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Multi-scale models of fluid flow

Most computations of fluid flows use a continuum representation
(density, pressure, etc.) for the fluid.

Dynamics described by set of PDEs.

Well-established numerical methods (finite difference, finite
elements, etc.) for solving these PDEs.

Hydrodynamic PDEs are accurate over a broad range of length
and time scales.

But at some scales the continuum representation breaks down and
more physics is needed

When is the continuum description of a gas not accurate?

Discreteness of collisions and fluctuations are important

Micro-scale flows, surface interactions, complex fluids
Particles / macromolecules in a flow
Biological / chemical processes
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Hybrid methods

Look at fluid mechanics problems that span kinetic and
hydrodynamics scales

Approaches

Molecular description –
correct but expensive

Continuum CFD – cheap but
doesn’t model correct physics

Hybrid – Use different models
for the physics in different
parts of the domain

Molecular model only
where needed
Cheaper continuum
model in the bulk of the
domain
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Hybrid approach

Develop a hybrid algorithm for fluid mechanics that couples a
particle description to a continuum description

AMR provides a framework for such a coupling
AMR for fluids except change to a particle description at the
finest level of the heirarchy

Use basic AMR design paradigm for development of a
hybrid method

How to integrate a level
How to synchronize levels
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DSMC

Discrete Simulation Monte Carlo (DSMC) is a leading
numerical method for molecular simulations of dilute gases

Initialize system with particles
Loop over time steps

Create particles at open
boundaries
Move all the particles
Process particle/boundary
interactions
Sort particles into cells
Select and execute random
collisions
Sample statistical values

Example of flow past a
sphere
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Adaptive mesh and algorithm refinement

AMR approach to constructing hybrids –
Garcia et al., JCP 1999

Hybrid algorithm – 2 level
Advance continuum CNS solver

Accumulate flux FC at DSMC
boundary

Advance DMSC region
Interpolation – Sampling from
Chapman-Enskog distribution
Fluxes are given by particles
crossing boundary of DSMC region

Synchronize
Average down – moments
Reflux δF = −∆tAFC +

∑
p Fp

DSMC

Buffer cells

Continuum

DSMC boundary
conditions

A B C

D E F

1 2
3

DSMC flux
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Hydrodynamic Fluctuations

Given particle positions and velocities, measure macroscopic
variables

These quantities naturally fluctuate
Particle scheme:

Capture variance of fluctuations
Predict time-correlations at hydrodynamic scale
Predict non-equilibrium fluctuations hydrodynamic scale
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Fluctuations at continuum level

How do molecular-scale fluctuations interact with the
continuum?

Can / should we capture fluctuations at the continuum level?

Do they matter?

This has been investigated for a number of models
Diffusion
”Train” model
Burgers’ equation

Example: Burgers’ equation – Bell et al. JCP, 2007.
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AERW / Burgers’

Asymmetric Excluded Random Walk:
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Probability of jump to the right sets the “Reynolds” number

Mean field given by viscous Burgers’ equation
Stochastic flux models fluctuation behavior

ut + c((u(1− u))x = εuxx + Sx

Stochastic flux is zero-mean Gaussian uncorrelated in space
and time with magnitude from fluctuation dissipation theorem
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AERW / Burgers’

Simple numerical ideas work well
Second-order Godunov for advective flux
Standard finite difference approximation of viscosity
Explicitly add stochastic flux
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AERW / Burgers’
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Figure 9: Variance of shock location 〈δs(t)2〉 versus time t for a determin-
istically steady shock (uL = 0.1, uR = 0.9). Methods used are: AERW
with p→ = 0.7 (green); SPDE/AERW hybrid with p→ = 0.55 (blue);
SPDE/AERW hybrid with p→ = 0.7 (red); SPDE/AERW hybrid with
p→ = 0.8 (black); DPDE/AERW hybrid with p→ = 0.7 with 8 cells of
additional buffering (magenta).

method we have demonstrated that it is necessary to include the effect of
fluctuations, represented as a stochastics flux, in the mean field equations to
ensure that the hybrid preserved key properties of the system. As expected,
not representing fluctuations in the continuum regime leads to a decay in
the variance of the solution that penetrates into the particle region. Some-
what more surprising is that the failure to include fluctuations was shown
to introduce spurious correlations of fluctuations in equilibrium simulations
and for rarefactions. Even more troubling is the observation that using a
deterministic PDE solver coupled to the random walk model suppresses the
drift of shock location seen with the pure random walk model and with the
AR hybrid using a stochastic PDE solver.

We plan to extend this basic hybrid framework to the solution of the com-
pressible Navier Stokes equations in multiple dimension. For that extension

24

Shock Drift

Failure to include the effect
of fluctuations at the contin-
num level disrupts correla-
tions in the particle region
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Landau-Lifshitz fluctuating Navier Stokes

What about fluid dynamics?
Can we model fluctuations at the continuum level?
Do they matter in this context?

∂U/∂t +∇ · F = ∇ · D +∇ · S where U =

 ρ
J
E



F =

 ρv
ρvv + PI
(E + P)v

 D =

 0
τ

κ∇T + τ · v

 S =

 0
S

Q+ v · S

 ,

〈Sij (r, t)Sk`(r′, t ′)〉 = 2kBηT
(
δK

ik δ
K
j` + δK

i`δ
K
jk − 2

3δ
K
ij δ

K
k`

)
δ(r− r′)δ(t − t ′),

〈Qi (r, t)Qj (r′, t ′)〉 = 2kBκT 2δK
ij δ(r− r′)δ(t − t ′),
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LLNS Discretization

Experience with Burger’s equations suggests adding a
stochastic flux to a standard second-order scheme captures
fluctuations reasonably well.

This is not the case with LLNS

〈δρ2〉 〈δJ2〉 〈δE2〉
Exact value 2.35× 10−8 13.34 2.84× 1010

MacCormack 2.01× 10−8 13.31 2.61× 1010

PPM 1.97× 10−8 13.27 2.58× 1010

DSMC 2.35× 10−8 13.21 2.78× 1010

Error MacCormack −14.3% −0.3% −8.4%
Error PPM −16.0% −0.5% −9.4%
Error DSMC 0.0% −1.0% −2.1%

Mass conservation is microscopically exact. There is no diffusion or
fluctuation term in the mass conservation equation
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Numerical methods for stochastic PDE’s

Accurately capturing fluctuations in a hybrid algorithm requires
accurate methods for PDE’s with a stochastic flux.

∂tU = LU + KW

where W is spatio-temporal white noise

We can characterize the solution of these types of equations in
terms of the invariant distribution, given by the covariance

S(k , t) =< Û(k , t ′)Û∗(k , t ′ + t) >=

∫ ∞
−∞

eiωtS(k , ω)dω

where
S(k , ω) =< Û(k , ω)Û∗(k , ω) >

is the dynamic structure factor
We can also define the static structure factor

S(k) =

∫ ∞
−∞

S(k , ω)dω
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Fluctuation dissipation relation

For
∂tU = LU + KW

if
L + L∗ = −KK ∗

then the equation satisfies a fluctuation dissipation relation and

S(k) = I

The linearized LLNS equations are of the form

∂tU = −∇ · (AU − C∇U − BW )

When BB∗ = 2C, then the fluctuation dissipation relation is
satisfied and the equilibrium distribution is spatially white with
S(k) = 1
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Discretization design issues

Consider discretizations of

∂tU = −∇ · (AU − C∇U − BW )

of the form
∂tU = −D(AU − CGU − BW )

Scheme design criteria
1 Discretization of advective component DA is skew adjoint;

i.e., (DA)∗ = −DA
2 Discrete divergence and gradient are skew adjoint:

D = −G∗

3 Discretization without noise should be relatively standard
4 Should have “well-behaved” discrete static structure factor

S(k) ≈ 1 for small k ; i.e. S(k) = 1 + αkp + h.o.t
S(k) not too large for all k . (Should S(k) ≤ 1 for all k?)
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Example: Stochastic heat equation

ut = µuxx +
√

2µWx

Explicit Euler discretizaton

un+1
j = un

j +
µ∆t
∆x2

(
un

j−1 − 2un
j + un

j+1

)
+
√

2µ
∆t1/2

∆x3/2

(
W n

j+ 1
2
−W n

j− 1
2

)
Predictor / corrector scheme

ũn
j = un

j +
µ∆t
∆x2

(
un

j−1 − 2un
j + un

j+1

)
+
√

2µ
∆t1/2

∆x3/2

(
W n

j+ 1
2
−W n

j− 1
2

)

un+1
j =

1
2

[
un

j + ũn
j +

µ∆t
∆x2

(
ũn

j−1 − 2ũn
j + ũn
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)
+

√
2µ

∆t1/2
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(
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−W n
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Structure factor for stochastic heat equation
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Euler

S(k) = 1 + βk2/2

Predictor/Corrector

S(k) = 1− β2k4/4

PC2RNG:

S(k) = 1 + β3k6/8

How stochastic fluxes are treated can effect accuracy
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Elements of discretization of LLNS – 1D

Spatial discretization
Stochastic fluxes generated at faces
Standard finite difference approximations for diffusion

Fluctuation dissipation

Higher-order reconstruction based on PPM

UJ+1/2
=

7
12

(Uj + Uj+1) −
1

12
(Uj−1 + Uj+2)

Evaluate hyperbolic flux using Uj+1/2
Adequate representation of fluctuations in density flux

Temporal discretization
Low storage TVD 3rd order Runge Kutta
Care with evaluation of stochastic fluxes can improve
accuracy
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Structure factor for LLNS in 1D
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Discretization for LLNS

〈δρ2〉 〈δJ2〉 〈δE2〉
Exact value 2.35× 10−8 13.34 2.84× 1010

PPM 1.97× 10−8 13.27 2.58× 1010

RK3 2.29× 10−8 13.54 2.82× 1010

Error PPM −16.0% −0.5% −9.4%
Error for RK3 −2.5% 1.5% −0.7%

Basic scheme has been generalized to 3D and two component
mixtures

Additional complication is correlation between elements of
stochastic stress tensor

Several standard discretization approaches do not correctly
respect these correlations

Do not satisfy discrete fluctuation dissipation relation
Leads to spurious correlations

Alternative approach based on randomly selecting faces on
which to impose correlation

Preserves correlation structure in 2D and 3D
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SPDE versus DSMC
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Hybrid Issues
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1

Maxwellian versus Chapman Enskog
Measuring gradients for C-E is problematic
Maxwellian typically gives better results in hybrid

Refinement criterion
Use smoothed gradient – width based on noise magnitude
Potentially use breakdown parameter to guide refinement
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Equilibrium
Does deterministic PDE treatment affect fluctuations for fluid
simulations?

Energy Statistics
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Non-equilibrium

Look at correlations in the presence of a thermal gradient
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Shock propagation

t
0

Ensemble of stochastic PDE runs
Ensemble of stochastic hybrid runs
Single stochastic hybrid run

t
1

t
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t
3

Propagation of refined shock
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Piston problem

T1, ρ1 T2, ρ2

Piston

ρ1T1 = ρ2T2

Wall and piston are adiabatic boundaries
Dynamics driven by fluctuations

Bell, et. al., LBNL AMAR



Piston dynamics

Hybrid simulation of Piston
Small DSMC region near the piston
I-DSMC – see Donev talk
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Piston position vs. time

Piston versus time
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Averge piston position vs. time

Ensemble piston motion versus time
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Piston velocity autocorrelation

Start with piston at equilibrium location
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Summary

Failing to include fluctuations at the continuum level in a hybrid model can pollute the
microscopic model

Hybrid methodology for capturing fluctuations

Microscopic model – DSMC

Continuum model – discretization of LLNS equations
RK3 centered scheme
Captures equilibrium fluctuations

Hybridization based on adaptive mesh refinement constructs

Future issues

Numerics / Mathematics
Mathematical structure of systems
Criterion for evaluating schemes / hybrids
Stochastic analogs of limiting – robustness
Fluctuations in low Mach number flows

Physics
Reacting systems
Complex fluids
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