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Multi-scale models of fluid flow

Most computations of fluid flows use a continuum representation
(density, pressure, etc.) for the fluid.

@ Dynamics described by set of PDEs.

@ Well-established numerical methods (finite difference, finite
elements, etc.) for solving these PDEs.

@ Hydrodynamic PDEs are accurate over a broad range of length
and time scales.
But at some scales the continuum representation breaks down and
more physics is needed
When is the continuum description of a gas not accurate?
@ Discreteness of collisions and fluctuations are important

e Micro-scale flows, surface interactions, complex fluids
e Particles / macromolecules in a flow .
e Biological / chemical processes — A
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Hybrid methods

Look at fluid mechanics problems that span kinetic and
hydrodynamics scales

Approaches T ]_\1 1

@ Molecular description —
correct but expensive

@ Continuum CFD — cheap but

I

I

D S rr———
doesn’t model correct physics |
|

System Size

Kinetic scale Hydrodynamic scale
107 m >10°m

@ Hybrid — Use different models -
fOf the phySiCS in different l ( Thermodynamic Fluctuations o I
parts of the domain "~~~ T T T T T

e Molecular model only
where needed
e Cheaper continuum

model in the bulk of the A
domain ;\%
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Hybrid approach

Develop a hybrid algorithm for fluid mechanics that couples a
particle description to a continuum description

@ AMR provides a framework for such a coupling

e AMR for fluids except change to a particle description at the
finest level of the heirarchy

@ Use basic AMR design paradigm for development of a
hybrid method
e How to integrate a level
e How to synchronize levels
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DSMC

Discrete Simulation Monte Carlo (DSMC) is a leading
numerical method for molecular simulations of dilute gases

@ Initialize system with particles
@ Loop over time steps

o Create particles at open
boundaries
Move all the particles
Process particle/boundary
interactions op 2 ‘
Sort particles into cells Example of flow past a
Select and execute random sphere
collisions
Sample statistical values

.
o
. °
- 3
. . 1 D

) o *

~

Bell, et. al., LBNL AMAR



Adaptive mesh and algorithm refinement

AMR approach to constructing hybrids —

Garcia et al., JCP 1999 . ’;""
1 \ 1

Hybrid algorithm — 2 level PR ﬁ"--

@ Advance continuum CNS solver e iiffﬁf :'__Ti L
e Accumulate flux F¢ at DSMC Ml o e .'-i-i
boundar e !

Y DSMC boundary

@ Advance DMSC region
e Interpolation — Sampling from
Chapman-Enskog distribution
e Fluxes are given by particles
crossing boundary of DSMC region

@ Synchronize

e Average down — moments
o Reflux 6F = —AtAFc + 3, Fp DSMC flux ﬁ ‘...
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Hydrodynamic Fluctuations

Given particle positions and velocities, measure macroscopic
variables

@ These quantities naturally fluctuate
@ Particle scheme:
e Capture variance of fluctuations

e Predict time-correlations at hydrodynamic scale
@ Predict non-equilibrium fluctuations hydrodynamic scale
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Fluctuations at continuum level

How do molecular-scale fluctuations interact with the
continuum?

Can / should we capture fluctuations at the continuum level?

Do they matter?

This has been investigated for a number of models
@ Diffusion
@ "Train” model
@ Burgers’ equation

Example: Burgers’ equation — Bell et al. JCP, 2007.
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AERW / Burgers’

Asymmetric Excluded Random Walk:

L] [ ] [ ]
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Probability of jump to the right sets the “Reynolds” number
@ Mean field given by viscous Burgers’ equation
@ Stochastic flux models fluctuation behavior
ut + c((u(1 — u))x = euxx + Sx

Stochastic flux is zero-mean Gaussian uncorrelated in space

and time with magnitude from fluctuation dissipation theorem ,\‘“
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AERW / Burgers’

Simple numerical ideas work well
@ Second-order Godunov for advective flux
@ Standard finite difference approximation of viscosity
@ Explicitly add stochastic flux
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AERW / Burgers’

Mear
— Fiybrid AERW/SPDE
081 ~ Hybrid AERWIDPDE
o7 — SPDE
35|

Shock Drift
_____ Failure to include the effect
e . e of fluctuations at the contin-
\ i num level disrupts correla-

tions in the particle region

Yy =3 N = s " . rr:':'}| ‘I,I}
Rarefaction \|
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Landau-Lifshitz fluctuating Navier Stokes

What about fluid dynamics?
@ Can we model fluctuations at the continuum level?
@ Do they matter in this context?

E

pV 0 0
F=| pvw+Pl D= T S= S ,
(E+ P)v KVT +71-v o+v-§

(Sy(r, Sk, 1)) = 2kan T (955f + offels — 2ok, ) a(r = ¥)s(t — ),

p
oU/ot+V-F=V-D+V-S where U= ( J )
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LLNS Discretization

Experience with Burger’s equations suggests adding a

stochastic flux to a standard second-order scheme captures

fluctuations reasonably well.
This is not the case with LLNS

BA) | 0P | 6B
Exact value 235x 1078 | 13.34 | 2.84 x 10"
MacCormack 2.01 x 1078 | 13.31 | 2.61 x 100
PPM 1.97 x 1078 | 13.27 | 2.58 x 100
DSMC 235x 1078 | 13.21 2.78 x 1010
Error MacCormack -14.3% —-0.3% —8.4%
Error PPM -16.0% —0.5% —9.4%
Error DSMC 0.0% —1.0% —21%

Mass conservation is microscopically exact. There is no diffusion or

fluctuation term in the mass conservation equation
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Numerical methods for stochastic PDE’s

Accurately capturing fluctuations in a hybrid algorithm requires
accurate methods for PDE’s with a stochastic flux.

otU = LU+ KW
where W is spatio-temporal white noise

We can characterize the solution of these types of equations in
terms of the invariant distribution, given by the covariance
S(k, t) =< Uk, )0 (k, £ + 1) >= / & S(k, w)dw
where . )
S(k,w) =< U(k,w)U*(k,w) >
is the dynamic structure factor
We can also define the static structure factor

~

S(k) _/ S(k,(.a(.))dw reeeees |’|}
—0o0 E‘;;ﬂ

Bell, et. al., LBNL AMAR




Fluctuation dissipation relation

For
oU = LU+ KW
L+ L*=—-KK*

then the equation satisfies a fluctuation dissipation relation and

S(k) =1

The linearized LLNS equations are of the form

8U= -V - (AU — CVU — BW)

When BB* = 2C, then the fluctuation dissipation relation is
satisfied and the equilibrium distribution is spatially white with ﬁ‘

S(k) =1 °=;=\‘m|



Discretization design issues

Consider discretizations of
U= -V - (AU - CVU - BW)

of the form
otU = —D(AU — CGU — BW)
Scheme design criteria
@ Discretization of advective component DA is skew adjoint;

i.e., (DA)* = —DA
© Discrete divergence and gradient are skew adjoint:
D=-G*

© Discretization without noise should be relatively standard
© Should have “well-behaved” discrete static structure factor

e S(k)~1forsmall k;i.e. S(k) =1+ akP + h.o.t

e S(k) not too large for all k. (Should S(k) < 1 for all k?) i\{
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Example: Stochastic heat equation

Ut = plxx + /2uWx

Explicit Euler discretizaton

g = BB (2w ) sl (W - we )

Predictor / corrector scheme

N—

pAt At1/2 5
ot = u+ﬁ(u] 1 —2u] +u+1)+\/ N 3/2( . %_W/*z

1 - uAt /. N ~
U]'?-H = 3 [an + an + N (an_1 _ 2u/n+ U/Z—1)
~— At/ ;
+ 2'LLAXC"/Z (WJ+2 WJ—%) :\q\‘.ﬁ
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Structure factor for stochastic heat equation

. _b E, _____ 1 Predictor/Corrector
5060 = 1 ¥4
VI PC2RNG:

S(k) =1+ 3%k®/8
How stochastic fluxes are treated can effect accuracy .

Euler

S(k) =1+ 3k?/2
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Elements of discretization of LLNS — 1D

Spatial discretization

@ Stochastic fluxes generated at faces
@ Standard finite difference approximations for diffusion
e Fluctuation dissipation

@ Higher-order reconstruction based on PPM

7 1
Usiy, = 35U+ Uiy = 35(Up-1 + Usi2)

e Evaluate hyperbolic flux using U, ,
e Adequate representation of fluctuations in density flux

Temporal discretization
@ Low storage TVD 3" order Runge Kutta

@ Care with evaluation of stochastic fluxes can improve .
A
accuracy N
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Structure factor for LLNS in 1D
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Discretization for LLNS

(0p°) (0) (0F?)
Exactvalue 2.35x 1078 | 13.34 | 2.84 x 10"
PPM 1.97 x 1078 | 13.27 | 2.58 x 100
RKS3 229x 1078 | 13.54 | 2.82 x 100
Error PPM —16.0% —0.5% —9.4%
Error for RK3 —2.5% 1.5% —0.7%

Basic scheme has been generalized to 3D and two component
mixtures

@ Additional complication is correlation between elements of
stochastic stress tensor

@ Several standard discretization approaches do not correctly
respect these correlations
e Do not satisfy discrete fluctuation dissipation relation
e Leads to spurious correlations
@ Alternative approach based on randomly selecting faces on
which to impose correlation o A
e Preserves correlation structure in 2D and 3D

Bell, et. al., LBNL AMAR



SPDE versus DSMC

X_DSHC
O Rka

<D0 240K

01 o0z 03 04 05 08 07 08 08 1 05

Correlation of density and Shock drift
momentum in a thermal
gradient
= A
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Hybrid Issues
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@ Maxwellian versus Chapman Enskog
e Measuring gradients for C-E is problematic

o Maxwellian typically gives better results in hybrid
@ Refinement criterion

e Use smoothed gradient — width based on noise magnitude
o Potentially use breakdown parameter to guide refinement

~
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Equilibrium
Does deterministic PDE treatment affect fluctuations for fluid

simulations?
Energy Statistics

<2k KA A\4 —e— Stoch. PDE only
u / —~— Deter. hybrid
<1l / —o— Stoch. hybrid
A )N = = Theory
S N

.
,,,\‘

CCSE
BerKeLEY LAS

Bell, et. al., LBNL AMAR




Non-equilibrium

Look at correlations in the presence of a thermal gradient

—»— DSMC

~o- Stoch. hybrid
% Refinement region
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Stochastic hybrid

40

—+— DSMC
—A- Deter. hybrid
—¥— Refinement region
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Deterministic hybrid
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Shock propagation

Ensemble of stochastic PDE runs
—— Ensemble of stochastic hybrid runs

; %—%—A\ —— Single stochastic hybrid run
q
A

N\
Y \
t] L

25 E;O 7‘5 160 1é5
Propagation of refined shock
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Piston problem

TPy TPy

Piston

@ p1Tlh=p2Tl2
@ Wall and piston are adiabatic boundaries
@ Dynamics driven by fluctuations
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Piston dynamics

Hybrid simulation of Piston
@ Small DSMC region near the piston
@ |-DSMC — see Donev talk
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Piston position vs. time

Piston versus time
——

— Paticle
—— Stoch. hybrid
—— Det. hybrid

[l .
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t
Note: Error associated with deterministic hybrid enhanced for ’\| ‘|
heavier pistons gzse U
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Averge piston position vs. time

Ensemble piston motion versus tim
T T T T T ‘ T

E ‘ T T T T T ‘ T T
121
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Note: Some sensitivity to mesh used for continuum simulation®=
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Piston velocity autocorrelation

Start with piston at equilibrium location

-3
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Failing to include fluctuations at the continuum level in a hybrid model can pollute the
microscopic model

Hybrid methodology for capturing fluctuations
@ Microscopic model — DSMC

@ Continuum model — discretization of LLNS equations
@ RK3 centered scheme
@ Captures equilibrium fluctuations

@ Hybridization based on adaptive mesh refinement constructs

Future issues

@ Numerics / Mathematics

@ Mathematical structure of systems

@ Criterion for evaluating schemes / hybrids
@ Stochastic analogs of limiting — robustness
@ Fluctuations in low Mach number flows

@ Physics
@ Reacting systems R
@ Complex fluids r;r:r}‘ ‘.ﬁ
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