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Introduction

One thinks of astrophysical problems
as dramatic, explosive events but a
wide range of phenomena are charac-
terized by low Mach number convective
flows

Convection leading up to ignition
of a standard Chandrasekar
SNIa

Convection in some
sub-Chandra SNIa scenarios

Type 1 XRB

Convection in main sequence
stars

Nuclear flame microphysics
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Outline

Type Ia Supernovae
Standard approach
Low Mach Number Approach
Numerical Issues
Results
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Type Ia Supernovae (SNe Ia)

Largest thermonuclear explosions in the universe
Brightness rivals that of host galaxy, L 1043 erg / s
Definition: no H line in the spectrum, Si II line at 6150A.
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Light Curves

Key observable for SNe
Ia is the light curve
(brightness vs time).
Light curves from
different SNe Ia have
similar shape, except
for brighter ≈ broader.
With a single “time
stretch” factor we can
map all these curves
onto a single curve.
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1998 Science Breakthrough of the Year

(Supernova Cosmology Project and High-z Supernova Search
Team)

By observing the duration
of distant SNe Ia one
could determine their
absolute magnitude
(standard candles).
absolute vs. apparent
brightness→ distance
distance vs. redshift→
Hubble diagram.

This led to the discovery that the rate at which the Universe is
expanding is increasing.
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SNe Ia: Theory

The best model for SNe Ia is the thermonuclear explosion of a
carbon/oxygen white dwarf.

A carbon-oxygen white dwarf
accretes mass from a binary
companion (≈ 10 million years to
reach Chandrasekhar limit)

Over a period of centuries, carbon burning near the core drives
convection and temperature slowly increases.

Over the last few hours, convection becomes more vigorous as
the heat release intensifies and convection can no longer carry
away the heat.

Eventually, the star ignites, and finally explodes within seconds.
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SNe Ia: Modeling

Traditional modeling approaches focus on the last few seconds.

Initial conditions:

Radial profile from 1d stellar evolution code

Assumptions about when & where of ignition ”hot spots”

But... The simulated explosions are very sensitive to the initial
conditions

⇒We need to know more about how SNe Ia ignite.
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Modeling of Type Ia Supernovae

Typically, numerical simulations of SNe Ia have used the
compressible Navier-Stokes equations with reactions:

ρt +∇ · ρU = 0
(ρU)t +∇ · (ρUU + p) = −ρger

(ρE)t +∇ · (ρUE + Up) = ∇ · κ∇T − ρg(U · er ) + ρH
(ρXm)t +∇ · ρUXm = ρω̇m

ρ density
U flow velocity
p pressure
T temperature
E = e + U2/2 total energy

e internal energy
Xm mass fractions
ω̇m Xm production rate
~g force of gravity
H =

∑
m ρqmω̇m heating
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Modeling cont’d

Timmes equation of state provides:

e(ρ,T ,Xk ) = eele + erad + eion

eele = fermi
erad = aT 4/ρ

eion = 3kT
2mp

∑
m Xk/Am

p(ρ,T ,Xk ) = pele + prad + pion

pele = fermi
prad = aT 4/3
pion = ρkT

mp

∑
m Xk/Am

Standard approach: explicit integration of compressible
equations with AMR

Hillebrandt, Niemeyer et al. at MPI, Garching
Oran et al. at NRL
Rossner, Kokhlov, Plewa, et al. at U. Chicago
Woosley, CCSE
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SNe Ia: Ignition

Compressible models work well for modeling the explosion of
the star but to capture ignition . . .

Need to simulate 2 hours (not 2 seconds)
Mach number is very low before ignition
Issues with maintaining hydrostatic balance

Convection leading up to ignition is basically infeasible with
standard explicit compressible codes

Model needs to include a number of effects
Background stratification
Nonideal equation of state
Reactions and heat release
Overall expansion of the star
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Prior art

Hoflich and Stein (2002) mod-
eled a 2-d wedge with an im-
plicit code. Found compression
near center suggesting a cen-
tral ignition

Kuhlen et al. (2006) mod-
eled a convectively unstable re-
gion with center cut out using
an anelastic model. They ob-
served a characteristic dipole
feature suggesting off-center
ignition

No previous calculations have modeled the entire star
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A hierarchy of possible models

We want to eliminate acoustic waves (so we don’t have to track
them) but make as few assumptions as possible about the
magnitude of density and temperature variations.

Possible models for convective motion:

Boussinesq: simplest model - allows heating-induced
buoyancy in a constant density background (constant
p0, ρ0,T0)
Variable-ρ incompressible: finite amplitude density
variation but incompressible
Anelastic: allows small variations in temperature and
density from a stratified background state
(p0(r), ρ0(r),T0(r))
Low Mach number : large variations in temperature and
density in a time-varying stratified background state
(p0(r), ρ0(r),T0(r))
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Buoyant bubble rise

Bell CCSE



Low Mach Number Approach

Asymptotic expansion in the Mach number, M = |U|/c, leads to a
decomposition of the pressure into thermodynamic and dynamic
components:

p(x, t) = p0(r , t) + π(x, t)

where π/p0 = O(M2).

p0 affects only the thermodynamics; π affects only the local
dynamics,

Physically: acoustic equilibration is instantaneous; sound waves
are “filtered” out

Mathematically: resulting equation set is no longer strictly
hyperbolic; a constraint equation is added to the evolution
equations

Computationally: time step is dictated by fluid velocity, not sound
speed.
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Instantaneous Equilibration

Mach number in compressible
(top) vs low Mach number
(bottom) simulation

Features of bubble itself
are identical

Size of difference in M is
10−4, so pressure
difference is O(10−8)
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Low Mach Number Model

∂(ρXk )

∂t
= −∇ · (UρXk ) + ρω̇k ,

∂(ρh)

∂t
= −∇ · (Uρh) +

Dp0

Dt
−
∑

k

ρqk ω̇k + ρHext ,

∂U
∂t

= −U · ∇U −
1
ρ
∇π −

(ρ− ρ0)

ρ
ger ,

∇ · (β0U) = β0

(
S −

1
Γ̄p0

∂p0

∂t

)
where

S = −σ
∑

k

ξk ω̇k +
1
ρpρ

∑
k

pXk
ω̇k + σH

Cannot assume fixed background for net large-scale heating. We need evolution
equations for p0, ρ0, etc.

Use average heating to evolve base state. Remaining dynamics evolves perturbations

∂p0

∂t
= −w0

∂p0

∂r
where w0(r, t) =

∫ r

r0

S(r′, t) dr′

Self gravity introduces additional complexity
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Projection method

Incompressible Navier Stokes equations

Ut + U · ∇U +∇p = µ∆U

∇ · U = 0

Projection method

Advection step

U∗ − Un

∆t
+ U · ∇U = 1/2µ∆(U∗ + Un)− πn−1/2

Projection step to extract divergence-free component

Un+1 = PU∗

Recasts system as initial value problem

Ut + P(U · ∇U − µ∆U) = 0
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Generalized vector field decomposition

Un+1 +
1
ρ
∇π = U∗

∇ · β0U = S

Generalized vector field decomposition

U = Ud +
1
ρ
∇π

where
∇ · β0Ud = 0

Define an orthogonal projection

Pβ0,ρ(U) = Ud

For inhomogeneity define

∇ · β0∇ξ = S

Un+1 = Pβ0,ρ(U∗ −∇ξ) +∇ξ
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MAESTRO: Low Mach number method

Numerical approach based on generalized projection, 2nd order
accurate
Fractional step scheme

Advance velocity and thermodynamic variables

Advection
Diffusion
Reactions

Project solution back onto constraint – single elliptic solve

Operator split approach to include nuclear burning:

Reactions⇒ ∆t/2

Advection – Diffusion⇒ ∆t

Reactions⇒ ∆t/2

Also need to advance background state
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But . . .

We want to simulate a full star on a Cartesian grid assuming a
spherical background state

Dynamics are driven by the perturbational density, which is
much smaller than the background
Thermodynamics are constrained by the background
pressure
Background state evolves slowly to represent expansion of
the star

Need accurate two-way mapping between radial background
state and full state
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Background to grid mapping

For spherical problems, mapping from background state to the
full state can be done using quadratic interpolation

Background node

Grid cell

The background state grid spacing must be chosen to be
smaller than the full state spacing

∆r = 1/5∆x works well
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Cartesian grid to background mapping

Mapping form the full state to the background state requires
more care

Simple averages give
reasonable errors but
test show it isn’t accu-
rate enough
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Cartesian grid to background mapping

Mapping form the full state to the background state requires
more case
Observation: Every Cartesian cell
center has radius of the form

rm = ∆x
√

0.75 + 2m

Create list of radii for all
possible cell centers

Collect average over these
bins

Interpolate from this list to
background state array

Gives relative errors that are
O(10−8)
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Block-structured AMR

AMR – exploit varying resolution require-
ments in space and time

Block-structured hierarchical grids

Amortize irregular work

Each grid patch (2D or 3D)

Logically rectangular, structured

Refined in space and (possibly) time
by evenly dividing coarse grid cells

Dynamically created/destroyed

2D adaptive grid hierarchy
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AMR issues for full-star modeling

Use single radial base state at finest
level

Separate lists for each level

Interpolate levels separately then
combine

Preserves O(10−8) accuracy
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Parallelization

Pure MPI approach

Each grid is assigned to a core

Cores communicate using MPI
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Hybrid model for multicore architectures

Each grid is assigned to a node

OpenMP used to spawn threads so that cores within a node
work on the grids simultaneously

Nodes communicate using MPI
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MPI versus Hybrid model

Advantages of hybrid model
Fewer MPI processes lead to reduced communication time
Less memory for storing ghost cell information
Reduced work from larger grids – surface to volume effect

Disadvantages of hybrid model
Spawning threads is expensive – makes performance
worse for small core counts
Can’t hide parallelization from physics modules

With hybrid model, we have been able to scale MAESTRO to
O(100K) processors
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White dwarf convection

Convective flow pattern on inner
1000 km of star

Red / blue is outward / inward
radial velocity

Yellow / green shows burning rate

Two dimensional slices of temperature a
few minutes before ignition

Bell CCSE



Distribution of ignition

What we would like to know the the distribution of the ignition
site and the structure of the turbulence

Monitor peak temperature and
radius during simulation

Filter data

Bin data to form histogram

Assume that hot spot locations
are “almost” ignitions

Detailed analysis of hot spots
shows that likely ignition is a sin-
gle isolated location

0.0 0.5 1.0 1.5 2.0 2.5
r (cm) 1e7

0

5

10

15

20

25

30

35

40

45
vr > 6×106  cm/s

4×106  cm/s < vr < 6×106  cm/s

2×106  cm/s < vr < 4×106  cm/s

0 cm/s < vr < 2×106  cm/s
vr < 0 cm/s

Bell CCSE



Structure of the velocity field

Radial velocity Theta velocity
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Characterization of the turbulence

What can we say about the structure of the
turbulent flow

Intensity and structure of turbulence
impacts subsequent evolution

Focus on core region

Integral scale approximately 200 km

Turbulent intensity approximately 16
km / sec.

Turbulent intensity too small for
spontaneous detonation

What happens next?

After brief initial transient, early stages of
subsequent evolution dominated by turbu-
lent entrainment in buoyant ash bubble, not
turbulent flame propagation (generalization
of Morton, Taylor, Turner analysis of buoy-
ant plumes)
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Summary
MAESTRO: Low Mach number model for convection in a white dwarf

General equation of state

Background stratification

Reactions and heating

Slow evolution of base state

Numerical issues

Communication of radial base state and Cartesian
representation of the star

Base state evolution with expansion and self-gravity

AMR issues

What’s next?

Map final state into CASTRO to model explosion data
Flame models and transition to detonation

Map CASTRO results into SEDONA (Kasen) to compute light
curve
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