂xi
= RHS, (65)

where A are cell-centered coefficients and Bi, Ci, and Di are centered at cell faces. We use the same approach for spatial discretization
at the AMR coarse–fine interface as in Almgren et al. (1998). For Equation (64) the Ci and Di coefficients are not used. The same
canonical form works for Cartesian, cylindrical, and spherical coordinates so long as appropriate metric factors are included in the
coefficients and the RHS. CASTRO uses the hypre library (Falgout & Yang 2002; hypre Code Project 2012) to solve the linear system.

3.2.3. Matter Update

When the numerical solution to Equation (56) is obtained via the inner iteration (Equation (64)), we update the matter and continue
with the next outer iteration until convergence is achieved. Using Equation (55), we can obtain

δT (k+1) = ηT

[∑
g

(
κgE

(k+1)
g − jg

) − ρe(k) − ρe−

cΔt

]
− θT

[∑
g

ξg

(
κgE

(k+1)
g − jg

) − ρY (k)
e − ρY−

e

cΔt

]
, (66)

δY (k+1)
e = − ηY

[∑
g

(
κgE

(k+1)
g − jg

) − ρe(k) − ρe−

cΔt

]
+ θY

[∑
g

ξg

(
κgE

(k+1)
g − jg

) − ρY (k)
e − ρY−

e

cΔt

]
. (67)

Thus, we could update the matter temperature as T (k+1) = T (k) + δT (k+1) and electron fraction as Y (k+1)
e = Y (k)

e + δY (k+1)
e , and then

compute the matter specific internal energy e(k+1) from T (k+1) and Y (k+1)
e . However, the total energy (radiation energy plus matter

internal energy) and lepton number would not be conserved in this type of updates. Furthermore, our experience with this approach is
that sometimes the update gives T and Ye that are out of the bounds of opacity and EOS tables used in our core-collapse simulations
and hence causes convergence issues. Thus, a different approach is taken in CASTRO. To conserve the total energy and lepton
number, we update the matter as follows:

ρe(k+1) = Hρe(k) + (1 − H )ρe− + Θ
(
ρY (k)

e − ρY−
e

)
+ cΔt

∑
g

[(
κgE

�+1
g − jg

) − (H + Θξg)
(
κgE

�
g − jg

)]
, (68)

ρY (k+1)
e = Θ̄ρY (k)

e + (1 − Θ̄)ρY−
e + H̄ (ρe(k) − ρe−) + cΔt

∑
g

[
ξg

(
κgE

�+1
g − jg

) − (H̄ + Θ̄ξg)
(
κgE

�
g − jg

)]
, (69)

where H = ∑
g Hg , Θ = ∑

g Θg , H̄ = ∑
g ξgHg , and Θ̄ = ∑

g ξgΘg . Then we compute temperature T (k+1) and electron fraction
Y (k+1)

e from the newly updated ρe(k+1) and ρY (k+1)
e . We also compute the new absorption, scattering, and emission coefficients using

the new temperature and electron fraction. By updating the matter using Equations (68) and (69), the implicit algorithm conserves
the total energy and electron lepton number regardless of the accuracy of the solution to the parabolic subsystem.

The outer iteration for solving Equations (48)–(50) uses the following convergence criteria:

|T (k+1) − T (k)| < ε T (k+1), (70)
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∣∣Y (k+1)
e − Y (k)

e

∣∣ < ε Y (k+1)
e , (71)

∣∣F (k+1)
e

∣∣ < ε ρ

[∣∣∣∣∣
(

∂e

∂T

)(k+1)
∣∣∣∣∣ |T (k+1) − T (k)| +

∣∣∣∣∣
(

∂e

∂Ye

)(k+1)
∣∣∣∣∣ ∣∣Y (k+1)

e − Y (k)
e

∣∣] , (72)

∣∣F (k+1)
Y

∣∣ < ε ρY (k+1)
e , (73)

where ε is a small number such as ε = 10−6. We do not use the relative error of the matter-specific internal energy e because it may
not accurately reflect the error since that e can be shifted by an arbitrary amount. Typically, the outer iteration is stopped only when
all four conditions (inequalities (70)–(73)) are satisfied. But for problems with extremely high opacities, inequalities (72) and (73)
can be difficult to achieve, and only inequalities (70) and (71) are used.

3.2.4. Acceleration Scheme

We solve the multigroup diffusion equation (Equation (56)) using an iterative method. The system of the multigroup radiation
diffusion equations is coupled. Each individual radiation group depends on the matter, which in turn depends on all radiation groups.
When the coupling is strong (e.g., large opacity and small heat capacity) and/or the time step is large, the convergence rate of
the iterative method we have presented in Section 3.2.2 can be very slow. To improve the convergence rate, we have extended the
synthetic acceleration scheme of Morel et al. (1985, 2007) for photon radiation to neutrino radiation, and have developed two types
of acceleration schemes.

Local acceleration scheme. We define the error of radiation energy density after � inner iterations as

ε�+1
g = Ee

g − E�+1
g , (74)

where Ee
g is the exact solution of Equation (56) and E�+1

g is the result of the �th inner iteration via Equation (64). In our local
acceleration scheme, the spatial derivatives of ε�+1

g are assumed to be zero. This is justified because the spatially constant limit
corresponds to the most slowly convergent mode (Morel et al. 1985) and our goal is to improve the convergence rate by curing the
slowest decaying mode of the errors. Using Equations (56) and (64), we derive an equation for the error in the gth group,

κt
gε

�+1
g − Hg

∑
g′

κg′ε�+1
g′ − Θg

∑
g′

ξg′κg′ε�+1
g′ = Hgr

�+1
T + Θgr

�+1
Y , (75)

where

κt
g = κg +

1

cΔt
, (76)

r�+1
T =

∑
g′

κg′
(
E�+1

g′ − E�
g′
)
, (77)

r�+1
Y =

∑
g′

ξg′κg′
(
E�+1

g′ − E�
g′
)
. (78)

Equation (75) can be solved analytically and gives

ε�+1
g = (qHg + rΘg)r�+1

T + (pΘg + sHg)r�+1
Y

κt
g(pq − rs)

, (79)

where

p = 1 −
∑

g

Hgκg

κt
g

, (80)

q = 1 −
∑

g

Θgξgκg

κt
g

, (81)

r =
∑ Hgξgκg

κt
g

, (82)

s =
∑ Θgκg

κt
g

. (83)
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The improved solution is therefore
E�+1

g := E�+1
g + ε�+1

g . (84)

The acceleration is placed after the convergence check for the inner iteration so that no unnecessary acceleration is applied to
converged solutions.

Gray acceleration scheme. The original acceleration scheme of Morel et al. (1985) utilizes a gray diffusion equation for errors. It
is postulated that the normalized multigroup spectrum of the errors is given by the normalized equilibrium spectrum. Note that our
local acceleration scheme is based on the assumption of local equilibrium. Therefore, the spectrum defined as

ψg = ε�+1
g∑

g′ ε
�+1
g′

(85)

is postulated to be

ψg = ε̃�+1
g∑

g′ ε̃
�+1
g′

, (86)

where ε̃�+1
g is the solution of the local acceleration scheme (Equation (79)). Substituting E�+1

g = Ee
g − ε�+1

g into Equation (64) and
summing over groups, we obtain

Aε�+1 − ∇ · (d̄∇ε�+1) + ∇ · (φε�+1) = cHr�+1
T + cΘr�+1

Y , (87)

where

ε�+1 =
∑

g

ε�+1
g , (88)

A = c(1 − H )κ̄ − cΘκ̄Y +
1

Δt
, (89)

d̄ =
∑

g

ψg

cλg

χg

, (90)

φ = −
∑

g

cλg

χg

∇ψg, (91)

κ̄ =
∑

g

ψgκg, (92)

κ̄Y =
∑

g

ψgξgκg. (93)

Equation (87) is in the canonical form that CASTRO solves (Equation (65)). The solution of the gray diffusion equation for error,
ε�+1, is used to obtain the improved multigroup solution

E�+1
g := E�+1

g + ψgε
�+1. (94)

We note again that the acceleration operation is placed after the convergence check for the inner iteration so that no unnecessary
acceleration is applied to converged solutions.

4. TEST PROBLEMS

In this section, we present detailed tests of the code demonstrating its ability to handle a wide range of radiation hydrodynamics
problems. Photon radiation problems are presented in Section 4.1, whereas Section 4.2 shows neutrino radiation hydrodynamics
simulations of core-collapse supernovae. Note that not every term or equation in the full system of radiation hydrodynamics is
included in every test. This allows various parts of the code to be tested separately.

A CFL number of 0.8 is used for these tests unless stated otherwise or a fixed time step is used. For photon radiation test problems,
no additional constraint is posed by the implicit solver. For core-collapse supernova simulations, the time step is further constrained
by limiting the estimated relative changes in temperature to less than 1% and the estimated absolute changes in electron fraction to
less than 0.01 using the change rates from the previous time step, and in our simulations this only happens around the time of core
bounce. The relative tolerances for both the outer and inner iterations in the implicit update are 10−6. All convergence criteria for
the outer iteration (inequalities (70)–(73)) are used except for the tests in Sections 4.1.4 and 4.1.7 with extremely high opacities.
By default, the radiation groups are uniform in logarithmic frequency space and the representative frequency for the gth group is
νg = √

νg−1/2νg+1/2. For AMR simulations, the “deferred sync” scheme (Paper II) is used for flux synchronization between coarse
and fine levels in the implicit solver.

11



The Astrophysical Journal Supplement Series, 204:7 (27pp), 2013 January Zhang et al.

Table 1
Relative Errors of the Linear Multigroup Diffusion Test Problem

xa ε(T ) × 103 ε(Er ) × 103 x ε(T ) × 103 ε(Er ) × 103

0.00 0.0017 0.3209 0.51 4.8283 0.2585
0.20 0.0016 0.3220 0.52 1.8030 0.0232
0.40 0.0007 0.3460 0.53 1.0335 0.1495
0.46 0.0077 0.4095 0.54 0.7124 0.2330
0.47 0.0170 0.4443 0.60 0.3104 0.5469
0.48 0.0461 0.5136 0.80 0.5774 1.4067
0.49 0.2195 0.7169 1.00 1.3612 2.2413
0.50 0.0020 0.3712

Notes. The relative errors of temperature and total radiation energy density at
the dimensionless time of 1 are shown.
a Dimensionless spatial coordinate.

4.1. Photon Radiation Test Problems

4.1.1. Linear Multigroup Diffusion

In this problem, we simulate a linear multigroup diffusion test problem introduced by Shestakov & Bolstad (2005). This can test
the multigroup diffusion part of the system

∂(ρe)

∂t
=

∑
g

c(κgEg − jg), (95)

∂Eg

∂t
= −c(κgEg − jg) + ∇ ·

(
cλg

χg

∇Eg

)
. (96)

To make the nonlinear system mathematically tractable, Shestakov & Bolstad (2005) linearize the system using the following
assumptions. First, the absorption coefficient is assumed to be proportional to ν−3, and the group-averaged absorption is given by

κg = Cκν
−3
g , (97)

where Cκ is a constant. Second, radiation emission is assumed to obey Wien’s law rather than Planck’s law, and it is further modified
so that

Bg = 2πh

c2
ν3

g

[
exp

(
−hνg−1/2

kTf

)
− exp

(
−hνg+1/2

kTf

)]
T , (98)

where Tf is a fixed temperature. Note that the group-integrated Bg now has linear dependence on T. Finally, there is no scattering
and the diffusion is not flux limited. Under these assumptions, Shestakov & Bolstad (2005) have obtained exact solutions for the
linearized system.

The test that we have simulated is the first problem in Shestakov & Bolstad (2005). We have set up the test using physical units rather
than the dimensionless units of Shestakov & Offner (2008). The 1D computational domain in physical units is (0, 1.0285926×106) cm,
corresponding to (0, 5.12) in dimensionless units. We use a symmetry boundary condition at the lower boundary, and a Marshak
boundary with no incoming flux at the upper boundary (i.e., Eg +(2/3κg)∂Eg/∂x = 0). The mass density is 1.8212111×10−5 g cm−3.
The specific heat capacity of the matter at constant volume is 9.9968637 × 107 erg K−1 g−1. Initially, the temperature is set to 0.1 keV
and 0, for x < 0.5 and x > 0.5, respectively. Here, x is a dimensionless coordinate. The radiation energy density is initially set
to zero everywhere. The constant Cκ is set to 4.0628337 × 1043 cm−1 Hz3. The fixed temperature in the group-integrated radiation
emission (Equation (98)) is Tf = 0.01 keV, corresponding to Tf = 0.1 in dimensionless units. We use 64 radiation groups with the
lowest boundary at zero. The width of the first group is set to 1.2089946 × 1013 Hz, corresponding to 5 × 10−4 in dimensionless
units, and the width of other groups is set to be 1.1 times the width of its immediately preceding group. The representative frequency
for each group is set to νg = √

νg−1/2 νg+1/2, except that ν1 is set to 0.5 ν3/2 for the first group. We have run a simulation with 2048
uniform cells. Thus, the dimensionless cell size is 1/400. The time step is fixed at 5.8034112 × 10−8 s, corresponding to 1/200 in
dimensionless units. No acceleration scheme is used in this test. Figure 1 shows the results after 200 steps. The comparison with the
tabular data of Shestakov & Offner (2008) is shown in Table 1. Relative errors are computed as ε(f ) = |fn − fe|/fe, where fn and fe
are the numerical and exact results, respectively. Because the tabular data of the exact solution are located on the faces of numerical
cells, averaging of the numerical data has been performed for the comparison. The results are in excellent agreement with the exact
solution and are comparable to the numerical results of Shestakov & Offner (2008).

To assess the convergence behavior of our implicit scheme, we have performed a series of uniform-grid and AMR simulations
of the linear multigroup diffusion test problem with various resolutions. The initial setup is the same as above except for spatial
resolution and time step. Two levels are used in the AMR runs with the dimensionless domain of (0.25,0.75) covered by the fine (i.e.,
level 1) grids. In the convergence study, when the spatial resolution changes by a factor of two from one run to another, we change the
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Figure 1. Linear multigroup diffusion test. Numerical results are shown in lines, whereas the analytic solutions are shown in circle symbols. We show dimensionless
total radiation energy density and temperature at the dimensionless time of 1 in panels (a) and (b), respectively. The spatial coordinate x is also dimensionless.

Table 2
L1-norm Errors and Convergence Rate for the Total Radiation Energy Density at the Dimensionless Time of 1 in the Linear Multigroup Diffusion Test Problem

Δx Δt L1 Error Convergence Rate

1/100 2/25 2.91E−3
1/200 1/50 7.36E−4 2.0
1/400 1/200 1.90E−4 1.9
1/800 1/800 4.87E−5 2.0

Notes. Four one-dimensional uniform-grid runs with various resolutions are
shown. The errors are computed on the dimensionless domain of (0, 1).

Table 3
L1-norm Errors and Convergence Rate for the Total Radiation Energy Density at the Dimensionless Time of 1 in the Linear Multigroup Diffusion Test Problem

Δxa Δtb L1 Error Convergence Rate

1/50, 1/100 4/25, 2/25 3.58E−3
1/100, 1/200 1/25, 1/50 1.05E−3 1.8
1/200, 1/400 1/100, 1/200 2.69E−4 2.0
1/400, 1/800 1/400, 1/800 6.82E−5 2.0

Notes. Four one-dimensional AMR runs with various resolutions are shown.
The errors are computed on the dimensionless domain of (0, 1).
a Cell size on levels 0 and 1.
b Time step on levels 0 and 1.

time step by a factor of four. Because our implicit scheme is first order in time and second order in space, the expected convergence
rate in the convergence study is second order with respect to Δx. Tables 2 and 3 show the L1-norm errors and convergence rate for the
total radiation energy density on the dimensionless spatial domain of (0, 1) at the dimensionless time of 1. Here, the L1-norm error
of the total radiation energy density is computed as

ε1(Er ) =
∑

i |Er,i − Er (xi)|Δxi∑
i Er (xi)Δxi

, (99)

where Er,i = ∑
g Eg,i is the numerical result for cell i and Er (xi) is the “exact” solution obtained from a high-resolution uniform-grid

simulation with Δx = 1/3200 and Δt = 1/12800. The results of both uniform-grid and AMR simulations demonstrate the second-
order convergence rate with respect to Δx as expected. Because only part of the domain in the AMR runs is covered by fine grids, the
AMR runs have somewhat larger errors than the uniform-grid runs with the same resolution as the fine grids.
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4.1.2. Nonequilibrium Radiative Transfer with Picket-fence Model

Su & Olson (1999) have studied a nonequilibrium radiative transfer problem with a multigroup model, more specifically the
picket-fence model. There are some special assumptions in this test problem. The volumetric heat capacity at constant volume is
assumed to be cv = αT 3, where T is the matter temperature and α is a parameter. The group-integrated Planck function is assumed
to be

Bg = pg

( ac

4π

)
T 4, (100)

where a is the radiation constant and pg are parameters such that
∑

g pg = 1. It is also assumed that the absorption coefficient is
independent of temperature and there is no scattering. Su & Olson (1999) have also defined dimensionless variables for convenience.
The dimensionless spatial coordinate is defined as

x = κ̄z, (101)

where z is the coordinate in physical units, and
κ̄ =

∑
g

pgκg. (102)

The dimensionless time is defined as

τ =
(

4acκ̄

α

)
t, (103)

where t is the time in physical units. The dimensionless variables Ug for radiation energy density and V for matter energy density are
defined as

Ug = Eg

aT 4
0

, (104)

V =
(

T

T0

)4

, (105)

where T0 is a reference temperature. In this test problem, there is a constant radiation source that exists for a finite period of time
(0 � τ � τ0) on a finite range (|x| < x0). Su & Olson (1999) have found analytic solutions to the problem for both transport and
diffusion approaches.

Here, we simulate Case C of Su & Olson (1999) by solving the multigroup diffusion equations (Equations (95) and (96)) and
compare the results with the diffusion solution of Su & Olson (1999). Two radiation groups are used in this test, with p1 = p2 = 0.5.
The absorption coefficients are set to κ1 = 2/101 cm−1 and κ2 = 200/101 cm−1. Thus, κ̄ = 1 cm−1. The constant α in the expression
for volumetric heat capacity is set to α = 4a. The reference temperature is chosen to be T0 = 106 K. The parameters for the radiation
source are x0 = 0.5 and τ0 = 10. When τ < τ0, the radiation source deposits radiation energy to the region |x| < x0 and increases the
radiation energy density at a rate of pgcκ̄aT 4

0 for each group. The computational domain is 0 < x < 102.4 covered by 1024 uniform
cells. The lower boundary is symmetric and the radiation energy density outside the upper boundary is set to zero. Initially, there is
no radiation and the temperature is zero. A fixed time step Δτ = 0.1 is employed. The explicit solver is turned off in the simulation,
and the radiation flux is not limited. No acceleration scheme is used in this test. The numerical results are shown in Figure 2. Our
results are in excellent agreement with the analytic solution.

4.1.3. Radiating Sphere

Graziani (2008) found an analytic solution for the spectrum of a radiating sphere in a medium with frequency-dependent opacity.
This test was used by Swesty & Myra (2009) to test their V2D code. In this test, a hot sphere with a fixed temperature is surrounded
by a cold static medium. The absorption coefficient is assumed to be zero and the radiative transfer is due to coherent and isotropic
scattering. Thus, there is no radiation–matter coupling or group coupling. The time-dependent spectrum at a given place in the medium
is therefore the superposition of the blackbody spectrum of the medium and the spectrum of the radiation originated from the hot
sphere.

We perform this test in 1D spherical geometry. The computational domain is 0.02 < r < 0.1 cm and is covered by 128 uniform
cells. The hot sphere has a fixed temperature of 1.5 keV and the medium is at 50 eV. We use 60 energy groups covering an energy
range of 0.5 eV to 308 keV. The group Rosseland mean coefficient is assumed to be χg = 1013(νg/3.6 × 1014 Hz)−3 cm−1. The
explicit solver is turned off. No acceleration scheme is used in this test. There is no outer iteration in the implicit solver because the
matter properties do not change. The time step is fixed at 10−15 s. The spectrum at r = 0.06 cm and t = 10−12 s is shown in Figure 3.
The numerical results are again in good agreement with the analytic solution.

4.1.4. Shock Tube Problem in Strong Equilibrium Regime

In this 1D problem, the initial conditions of the matter are ρL = 10−5 g cm−3, TL = 1.5 × 106 K, uL = 0 and ρR = 10−5 g cm−3,
TR = 3 × 105 K, uR = 0, where L stands for the left half and R is the right half of the computational domain (0 < x < 100 cm).
The gas is assumed to be ideal with an adiabatic index of γ = 4/3 and a mean molecular weight of μ = 1. Initially, the radiation
is assumed to be in thermal equilibrium with the gas (i.e., Eg = 4πBg/c). The interaction coefficients are set to κg = 106 cm−1

and χg = 108 cm−1. Thus, due to the huge opacities, the system is close to the limit of strong equilibrium with no diffusion and is
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Figure 2. Nonequilibrium radiative transfer with the picket-fence model. Numerical results of U1, U2, and V are shown for τ = 3 (solid lines) and 30 (dashed lines).
Also shown are analytic results for τ = 3 (circles) and 30 (diamonds).

Figure 3. Spectrum from the radiating sphere observed at t = 10−12 cm and r = 0.06 cm. Both numerical (circle symbols) and analytic (solid line) results are shown.

essentially governed by Equations (30)–(34) with λg = 1/3 and fg = 1/3. The parameters of this test problem are chosen such that
neither radiation pressure nor gas pressure can be ignored. This test is adapted from the shock tube problem in Paper II. However,
the adiabatic index of the gas is now γ = 4/3 rather than 5/3 so that we can compare the numerical results with the exact solution
of a pure hydrodynamic Riemann problem. Furthermore, although this is a one-temperature gray problem due to the huge opacity,
the numerical calculation is performed with 16 radiation groups with the lowest and uppermost boundaries at 1014 and 1018 Hz,
respectively. We use 128 uniform zones in this test. The numerical results are shown in Figure 4. Also shown are the exact solutions of
a pure hydrodynamic Riemann problem corresponding to the numerical problem. The results show good agreement. We also note that
our scheme is stable without using small time steps even though the system is in the “dynamic diffusion” limit (Mihalas & Mihalas
1999) with τu/c ∼ 107, where τ is the optical depth of the system. Either the gray acceleration scheme or the local acceleration
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Figure 4. Shock tube at t = 10−6 s. Numerical results from a full radiation hydrodynamics calculation with 16 radiation groups and 128 cells are shown in symbols.
The exact solutions of a pure hydrodynamic Riemann problem corresponding to the numerical problem are shown in solid lines for comparison. We show mass density
(ρ), velocity (v), total pressure (ptot), and radiation energy density (Er). For the radiation hydrodynamics simulation, the total pressure is the sum of gas pressure and
radiation pressure, and the radiation energy density is summed over all groups. In the pure hydrodynamic Riemann problem, there is no radiation energy density. All
quantities are in cgs units.

scheme (Section 3.2.4) must be employed in this test, otherwise the implicit solver, which is responsible for the thermal equilibrium
between radiation and matter, exhibits extremely slow convergence.

4.1.5. Nonequilibrium Radiative Shock

In this test, we simulate the Mach 5 shock problem of Lowrie & Edwards (2008). In Paper II, we showed results computed
with the gray radiation hydrodynamics solver. Here, we present the numerical results obtained with the multigroup radiation
hydrodynamics solver. In this test, the 1D numerical region (−4000 cm, 2000 cm) initially consists of two constant states:
ρL = 5.45969 × 10−13 g cm−3, TL = 100 K, uL = 5.88588 × 105 cm s−1 and ρR = 1.96435 × 10−12 g cm−3, TR = 855.720 K,
uR = 1.63592 × 105 cm s−1, where L stands for the left and R the right of the point x = 0, respectively. The gas is assumed to be
ideal with an adiabatic index of γ = 5/3 and a mean molecular weight of μ = 1. The setup is the same as that in Paper II4 except that
16 radiation groups are used in this paper. The lowest and uppermost boundaries of the groups are at 1010 and 1015 Hz, respectively.
Initially, the radiation is assumed to be in thermal equilibrium with the gas (i.e., Eg = 4πBg/c). The interaction coefficients are set
to κg = 3.92664 × 10−5 cm−1 and χg = 0.848903 cm−1, respectively. The states at spatial boundaries are held at fixed values. Four
refinement levels (five total levels) are used with a refinement factor of two with the finest resolution being Δx ≈ 1.5 cm. In this
test, a cell is tagged for refinement if the second derivative of either density or temperature exceeds certain thresholds (Paper II). The
initial conditions are set according to the pre-shock and post-shock states of the Mach 5 shock. After a brief period of adjustment,
the system settles down to a steady shock. The simulation is stopped at t = 0.04 s. The results are shown in Figure 5. The agreement
with the analytic solution including the narrow spike in temperature is excellent, except that the numerical results in the figure had to
be shifted by −207 cm in space to match the analytic shock position. This discrepancy in shock position is due to the initial transient
phase as the initial state relaxes to the correct steady-state profile. No flux limiter is used in this calculation because the analytic
solution of Lowrie & Edwards (2008) assumes λ = 1/3. We again found that the implicit solver would fail to converge without an
acceleration scheme. Both the gray acceleration scheme and the local acceleration scheme (Section 3.2.4) work in this test.

4.1.6. Advecting Radiation Pulse

In Paper II, we performed a test of advecting a radiation pulse by the motion of matter with the gray radiation hydrodynamics
solver (see also Krumholz et al. 2007). Here, we repeat the test with small changes to exercise the multigroup aspect of CASTRO.
The setup is the same as that in Paper II, except that the absorption coefficient κ in this paper is given by

κ = 180

(
T

107 K

)−0.5 ( ν

1018 Hz

)−3
[

1 − exp

(
− hν

kT

)]
cm−1. (106)

4 Unlike the simulation shown in Paper II, the simulation here used the 2010 CODATA recommended values of the fundamental physical constants. Therefore, the
physical values of the states have changed slightly.
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Figure 5. Density and temperature profiles for the Mach 5 supercritical shock. Numerical results are shown in symbols. We show density (circles), gas temperature
(plus signs), and radiation temperature (squares). Here radiation temperature is defined as (Er/a)1/4, where Er is the total radiation energy density. Also shown are
the analytic results for density (red solid line), gas temperature (blue solid line), and radiation temperature (green solid line). We show only part of the region near the
density jump. The inset shows a blow-up of the spike in temperature. The numerical results have been shifted by −207 cm in space to compensate for the discrepancy
in shock position caused by the initial setup.

(A color version of this figure is available in the online journal.)

As in the test in Paper II, the initial temperature and density profiles are

T = T0 + (T1 − T0) exp

(
− x2

2w2

)
, (107)

ρ = ρ0
T0

T1
+

aμ

3R

(
T 4

0

T
− T 3

)
, (108)

where T0 = 107 K, T1 = 2 × 107 K, ρ0 = 1.2 g cm−3, w = 24 cm, the mean molecular weight of the gas is μ = 2.33, and R is the
ideal gas constant. Initially, the radiation is assumed to be in thermal equilibrium with the gas. No flux limiter is used in this test
(i.e., λ = 1/3 and f = 1/3). If there were no radiation diffusion, the system would be in an equilibrium with the gas pressure and
radiation pressure balancing each other. Because of radiation diffusion, the balance is lost and the gas moves.

The purpose of this test is twofold. First, we use this test to assess the ability of the code to handle radiation being advected by the
motion of matter. We solve the problem numerically in different laboratory frames. Then we compare the case in which the gas is
initially at rest with the case in which the gas initially moves at a constant velocity. Another purpose is to assess the effect of group
resolution. Since the opacity is very large, the system is close to thermal equilibrium between radiation and matter. Hence, the results
of multigroup radiation hydrodynamics simulations should become increasingly close to those of a gray radiation hydrodynamics
simulation as more groups are used.

We have performed four runs: an unadvected run with 8 radiation groups, an advected run with 8 groups, an advected run with
64 groups, and an advected run using the gray radiation hydrodynamics solver presented in Paper II. The velocity in the unadvected
run is initially zero everywhere, whereas in the advected runs it is 106 cm s−1 everywhere. For the multigroup runs, the lowest and
uppermost group boundaries are at 1015 and 1019 Hz, respectively. In the gray simulation, the single group Planck mean coefficient,
κP, and Rosseland mean coefficient, κR, of the opacity given by Equation (106) are

κP = 3063.96

(
T

107 K

)−3.5

cm−1, (109)

κR = 101.248

(
T

107 K

)−3.5

cm−1. (110)
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Figure 6. Density, velocity and temperature profiles at t = 4.8 × 10−5 s for the test of an advecting radiation pulse. We show the results of four runs including the
unadvected 8 group run (red solid lines), the advected 8 group run (blue dotted lines), the advected 64 group run (black dotted lines), and the advected gray run (green
solid lines). The results of the advected runs have been shifted in space for comparison.

The computational domain in all four runs is a 1D region of −512 < x < 512 cm with periodic boundaries. The numerical grid consists
of 512 uniform cells. The simulations are stopped at t = 4.8×10−5 s. Figure 6 shows the density, velocity, and temperature profiles for
all four runs. The results of the advected runs have been shifted in space for comparison. The profiles from the unadvected eight-group
run and the advected eight-group run are almost identical, demonstrating the accuracy of our scheme in handling radiation advection
by the motion of matter. This is expected because the velocity is significantly smaller than the speed of light (v/c ∼ 3 × 10−5).
The results from the advected 64 group run and the gray run are also almost identical as expected. It is clear that the eight-group
results differ from the gray results. This is not surprising because we did not perform group averaging for interaction coefficients
(Equations (21) and (22)). We also show the relative differences in Figure 7. The relative difference of the advected 8 group run
with respect to the unadvected 8 group run is computed as (advected − unadvected)/unadvected, and the relative difference of the
64 group run with respect to the gray run is computed as (multigroup − gray)/gray. The figure shows that the difference between the
advected and unadvected 8 group runs is less than 0.03% everywhere, and the difference between the 64 group and gray runs is less
than 0.1% everywhere.

4.1.7. Static Equilibrium

In Paper II, we have demonstrated that the gray solver can maintain a perfect static equilibrium in multiple dimensions because the
radiation pressure and the gas pressure are coupled in the Riemann solver. Here, we repeat the test using the multigroup solver. The
setup is the same as that in Paper II. The initial conditions for radiation and matter are the same as those in the test of the advecting
radiation pulse (Section 4.1.6) except that the interaction coefficients are set to a very high value, κg = χg = 1020 cm2 g−1 × ρ. Thus,
almost no diffusion can happen, and the radiation and the matter are in perfect thermal equilibrium. We have performed a calculation
on a 2D Cartesian grid of −512 < x < 512 cm and −512 < y < 512 cm with 512 uniform cells in each direction. The initial velocity
is zero everywhere. For the initial setup, the coordinate x in Equation (107) is replaced by r =

√
x2 + y2. We use 16 radiation groups

with the lowest and uppermost boundaries at 1015 and 1019 Hz, respectively. Figure 8 shows the velocity profile at t = 10−4 s (after
about 6000 steps). The maximal velocity at that time is ∼8 × 10−8 cm s−1, which is about 10−15 of the sound speed. Such a small
gas velocity indicates that the multigroup solver in CASTRO can also maintain a perfect static equilibrium in multiple dimensions,
as does the gray solver in CASTRO.

4.2. Core-collapse Supernova Simulations

In this section, we present core-collapse supernova simulations in 1D spherical and 2D cylindrical coordinates. Newtonian gravity
with a monopole approximation is used in the 2D simulation for simplicity, although CASTRO has a multigrid Poisson solver for
gravity. In the simulations, there are three neutrino species: electron neutrinos, νe, electron antineutrinos, ν̄e, and νμ, which stands
for a combined species representing νμ, ντ , ν̄μ, and ν̄τ . We use a tabular equation of state that provides thermodynamic quantities as
a function of temperature, density, and electron fraction and was constructed from the Shen et al. (1998a, 1998b) mean-field table,
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Figure 7. Relative differences in density (solid lines) and gas temperature (dashed lines) in the test of an advecting radiation pulse. The relative differences between
the advected and unadvected 8 group runs are shown in panel (a), whereas the relative differences between the advected 64 group and advected gray runs are shown
in panel (b).

Figure 8. Structure of the magnitude of velocity at t = 10−4 s in the static equilibrium test. The unit of velocity is cm s−1.

augmented with photons and a general electron/positron EOS, and extended down to 10gcm−3. The opacities used are fully described
in Burrows et al. (2006). They include (1) elastic scattering off nucleons, alpha particles, and the single representative heavy nucleus
at the peak of the binding energy curve calculated by Shen et al. (1998a, 1998b), and (2) charged-current absorption cross sections
off nucleons and nuclei (the latter using the approach of Bruenn 1985). The scattering and absorption cross sections off nucleons are
corrected for weak magnetism and recoil effects, the form factor, electron screening, and ion–ion correlation effects on Freedman
scattering off nuclei are applied, and pair production by nucleon–nucleon bremsstrahlung and electron–positron annihilation (and
their inverses) are included as sources (and sinks). The sink terms of the latter do not include Fermi blocking corrections by the
neutrinos in the final state. Inelastic neutrino–electron scattering is treated as elastic scattering.

4.2.1. One-dimensional Core-collapse Supernova Simulation

We present here a core-collapse supernova simulation in 1D spherical coordinates. The initial model is based on a 15 M
 progenitor
of Woosley & Weaver (1995). The computational domain for this run is 0 < r < 5×108 cm. The simulation employs four refinement
levels (five total levels) with 1024 zones on the coarsest level (i.e., level 0) and a resolution of Δr ≈ 0.305 km on the finest level
(i.e., level 4). The AMR refinement factor is two. The regions where the density is greater than 7.2 × 106 g cm−3 or the enclosed
mass is greater than 1.32 M
 are refined to level 2. In addition, cells on level � will be refined to level � + 1 if Ye < 0.4, s > 5,
∇Ye > 0.01/Δr�, or ∇s > 1/Δr�, where � < 4, s is entropy in units of k baryon−1, and Δr� is the cell width on level �. We use
40 energy groups for electron neutrinos with the first group at 1 MeV and the last group at 300 MeV. We use 32 energy groups for
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Figure 9. Density (upper left), velocity (lower left), temperature (upper center), entropy per baryon (lower center), electron fraction (upper right), and net lepton
fraction (lower right) as a function of enclosed mass for the 1D core-collapse supernova simulation. Snapshots are shown for 0 (black solid lines), 1 ms (red dashed
lines), 15 ms (green dotted lines), and 115 ms (blue dash-dotted lines) after bounce.

(A color version of this figure is available in the online journal.)

electron antineutrinos with the first and last groups at 1 and 100 MeV, respectively. For νμ, we use 40 energy groups with the first and
last groups at 1 and 300 MeV, respectively. The flux limiter of Levermore & Pomraning (1981) is used is this simulation. The local
acceleration scheme is employed. The inner boundary is symmetric. An outflow boundary condition is used for the outer boundary
in the explicit solver. The modified Marshak boundary of Sanchez & Pomraning (1991) with zero incoming flux is used for the outer
boundary in the implicit solver. Thus, the region outside the outer boundary is essentially treated as a vacuum, and the radiation
diffuses into the vacuum. Note that in the usual Marshak boundary based on the classical diffusion theory, the flux at the boundary
does not have the correct behavior in the streaming limit, and the issue has been fixed in the modified Marshak boundary of Sanchez
& Pomraning (1991) by using flux-limited diffusion.

The simulation is carried out to 200 ms after core bounce. Figure 9 shows four snapshots of density, velocity, temperature, entropy,
electron fraction, and net electron lepton fraction (YL). The infall of the material due to gravity results in the increase of the central
density until the core bounces. At bounce, the density reaches ρcore ≈ 2.9 × 1014 g cm−3 at the core. A shock appears around bounce
at Msh ≈ 0.635 M
. The electron and lepton fractions at bounce are Y core

e ≈ 0.288 and Y core
L ≈ 0.326, respectively, at the core.

The core temperature at bounce is T core ≈ 9.98 MeV. The core entropy at bounce is score ≈ 0.901 k baryon−1. These properties
are in agreement with previous studies (e.g., Rampp & Janka 2000; Liebendörfer et al. 2001; Thompson et al. 2003). In a recent
study, Lentz et al. (2012) have obtained Msh ≈ 0.492 M
, ρcore ≈ 4.264 × 1014 g cm−3, Y core

e ≈ 0.2407, and Y core
L ≈ 0.2782 for

their model N-FullOp at bounce, and Msh ≈ 0.717 M
, ρcore ≈ 3.336 × 1014 g cm−3, Y core
e ≈ 0.3046, and Y core

L ≈ 0.3696 for their
model N-ReduceOp at bounce. Except for ρcore, the properties of our model at bounce are in between those in models N-FullOp and
N-ReduceOp of Lentz et al. (2012).

Figure 9 shows a spike near the shock in the Ye and YL profiles shortly after bounce (see also Lentz et al. 2012). The spike of YL
is caused by electron neutrinos leaking out of the shock. The absorption of some of those neutrinos by the pre-shock material results
in a spike of Ye. In the post-shock region, the minimal Ye drops rapidly for the first few milliseconds after bounce due to electron
capture; it then becomes steady at ∼0.065–0.075. The velocity in some region behind the shock is positive for the first ∼2 ms after
bounce; the maximum positive velocity reaches ∼2×109 cm s−1 similar to the maximum positive velocity in Thompson et al. (2003).
The maximum temperature in the shocked region increases rapidly to 17.5 MeV at ∼0.1 ms after bounce; it then decreases quickly
as the shock expands outward in radius; it increases again and reaches ∼22 MeV at 200 ms after bounce due to compression and
deleptonization as matter settles onto the protoneutron star. The evolution of the temperature, electron fraction, and velocity profiles
is in agreement with that in previous studies (e.g., Thompson et al. 2003).

In Figure 10, we show shock radius as a function of time. For the first few milliseconds after bounce, the shock expands very
rapidly in radius and reaches ∼72 km. The peak shock radius reaches ∼140 km at ∼100 ms after bounce. After that the shock slowly
shrinks in radius although it continues to grow in mass.

The comoving-frame luminosities of νe, ν̄e, and νμ neutrinos measured at 500 km are shown in Figure 11. In agreement with
previous studies (e.g., Thompson et al. 2003; Marek & Janka 2009; Lentz et al. 2012), there is a small dip in Lνe

after the initial rise.
The dip is followed by a large pulse in Lνe

that reaches 540Bethe s−1 at 4 ms after bounce. The FWHM for Lνe
is ∼7ms. The peak Lνe

in our model is about 20% larger than that in Marek & Janka (2009) and Lentz et al. (2012). In our results, there is also a noticeable
spike in Lνμ

. Note that Thompson et al. (2003) and Lentz et al. (2012) have obtained somewhat similar spikes in their simulations
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Figure 10. Shock radius vs. post-bounce time for the 1D core-collapse supernova simulation. The shock position is defined as the place with the largest negative
gradient of radial velocity. The peak shock radius reaches ∼140 km at ∼100 ms after bounce.

Figure 11. Comoving-frame luminosities of νe (red solid line), ν̄e (green dotted line), and νμ neutrinos (blue dashed line) measured at 500 km for the 1D core-collapse
supernova simulation. The luminosity of electron neutrinos reaches a peak value of 540 Bethe s−1 at 4 ms after bounce. For Lνe , the FWHM is ∼7 ms. There is also a
noticeable spike in the luminosity of νμ neutrinos with a peak value of 160 Bethe s−1 at 17 ms after bounce.

(A color version of this figure is available in the online journal.)

that did not include inelastic scattering. The lack of inelastic scattering of neutrinos on electrons results in harder neutrino spectra,
especially for νμ, as shown in the rms average energies (Figure 12). Here the rms average is defined as

〈εν〉 =
[∫

ε2
νnνdν∫
nνdν

]1/2

, (111)

where εν is the neutrino energy and nν is the monochromatic neutrino number density. Nevertheless, we obtain 〈ενe
〉 < 〈εν̄e

〉 < 〈ενμ
〉

after the initial phases, as expected. At 200 ms after bounce, we obtain 〈ενe
〉 ≈ 14, 〈εν̄e

〉 ≈ 19 and 〈ενμ
〉 ≈ 26 MeV. The luminosity

spectra measured at 500 km in the comoving are shown Figure 13. The spectra are evidently harder than those in Thompson et al.
(2003) because inelastic scattering is not included in our model.

4.2.2. Two-dimensional Core-collapse Supernova Simulation

Here we present a 2D core-collapse supernova simulation. The computational domain for this 2D cylindrical run is 0 < r <
2.5 × 108 cm and −2.5 × 108 cm < z < 2.5 × 108 cm. Two refinement levels (three total levels) with a refinement factor of four are
used. The coarsest level has 256 and 512 cells at the r- and z-directions, respectively. Thus, the size of the cells on the finest level is
about 0.61 km. The same refinement criteria as those in the 1D simulation in Section 4.2.1 are used. We use 20, 16, and 20 groups
with logarithmic spacing for νe, ν̄e, and νμ, respectively. The other aspects of this 2D run such as the outer boundary and flux limiter
are the same as those in the 1D simulation in Section 4.2.1. We start the 2D simulation from the result of a 1D simulation rather than
the 15 M
 presupernova model. The initial model is obtained from the 1D simulation at about 10 ms before bounce. At that time,
multidimensional effects are still expected to be small. The 1D simulation that provides the initial model for the 2D run has similar

21



The Astrophysical Journal Supplement Series, 204:7 (27pp), 2013 January Zhang et al.

Figure 12. Rms average energies of νe (red solid line), ν̄e (green dotted line), and νμ neutrinos (blue dashed line) measured at 500 km for the 1D core-collapse
supernova simulation. For 〈ενμ 〉, the peak value of 61 MeV is reached at 13 ms after bounce. The rms average energies at 200 ms after bounce are 14, 19, and 26 MeV
for νe , ν̄e , and νμ, respectively. We do not show 〈ενμ 〉 before bounce because there is very little νμ at those early times.

(A color version of this figure is available in the online journal.)

Figure 13. Luminosity spectrum of νe (red solid line), ν̄e (green dotted line), and νμ neutrinos (blue dashed line) measured at 500 km and 200 ms after bounce for the
1D core-collapse supernova simulation. The actual energy groups are shown in circles.

(A color version of this figure is available in the online journal.)

resolution to the 2D run. Note that, other than resolution, the low-resolution 1D simulation here is essentially the same as the 1D
high-resolution simulation in Section 4.2.1.

Figure 14 shows the density, entropy, temperature, and electron fraction profiles at 1.5 ms after bounce. The profiles are still highly
symmetric. Spherically averaged profiles of density, velocity, temperature, entropy, electron fraction, and lepton fraction at 1.5 ms are
shown in Figure 15. Also shown in Figure 15 are the results of the two 1D runs. At this point, the 2D results are only slightly different
from the 1D results. However, in some region behind the shock, the gradient of entropy is negative. A negative entropy gradient region
from ∼70 to ∼100 km is also clearly visible in the entropy profile at 4.1 ms (left panel of Figure 16). The white and black contour
lines in the left panel of Figure 16 denote s = 7.5 and 5 k baryon−1, respectively. Convective instabilities can potentially develop in
the region between ∼60 and 90 km. In fact, convection does emerge quickly in our simulation. In the right panel of Figure 16, we
show the entropy profile at 9.8 ms after bounce. Also shown in the figure is the velocity field. High entropy plumes rise while some
low entropy material falls down. Secondary Kelvin–Helmholtz instabilities also develop in the shearing regions. The convection helps
push the shock outward because of the enhanced material energy transport from the inner hot region to the region behind the shock
by the convective motion. Figure 17 shows the density, entropy, temperature, and electron fraction profiles at 20 ms after bounce. The
shock has moved to ∼200 km at 20 ms in the 2D simulation (see also Figure 18). At 40 ms after bounce, the north pole and the south
pole of the shock have moved to ∼450 km. In contrast, in the 1D simulation in Section 4.2.1 (Figure 10), the shock radius is ∼85 km
at 20 ms and it never exceeds 141 km. The comoving-frame luminosities of νe, ν̄e, and νμ neutrinos measured at 500 km for the 2D
simulation are shown in Figure 19. Also shown in Figure 19 are the results of the 1D low-resolution run, which are nearly identical
to those of the 1D high-resolution results (Figure 11). In the 2D results, there is also a large narrow pulse in Lνe

that rises and drops
at roughly the same rate. However, after ∼7 ms past bounce, the 2D results are qualitatively different from the 1D results because

22



The Astrophysical Journal Supplement Series, 204:7 (27pp), 2013 January Zhang et al.

Figure 14. Snapshot at 1.5 ms after bounce for the 2D cylindrical core-collapse supernova simulation. We show (a) logarithmic density, (b) entropy per baryon,
(c) temperature, and (d) electron fraction, where the unit for density is g cm−3. Only the inner 100 km of the model is shown here.

Figure 15. Density (upper left), radial velocity (lower left), temperature (upper center), entropy per baryon (lower center), electron fraction (upper right), and net
lepton fraction (lower right) as a function of enclosed mass at 1.5 ms after bounce. Here, radial velocity is the velocity in the spherical radial direction. We show the
results of the 2D cylindrical simulation (red solid lines), 1D low-resolution spherical run (blue dashed lines), and 1D high-resolution spherical run (green dotted lines).
The radial profiles of the 2D results are generated via averaging.

of the emergence of the convection. A major difference is that νμ neutrinos are much less luminous in two dimensions than in one
dimension, because the temperature in two dimensions is cooler than that in one dimension due to the rapid expansion of 2D shock.

Since this paper is not on core-collapse supernova explosions per se, the 2D simulation is stopped at ∼55 ms after bounce. A
detailed analysis of the 2D simulation is beyond the scope of this paper on algorithm, implementation, and testing.

5. PARALLEL PERFORMANCE

In Paper II, we demonstrated that the gray radiation solver in CASTRO has very good scaling behavior on up to 32,768 cores
via a weak scaling study. The multigroup radiation solver presented in this paper has similar good weak scaling behavior because
the same module for solving Equation (65) is used in both solvers. Here we present a strong scaling study that was carried out on
Hopper, a petascale Cray XE6 supercomputer at the National Energy Research Scientific Computing Center. We have performed a
series of 3D core-collapse supernova simulations in Cartesian coordinates with the same resolution on various numbers of cores. A
hybrid MPI/OpenMP approach with six OpenMP threads per MPI task was used for these simulations. PFMG, a parallel multigrid
solver from hypre (Falgout & Yang 2002; hypre Code Project 2012), was used to solve the linear systems. In each run, we start the
3D simulation from the result of a 1D simulation at about 10 ms before bounce. We use 12 energy groups for each species (νe, ν̄e,
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Figure 16. Entropy at 4.1 (left) and 9.8 ms (right) after bounce for the 2D cylindrical core-collapse supernova simulation. The white and black contour lines in the left
panel denote s = 7.5 and 5 k baryon−1, respectively. The arrows in the right panel show the velocity field in the shocked region at 9.8 ms after bounce. It is shown
that convection has developed in the shocked region at 9.8 ms after bounce.

Figure 17. Snapshot at 20 ms after bounce for the 2D cylindrical core-collapse supernova simulation. We show (a) logarithmic density, (b) entropy per baryon,
(c) temperature, and (d) electron fraction, where the unit for density is g cm−3. Only the inner 270 km of the model is shown here.

and νμ). The computational domain is a 3D box with a size of 5000 km in each dimension. Three refinement levels (four total levels)
are used with a refinement factor of two between levels 0 and 1, and a refinement factor of four for other levels. The coarsest level
has 2563 cells. The finest level, which approximately covers the inner region of

√
x2 + y2 + z2 < 165 km, has a cell size of 0.61 km.

Figure 20 shows the wall clock time per coarse time step for a series of runs with the number of cores ranging from 1536 to 24,576.
Also shown in Figure 20 is the parallel efficiency defined as

E(N ) = N0T0

NTN

, (112)

where N is the number of cores, TN is the wall clock time for the N-core run, N0 is the number of cores in a baseline run (i.e.,
1536-core run), and T0 is the wall clock time for the baseline run. In this strong scaling study, good scaling behavior is achieved
on up to ∼10,000 cores. However, because this is a strong scaling study, the workload per core diminishes as more cores are used.
For example, the average number of cells for each core in the 24,576 core run is about 163. An unfavorable consequence of small
computational boxes is an increased communication overhead. Another unfavorable consequence is that more computation is wasted
at domain boundaries due to larger surface area to volume ratios of smaller boxes. Hence, the degradation of parallel performance on
more than 10,000 cores is not surprising.
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Figure 18. Shock radius vs. post-bounce time for the 2D core-collapse supernova simulation. We show the shock position in the northern hemisphere (red solid line),
southern hemisphere (green dotted line), and equatorial plane (blue dashed lines) for the 2D simulation. Also shown is the result of the 1D low-resolution simulation
(black dash-dotted line).

(A color version of this figure is available in the online journal.)

Figure 19. Comoving-frame luminosities of νe , ν̄e , and νμ neutrinos measured at 500 km for the 2D cylindrical (red solid lines) and the low-resolution 1D spherical
(black dashed lines) core-collapse supernova simulations.

(A color version of this figure is available in the online journal.)

6. SUMMARY

In this paper, we have presented a multidimensional multigroup radiation hydrodynamics solver that is part of the CASTRO code.
Block-structured AMR is utilized in CASTRO. In this paper, we focus attention on the single-level algorithms because the AMR
algorithms have been presented in Papers I and II and references therein.

Our multigroup radiation hydrodynamics solver is based on a comoving-frame formulation that is correct to order O(v/c) and uses
an FLD approximation. Our mathematical analysis shows that the system we solve contains a hyperbolic subsystem that is the usual
hydrodynamics system modified by radiation, a frequency space advection part that accounts for the Doppler shift of radiation due to
the motion of matter, and a parabolic diffusion part. We have presented the mathematical characteristics of the hyperbolic subsystem.
The eigenvalues and eigenvectors we have obtained are useful for characteristic-based Godunov schemes. We also described our
treatment of the frequency space advection part. An implicit solver involving two nested iterations is presented. We have also presented
two acceleration schemes that improve the convergence rate of the implicit solver.

Extensive testing is presented demonstrating the accuracy and stability of CASTRO to solve multigroup radiation hydrodynamics
problems. We have presented a series of photon radiation test problems that cover a wide range of regimes. In addition to photon
radiation problems, we have demonstrated the applicability of CASTRO in core-collapse supernova simulations.

Recently, Lentz et al. (2012) have argued, via a series of 1D simulations, that general relativistic effects and inelastic scattering of
neutrinos on matter have significant effects on the numerical modeling of core-collapse supernova explosions. In contrast, Nordhaus
et al. (2010) have concluded that spatial dimensionality has far more impact than general relativistic effects or microphysics such as
inelastic scattering. Our 1D simulations are consistent with the assessment of Lentz et al. (2012) on the effects of inelastic scattering.
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Figure 20. Strong scaling behavior of 3D simulations on Hopper at NERSC. We show (a) wall clock time per coarse time step and (b) parallel efficiency in circles for
five runs with the number of cores ranging from 1536 to 24,576. The dotted line in panel (a) indicates perfect scaling.

However, our 2D simulation supports the assessment of Nordhaus et al. (2010) on the importance of spatial dimensionality. Our
simulations have shown that multidimensional effects (e.g., convective motion in the region behind the shock and exterior to the
nascent neutron star) appear less than 10 ms after bounce, and 2D results are profoundly different from 1D results. Thus, one should
be cautious about the assessment of various effects such as inelastic scattering that are based on 1D simulations that last several
hundred milliseconds past bounce like the ones presented in Lentz et al. (2012).

The main advantages of the CASTRO code are the efficiency due to the use of AMR and the accuracy due to the coupling of
radiation force into the Riemann solver. Three-dimensional multigroup neutrino radiation hydrodynamics simulations of core-collapse
supernovae with a good resolution using CASTRO can be carried out, if not now, in the near future with faster computers. In the
strong scaling study with a total of 36 radiation groups and a cell size of 0.6 km on the finest level (Section 5), it took about 0.8 hr
to advance one coarse time step (about 0.1 ms) on 12,288 cores of Hopper. Thus, it would take 800 hr on 12,288 cores of Hopper to
evolve to 100 ms. Admittedly, it is still very expensive to perform long-duration 3D simulations, but it is possible to study the first
100 ms after bounce and investigate the development of the turbulent convection region via 3D simulations.
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