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CASTRO is a new, multi-dimensional, Eulerian AMR radiation-hydrodynamics code designed for astrophysical simulations. The code includes routines for various equations of state and nuclear reaction networks, and can be used with 
Cartesian, cylindrical or spherical coordinates. Time integration of the hydrodynamics equations uses unsplit PPM with new limiters. Self-gravity can be calculated on the adaptive hierarchy using a simple monopole approximation or a full 
Poisson solve for the gravitational potential. CASTRO includes gray and multigroup radiation diffusion. Multi-species neutrino diffusion for supernovae is nearing completion. The adaptive framework of CASTRO is based on an time-evolving 

hierarchy of nested rectangular grids with refinement in both space and time; the entire implementation is designed to run on thousands of processors.  Our initial applications of CASTRO include Type Ia and Type II supernovae.
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What is CASTRO?What is CASTRO?

This work has been supported by the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under contracts No. DE-AC02-05CH11231 (LBNL), No. DE-FC02-06ER41438 (UCSC), and No. DE-AC52-07NA27344 (LLNL); and LLNL contracts B582735 and B574691(Stony Brook). Calculations shown were carried out on Franklin at NERSC.

We present a new code, CASTRO, that solves the compressible hydrodynamics 
equations for astrophysical flows. Key features of CASTRO include:

-AMR framework that allows for variable grid size and simultaneous refinement in 
space and time

-Support for Cartesian, cylindrical, and spherical coordinate systems

-Unsplit PPM for advection

-Modular equation of state and nuclear reaction networks

-Multiple gravity options, including a full Poisson solve

-Massively parallel; tested on 64,000 processors

-Gray and multigroup radiation diffusion; multi-species neutrino diffusion is 
nearing completion
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For more information see Almgren et al., to be submitted to ApJ.

We use an unsplit implementation 
of a new piecewise-parabolic 
method (PPM) for the advection 
terms (Colella 2010, to appear).

Our Rayleigh-Taylor instability 
simulations demonstrate the 
effects of various advection 
schemes.

(Above) We compare a piecewise 
linear method with PPM in a 
dimensionally split advection 
scheme.  The “old limiters” 
option uses the original PPM 
limiters of Colella and Woodward 
(1984); the “new limiters” 
option uses the new limiters 
mentioned above.

(Below) Here we compare 
piecewise linear with the two 
PPM options in the context of our 
unsplit advection scheme.

There are two photon radiation solvers in CASTRO – a gray solver and a multigroup 
solver.  The gray solver follows the algorithm outlined in Howell and Greenough
(2003).  In particular, the radiation energy takes the form of:

Our AMR approach uses a nested hierarchy 
of logically rectangular, variable-sized 
grids with successively finer grids at each 
level.  A user-specified tagging routine 
indicates where higher resolution is 
desired.
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We also subcycle in time, where we advance the finer grids at finer time steps and 
synchronize the solution between levels to maintain conservation.

EquationsEquations

We solve the fully compressible equations (given here without radiation), including 
advection, diffusion, reactions, and gravity.
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We use Strang splitting for the reaction terms.

We also provide support for tracers, auxiliary variables, and user-specified external 
source terms.

Equation of state and reaction networks are modular and are supplied by the user.

(Above) Spherical Sedov shock in 3D 
Cartesian and 2D cylindrical 
coordinates

(Below) Cylindrical Sedov shock in 3D 
Cartesian, 2D Cartesian, and 2D 
cylindrical coordinates.

1D Cartesian, cylindrical, and spherical 
coordinates also available.

Helium (below, left) and oxygen (below, right) concentration in a three-
dimensional simulation of a z=0 solar mass progenitor that was evolved off 
the main sequence to the point at which its iron core was unstable, and then 
artificially exploded by a means of a piston with an energy at infinity of 1.2 x 
1031 erg.  A reverse shock has formed and is responsible for the Rayleigh-
Taylor instability that’s mixing the elemental layers of the star.

This simulation uses self gravity with an infall inner boundary with 
gravitational contributions from the pointmass at the center and a perfect gas 
with radiation equation of state.  The domain is 2.1 x 1013 cm3, and was run 
on Franklin at NERSC with 512 processors with 3 levels of refinement.

GravityGravity

CASTRO has several different run-time options for how to specify and/or 
compute the gravitational acceleration.  The first option is a constant gravity 
in space and time; this can be used for small-scale problems in which the 
variation of gravity throughout the computational domain is negligible.

A second approach uses a monopole approximation to compute a radial gravity 
consistent with the mass distribution.  We first compute the average density 
profile as a 1D radial array.  Then gravity is computed as a direct integral of 
the mass enclosed.  The 1D gravity profile is then interpolated onto the 
Cartesian grid at each refinement level.

The most general option is the Poisson solve for self-gravity, in which we solve

∇2φ = 4πGρ; g = −∇φ.

This can be used in one, two, or three spatial dimensions.  For multilevel 
calculations, special attention is paid to the synchronization of the 
gravitational forcing across levels.  However, for simulations in which the 
gravitational field is sufficiently smooth, it is possible to speed up the code by 
omitting the multilevel synchronization.

The Poisson equation is discretized using standard finite difference 
approximations and the resulting linear system is solved using geometric 
multigrid techniques, specifically V-cycles and red-black Gauss-Seidel 
relaxation.

At boundaries away from the star we set Dirichlet boundary conditions for φ; 
these value are determined by computing the monopole approximation for 
gravity on the coarsest level, integrating this profile radially outward to create 
φ(r), and interpolating to define the boundary conditions for the solve.

Below are scaling numbers for a full white dwarf on a 3D grid with one 643 grid 
per processor.  With the monopole approximation to gravity, CASTRO scales 
well to 64,000 processors.  With the full self-gravity using Poisson solves the 
scalability is limited by the cost of the multigrid solve; this is an area of active 
research by many groups.
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CASTRO allows for κR and-mean opacity, κP is the Planck-mean opacity, and λ is a 
quantity ≤ 1/3 that is subjected to limiting to keep the radiation field causal.  
CASTRO allows for κR and κP to be set independently as power-laws; more 
generally these will be set based on the local properties of the material.  The 
multigroup solver implements a similar diffusion equation for each radiation 
energy group.

Below are two radiation test problems.  On the left is a radiation source problem, 
which uses the gray photon solver to test the coupling between the radiation field 
and the gas energy through the radiation source term.  Heating and cooling 
solutions are shown as a function of time, compared to the analytic solution.  On 
the right is a radiating sphere multigroup radiation test problem.  A hot sphere is 
centered at the origin in a spherical geometry.  We show the radiation energy 
density as a function of energy group.

Initial ApplicationsInitial Applications

(Right) A 3D simulation of a core-
collapse supernova (iso-density and 
iso- entropy curves). The 15 solar 
mass progenitor star implodes under 
its own gravity. During collapse, the 
equation of state stiffens at nuclear 
densities and launches a shock which 
stalls due to neutrino losses and 
nuclear dissociation. Using a 
parameterized neutrino heating 
algorithm (short of full 3D radiation 
transport), the shock is revived and 
succeeds in exploding the star. This 
was run with 4096 cores on Franklin 
at NERSC in a 4000^3 km^3 domain, 
divided into 128^3 cells with 3 
factors of 4 refinement.
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