Fluctuating HydrodynamicsAt molecular scales, fluids are inherently noisy with thermally induced fluctuations playing a key role in the dynamics. When mechanical instabilities, chemical reactions and other phenomena at the microscopic scale are sensitive to these fluctuations, fluctuations can affect behavior at larger scales. The goal of this project is to develop algorithms and stochastic hybrid models to simulate these types of multiscale problems arising in fluids. Accurate modeling of these types of multiscale phenomena require the correct decomposition of the component processes for these fluctuations. The correct treatment of fluctuations is especially important for nonlinear systems, such as those undergoing phase transitions, nucleation, barrier-crossing, Brownian motors, noise-driven instabilities, combustive ignition, etc. In these and related applications, nonlinearities can exponentially amplify the influence of fluctuations. Over the last few years, we have worked in several different areas starting with the development of hybrid algorithms combining DSMC particle schemes with the Landau-Lifshitz fluctuating Navier-Stokes equations to model fluctuations at the continuum level. This was also extended to treat multicomponent systems. The methodology has also been used to model enhancement of diffusive transport under nonequilibrium constraints and in modeling nonreactive multispecies mixtures. We have worked on developing staggered and higher order finite volume schemes for these systems as well. Recently we extended this methodology to developing low mach multicomponent schemes for diffusively mixing fluids and modeling multiphase flows in single component fluids near the critical point. Our current focus is on extending the existing framework to developing techniques to model recent experiments of mixed-mode instabilities observed in ternary mixtures and model fluctuations in single phase and multiphase electrolyte solutions.
J-P. Péraud, A. Nonaka, J. B. Bell, A. Donev, and A. L. Garcia, "Fluctuation-Enhanced Electric Conductivity in Electrolyte Solutions," submitted for publication. [arxiv] C. Kim, A. Nonaka, J. B. Bell, A. L. Garcia, and A. Donev, "Stochastic Simulation of Reaction-Diffusion Systems: A Fluctuating-Hydrodynamics Approach," J. Chem. Phys. 146, 124110, 2017. [doi] [arxiv] J-P. Péraud, A. Nonaka, A. Chaudhri, J. B. Bell, A. Donev, and A. L. Garcia, "Low Mach Number Fluctuating Hydrodynamics for Electrolytes," Phys. Rev. Fluids 1, 074103, 2016. [doi] [arxiv] A. K. Bhattacharjee, K. Balakrishnan, A. L. Garcia, J. B. Bell, and A. Donev, "Fluctuating Hydrodynamics of Multispecies Reactive Mixtures," J. Chem. Phys. 142, 224107, 2015. [doi] [arxiv] A. Donev, A. Nonaka, A. K. Bhattacharjee, A. L. Garcia, and J. B. Bell, "Low Mach Number Fluctuating Hydrodynamics of Multispecies Liquid Mixtures," Phys. Fluids 27, 037103, 2015. [doi] [arxiv] A. Nonaka, Y. Sun, J. B. Bell, and A. Donev, "Low Mach Number Fluctuating Hydrodynamics of Binary Liquid Mixtures," Comm. App. Math. Comp. Sci. 10, no. 2, 2015. [doi] [arxiv]. A. Chaudhri, J. B. Bell, A. L. Garcia, and A. Donev "Modeling Multi-Phase Flow Using Fluctuating Hydrodynamics", Phys. Rev. E 90, 033014, 2014. [arxiv]. M. Cai, A. Nonaka, B. E. Griffith, J. B. Bell, and A. Donev, "Efficient Variable-Coefficient Finite-Volume Stokes Solvers," Commun. Comput. Phys. 16, 1263-1297, 2014. [pdf] A. Donev, A. Nonaka, Y. Sun, T. Fai, A. Garcia and J. Bell, "Low Mach Number Fluctuating Hydrodynamics of Diffusively Mixing Fluids," Comm. App. Math. Comp. Sci. 9, no. 1, 2014. [pdf] K. Balakrishnan, A. Garcia, A. Donev, and J. Bell, "Fluctuating hydrodynamics of multispecies nonreactive mixtures" Phys. Rev. E 89, 013017, 2014. [pdf] F. Balboa Usabiaga, J. Bell, R. Delgado-Buscalioni, A. Donev, T. Fai, B. Griffith, C. Peskin, "Staggered Schemes for Fluctuating Hydodynamics", Multiscale Model. Simul. 10, 4, 1360-1408, 2012. [pdf] K. Balakrishnan, J.B. Bell, A. Donev, and A. Garcia, "Fluctuating Hydrodynamics and Direct Simulation Monte Carlo", 28th International Symposium on Rarefied Gas Dynamics , AIP Conf. Proc. 1501, 695-704, 2012. [pdf] A. Garcia, A. Donev, J.B. Bell, and B. Alder, "Hydrodynamic fluctuations in a particle-continuum hybrid for complex fluids", 27th International Symposium on Rarefied Gas Dynamics , AIP Conf. Proc. 1333, 551-556, 2011. [pdf] A. Donev, A. de la Fuente, J. B. Bell, and A. L. Garcia, "Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations," JSTAT 2011, P06014, (2011). [pdf] A. Donev, A. de la Fuente, J. B. Bell, and A. L. Garcia, "Diffusive Transport by Thermal Velocity Fluctuations," Phys. Rev. Lett. 106, 204501, 2011. [pdf]
A. Donev, J. B. Bell, A. L. Garcia, and B. J. Alder,
"A Hybrid Particle-Continuum Method for Hydrodynamics of Complex Fluids,"
Multiscale Model. Simul. 8 871-911, 2010.
[pdf] A. Donev, E. Vanden-Eijnden, A. Garcia, and J. Bell, "On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics," Comm. App. Math. Comp. Sci. 5, 149-197, 2010. [pdf] J. B. Bell, A. L. Garcia, and S. A. Williams, "Computational Fluctuating Fluid Dynamics,", ESAIM: Mathematical Modelling and Numerical Analysis 44, 1085-1105, 2010. [pdf] A. Donev, A. L. Garcia, and B. J. Alder, "A Thermodynamically-Consistent Non-Ideal Stochastic Hard Sphere Fluid," J. Stat. Mech., P11008, 2009 [arXiv:0908.0510] [pdf] J. B. Bell, A. L. Garcia, S. A. Williams, S. A. Williams, J. B. Bell, and A. L. Garcia, "Algorithm refinement for fluctuating hydrodynamics," Multiscale Model. Simul. 6, 1256-1280, 2008. [pdf] J. B. Bell, A. L. Garcia, and S. A. Williams, "Numerical Methods for the Stochastic Landau-Lifshitz Navier-Stokes Equations," Phys. Rev. E 76, 016708, 2007. [pdf] J. B. Bell, J. Foo, and A. L. Garcia, "Algorithm Refinement for the Stochastic Burgers' Equation," J. Comp. Phys. 223, 603-708, 2006. [pdf] A. L. Garcia, J. B. Bell, W. Y. Crutchfield, and B. J. Alder, "Adaptive Mesh and Algorithm Refinement," J. Comp. Phys. 154, 134-155, 1999. [ps.gz] |