Modeling of Fluctuations in Algorithm Refinement Methods

John Bell

Lawrence Berkeley National Laboratory

DSMC09 Conference Santa Fe, New Mexico Sept. 13-16, 2009

Collaborators: Aleksandar Donev, Eric Vanden-Eijnden, Alejandro Garcia, Jonathan Goodman, Sarah Williams

Outline

- Hybrid algorithms
 - Motivation
 - Approach
- Role of fluctuations
 - Burgers' equation example
- Landau-Lifshitz Navier Stokes equations
- Numerical methods for stochastic PDE's
- Hybrid algorithms for fluids
- Examples
- Conclusions

Multi-scale models of fluid flow

Most computations of fluid flows use a continuum representation (density, pressure, etc.) for the fluid.

- Dynamics described by set of PDEs.
- Well-established numerical methods (finite difference, finite elements, etc.) for solving these PDEs.
- Hydrodynamic PDEs are accurate over a broad range of length and time scales.

But at some scales the continuum representation breaks down and more physics is needed

When is the continuum description of a gas not accurate?

- Discreteness of collisions and fluctuations are important
 - Micro-scale flows, surface interactions, complex fluids
 - Particles / macromolecules in a flow
 - Biological / chemical processes

Hybrid methods

Look at fluid mechanics problems that span kinetic and hydrodynamics scales

Approaches

- Molecular description correct but expensive
- Continuum CFD cheap but doesn't model correct physics
- Hybrid Use different models for the physics in different parts of the domain
 - Molecular model only where needed
 - Cheaper continuum model in the bulk of the domain

Develop a hybrid algorithm for fluid mechanics that couples a particle description to a continuum description

- AMR provides a framework for such a coupling
 - AMR for fluids except change to a particle description at the finest level of the heirarchy
- Use basic AMR design paradigm for development of a hybrid method
 - How to integrate a level
 - How to synchronize levels

Discrete Simulation Monte Carlo (DSMC) is a leading numerical method for molecular simulations of dilute gases

- Initialize system with particles
- Loop over time steps
 - Create particles at open boundaries
 - Move all the particles
 - Process particle/boundary interactions
 - Sort particles into cells
 - Select and execute random collisions
 - Sample statistical values

Example of flow past a sphere

AMR approach to constructing hybrids -Garcia et al., JCP 1999

- Hybrid algorithm 2 level
 - Advance continuum CNS solver
 - Accumulate flux F_C at DSMC boundary
 - Advance DMSC region
 - Interpolation Sampling from Chapman-Enskog distribution
 - Fluxes are given by particles crossing boundary of DSMC region
 - Synchronize
 - Average down moments
 - Reflux $\delta F = -\Delta t A F_C + \sum_p F_p$

DSMC flux

Hydrodynamic Fluctuations

Given particle positions and velocities, measure macroscopic variables

- These quantities naturally fluctuate
- Particle scheme:
 - Capture variance of fluctuations
 - Predict time-correlations at hydrodynamic scale
 - Predict non-equilibrium fluctuations hydrodynamic scale

How do molecular-scale fluctuations interact with the continuum?

Can / should we capture fluctuations at the continuum level?

Do they matter?

This has been investigated for a number of models

- Diffusion
- "Train" model
- Burgers' equation

Example: Burgers' equation – Bell et al. JCP, 2007.

Asymmetric Excluded Random Walk:

Probability of jump to the right sets the "Reynolds" number

- Mean field given by viscous Burgers' equation
- Stochastic flux models fluctuation behavior

$$u_t + c((u(1-u))_x = \epsilon u_{xx} + S_x)$$

Stochastic flux is zero-mean Gaussian uncorrelated in space and time with magnitude from fluctuation dissipation theorem

AERW / Burgers'

Simple numerical ideas work well

- Second-order Godunov for advective flux
- Standard finite difference approximation of viscosity
- Explicitly add stochastic flux

AERW / Burgers'

Hybrid w/p_=0.7 Hybrid w/ p =0.8 ERW wh =0.7 brid who noise in SPDE region and p_=0 x 10⁴

Shock Drift

Failure to include the effect of fluctuations at the continnum level disrupts correlations in the particle region

Landau-Lifshitz fluctuating Navier Stokes

What about fluid dynamics?

- Can we model fluctuations at the continuum level?
- Do they matter in this context?

$$\partial \mathbf{U}/\partial t + \nabla \cdot \mathbf{F} = \nabla \cdot \mathbf{D} + \nabla \cdot \mathbf{S} \quad \text{where} \quad \mathbf{U} = \begin{pmatrix} \rho \\ \mathbf{J} \\ E \end{pmatrix}$$

$$\mathbf{F} = \begin{pmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \mathbf{v} + P \mathbf{I} \\ (E+P) \mathbf{v} \end{pmatrix} \quad \mathbf{D} = \begin{pmatrix} \mathbf{0} \\ \tau \\ \kappa \nabla T + \tau \cdot \mathbf{v} \end{pmatrix} \quad \mathbf{S} = \begin{pmatrix} \mathbf{0} \\ S \\ Q + \mathbf{v} \cdot S \end{pmatrix},$$

 $\langle \mathcal{S}_{ij}(\mathbf{r},t)\mathcal{S}_{k\ell}(\mathbf{r}',t')\rangle = 2k_B\eta T \left(\delta_{ik}^K \delta_{j\ell}^K + \delta_{i\ell}^K \delta_{jk}^K - \frac{2}{3}\delta_{ij}^K \delta_{k\ell}^K\right) \delta(\mathbf{r}-\mathbf{r}')\delta(t-t'),$

$$\langle \mathcal{Q}_{i}(\mathbf{r},t)\mathcal{Q}_{j}(\mathbf{r}',t')\rangle = 2k_{B\kappa}T^{2}\delta_{ij}^{K}\delta(\mathbf{r}-\mathbf{r}')\delta(t-t'),$$

Experience with Burger's equations suggests adding a stochastic flux to a standard second-order scheme captures fluctuations reasonably well.

	$\langle \delta \rho^2 \rangle$	$\langle \delta J^2 \rangle$	$\langle \delta E^2 \rangle$
Exact value	$2.35 imes10^{-8}$	13.34	$2.84 imes10^{10}$
MacCormack	$2.01 imes10^{-8}$	13.31	2.61×10^{10}
PPM	$1.97 imes10^{-8}$	13.27	$2.58 imes 10^{10}$
DSMC	$2.35 imes10^{-8}$	13.21	$2.78 imes10^{10}$
Error MacCormack	-14.3%	-0.3%	-8.4%
Error PPM	-16.0%	-0.5%	-9.4%
Error DSMC	0.0%	-1.0%	-2.1%

This is not the case with LLNS

Mass conservation is microscopically exact. There is no diffusion or fluctuation term in the mass conservation equation

Numerical methods for stochastic PDE's

Accurately capturing fluctuations in a hybrid algorithm requires accurate methods for PDE's with a stochastic flux.

 $\partial_t U = LU + KW$

where W is spatio-temporal white noise

We can characterize the solution of these types of equations in terms of the invariant distribution, given by the covariance

$$\mathcal{S}(k,t) = \langle \hat{U}(k,t')\hat{U}^*(k,t'+t)
angle = \int_{-\infty}^{\infty} e^{i\omega t} \mathcal{S}(k,\omega) d\omega$$

where

$${old S}({old k},\omega)=<\hat{U}({old k},\omega)\hat{U}^*({old k},\omega)>$$

is the dynamic structure factor We can also define the static structure factor

$$m{S}(m{k}) = \int_{-\infty}^{\infty} m{S}(m{k},\omega) m{d}\omega$$

Fluctuation dissipation relation

For

$$\partial_t U = LU + KW$$

if

$$L+L^*=-KK^*$$

then the equation satisfies a fluctuation dissipation relation and

S(k) = I

The linearized LLNS equations are of the form

$$\partial_t U = -\nabla \cdot (AU - C\nabla U - BW)$$

When $BB^* = 2C$, then the fluctuation dissipation relation is satisfied and the equilibrium distribution is spatially white with S(k) = 1

Discretization design issues

Consider discretizations of

$$\partial_t U = -\nabla \cdot (AU - C\nabla U - BW)$$

of the form

$$\partial_t U = -D(AU - CGU - BW)$$

Scheme design criteria

- Discretization of advective component DA is skew adjoint;
 i.e., (DA)* = -DA
- ② Discrete divergence and gradient are skew adjoint: $D = -G^*$
- Oiscretization without noise should be relatively standard
- Should have "well-behaved" discrete static structure factor
 - $S(k) \approx 1$ for small k; i.e. $S(k) = 1 + \alpha k^p + h.o.t$
 - S(k) not too large for all k. (Should $S(k) \le 1$ for all k?)

Example: Stochastic heat equation

$$u_t = \mu u_{xx} + \sqrt{2\mu W_x}$$

Explicit Euler discretizaton

$$u_{j}^{n+1} = u_{j}^{n} + \frac{\mu \Delta t}{\Delta x^{2}} \left(u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n} \right) + \sqrt{2\mu} \frac{\Delta t^{1/2}}{\Delta x^{3/2}} \left(W_{j+\frac{1}{2}}^{n} - W_{j-\frac{1}{2}}^{n} \right)$$

Predictor / corrector scheme

$$\tilde{u}_{j}^{n} = u_{j}^{n} + \frac{\mu \Delta t}{\Delta x^{2}} \left(u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n} \right) + \sqrt{2\mu} \frac{\Delta t^{1/2}}{\Delta x^{3/2}} \left(W_{j+\frac{1}{2}}^{n} - W_{j-\frac{1}{2}}^{n} \right)$$

$$\begin{aligned} u_{j}^{n+1} &= \frac{1}{2} \left[u_{j}^{n} + \tilde{u}_{j}^{n} + \frac{\mu \Delta t}{\Delta x^{2}} \left(\tilde{u}_{j-1}^{n} - 2\tilde{u}_{j}^{n} + \tilde{u}_{j+1}^{n} \right. \\ &+ \sqrt{2\mu} \frac{\Delta t^{1/2}}{\Delta x^{3/2}} \left(W_{j+\frac{1}{2}}^{n} - W_{j-\frac{1}{2}}^{n} \right) \right] \end{aligned}$$

Structure factor for stochastic heat equation

 $S(k) = 1 + \beta^3 k^6/8$

How stochastic fluxes are treated can effect accuracy

Elements of discretization of LLNS – 1D

Spatial discretization

- Stochastic fluxes generated at faces
- Standard finite difference approximations for diffusion
 - Fluctuation dissipation
- Higher-order reconstruction based on PPM

$$U_{J+\frac{1}{2}} = \frac{7}{12}(U_j + U_{j+1}) - \frac{1}{12}(U_{j-1} + U_{j+2})$$

- Evaluate hyperbolic flux using $U_{j+\frac{1}{2}}$
- Adequate representation of fluctuations in density flux

Temporal discretization

- Low storage TVD 3rd order Runge Kutta
- Care with evaluation of stochastic fluxes can improve accuracy

Structure factor for LLNS in 1D

Discretization for LLNS

	$\langle \delta \rho^2 \rangle$	$\langle \delta J^2 \rangle$	$\langle \delta E^2 \rangle$
Exact value	$2.35 imes10^{-8}$	13.34	$2.84 imes 10^{10}$
PPM	$1.97 imes10^{-8}$	13.27	$2.58 imes 10^{10}$
RK3	$2.29 imes10^{-8}$	13.54	$2.82 imes 10^{10}$
Error PPM	-16.0%	-0.5%	-9.4%
Error for RK3	-2.5%	1.5%	-0.7%

Basic scheme has been generalized to 3D and two component mixtures

- Additional complication is correlation between elements of stochastic stress tensor
- Several standard discretization approaches do not correctly respect these correlations
 - Do not satisfy discrete fluctuation dissipation relation
 - Leads to spurious correlations
- Alternative approach based on randomly selecting faces on which to impose correlation
 - Preserves correlation structure in 2D and 3D

SPDE versus DSMC

Hybrid Issues

- Maxwellian versus Chapman Enskog
 - Measuring gradients for C-E is problematic
 - Maxwellian typically gives better results in hybrid
- Refinement criterion
 - Use smoothed gradient width based on noise magnitude
 - Potentially use breakdown parameter to guide refinement

Equilibrium

Does deterministic PDE treatment affect fluctuations for fluid simulations?

ecce.

CCSE BERKELEY

Bell, et. al., LBNL

Look at correlations in the presence of a thermal gradient

Shock propagation

•
$$\rho_1 T_1 = \rho_2 T_2$$

- Wall and piston are adiabatic boundaries
- Dynamics driven by fluctuations

Hybrid simulation of Piston

- Small DSMC region near the piston
- I-DSMC see Donev talk

Piston position vs. time

Note: Error associated with deterministic hybrid enhanced for heavier pistons

Averge piston position vs. time

Bell, et. al., LBNL AMAR

Piston velocity autocorrelation

Start with piston at equilibrium location

Failing to include fluctuations at the continuum level in a hybrid model can pollute the microscopic model

Hybrid methodology for capturing fluctuations

- Microscopic model DSMC
- Continuum model discretization of LLNS equations
 - RK3 centered scheme
 - Captures equilibrium fluctuations
- Hybridization based on adaptive mesh refinement constructs

Future issues

- Numerics / Mathematics
 - Mathematical structure of systems
 - Criterion for evaluating schemes / hybrids
 - Stochastic analogs of limiting robustness
 - Fluctuations in low Mach number flows
- Physics
 - Reacting systems
 - Complex fluids

