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Overview

Block-structured AMR approach

Hyperbolic conservation laws

Elliptic and parabolic PDE

Astrophyics codes

CASTRO – Compressible radiation hydrodynamics
NYX – Cosmology
MAESTRO – Low Mach number model

Code framework and parallelization

What’s next in algorithms

Developers: A. Almgren, V. Beckner, M. Day, L. Howell, M. Lijewski,
A. Nonaka, M. Singer, M. Zingale

Early users: S. Woosley, A. Burrows, A. Heger, P. Nugent, S. Dong,
C. Joggerst, J. Nordhaus, D. Whalen, M. White
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Block-structured AMR

AMR – exploit varying resolution require-
ments in space and time

Block-structured hierarchical grids

Amortize irregular work

Each grid patch (2D or 3D)

Logically rectangular, structured

Refined in space and (possibly) time
by evenly dividing coarse grid cells

Dynamically created/destroyed

2D adaptive grid hierarchy

How do we integrate PDE’s on this type of grid structure

How do we implement those algorithms

How do we parallelize implementations

Consider a simple case – Hyperbolic Conservation Laws
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AMR for conservation laws

Conservative explicit finite volume scheme

Un+1
i,j = Un

i,j −
∆t
∆x

(Fi+1/2,j − Fi−1/2,j )

−
∆t
∆y

(Gi,j+1/2
− Gi,j−1/2

)

Recursive integration with subcycling in time

Integrate each grid patch separately

Fill ghost cells for next finer level,
interpolating in space and time from
coarser grid where needed

Integrate fine grid for r time steps

Fine-Fine

Physical BC

Coarse-Fine

Berger and Colella, JCP 1989

Bell, Berger, Saltzman,
Welcome, JCP 1994

Coarse and fine grids are at the same time but the overall process isn’t conservative.

At c-f edges flux used on the coarse grid and average of fine grid fluxes don’t agree

Reflux to make overall integration conservative – update coarse grid with difference in
coarse and fine fluxes

∆xc∆ycUc = ∆xc∆ycUc −∆tcAcF c +
∑

∆t f Af F f
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AMR Discretization Design

AMR discretization – solve on different levels separately

Integrate on coarse grid

Use coarse grid to supply Dirichlet data for fine grid at coarse /
fine boundary

Synchronize to correct errors that arise from advancing grids at
different levels separately

Errors take the form of flux mismatches at the coarse/fine
interface

Synchronization:

Define what is meant by the solution on the grid hierarchy

Identify the errors that result from solving the equations on each
level of the hierarchy “independently” (motivated by subcycling in
time)

Solve correction equation(s) to “fix” the solution
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Elliptic AMR

Look at 1d (degnerate) example

−φxx = ρ

where ρ is a discrete approximation to the
derivative of a δ function at the center of
the domain

ρf
J = −α ρf

J+1 = α

but ρc ≡ 0

Define a composite discretization

Lc−fφc−f = ρc−f

and solve

Apply design principles above

Solve Lc φ̄c = ρc

Solve Lf φ̄f = ρf using Dirichlet
boundary conditions at c − f
interface

Form composite φ̄c−f
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Elliptic AMR – cont’d

How do we correct the solution

If we define e = φ− φ̄ then

Lc−f e = R

where R = 0 except at c − f boundary
where the it is proportional to the jump in
φx .

Solve for e and form φ = φ̄+ e

e exactly corrects the mismatch

Residual is localized to the c − f
boundary but correction is global

The error equation is a discrete
layer potential problem

e is a discrete harmonic function
on the fine grid→ solve only on
coarse grid and interpolate
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Spatial accuracy – cell-centered

Modified equation gives

ψcomp = ψexact + ∆−1τ comp

where τ is a local function of the solution derivatives.

Simple interpolation formulae are not sufficiently accurate for
second-order operators

ϕyc

ϕyc

ϕxc-f

ϕxc-f
ϕxc
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Parabolic discretization

Consider ut +∇ · F = ε∆u and the semi-implicit time-advance algorithm:

un+1
i,j − un

i,j

∆t
+

f
n+ 1

2
i+1/2,j − f

n+ 1
2

i−1/2,j

∆x
+ ... =

ε

2

(
(∆hun+1)i + (∆hun)i

)
The difference en+1 between the exact composite solution un+1 and the solution un+1

found by advancing each level separately satisfies

(I −
ε∆tc

2
∆h) en+1 =

∆tc

∆xc
(δF + δD)

where, for example, on a constant x edge

∆tc δf = −∆tc f J−1/2 +
∑

∆t f fj+1/2

∆tc δD =
ε∆tc

2
(uc,n

x,J−1/2 + uc,n+1
x,J−1/2)

−
∑ ε∆t f

2
(uc−f ,n

x + uc−f ,n+1
x )
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AMR algorithms for astrophysics

Basic integration paradigm works for hyperbolic,
elliptic and parabolic PDEs (also works for DO
radiation)

Synchronization equations match the structure
of the process being corrected.

Combine these elements to make a number of
astrophysics applications codes

For multiphysics problems, key issue is keeping
tracking of different aspects of synchronization
and performing them in the right order

Same set of tools can be used for a variety of
applications

Self-gravitational rad / hydro

Cosmology

Low Mach number model

SN Ia
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CASTRO

Compressible hydrodynamics

Unsplit, general EOS integrators

Self-gravity
Monopole approximation
General Poisson solver

Level integration and synchronization
designed for second-order accuracy of
overall algorithm

Applications

SN Ia deflagration studies (flame model) –
Woosley, Dong, Ma

Core collapse – Burrows, Nordhaus,
Rantsiou

Pair instability supernovae – Heger, Chen

Nucleosynthesis – Joggerst, Heger,
Woosley, Whalen
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Core Collapse

Neutrino driven core collapse from 15 solar mass progenitor (Woosley and
Heger)

Snapshot of explosion 250 msec
after bounce

Norhaus, Burrows, Almgren, Bell
Animation: Chupa
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Radiation

Castro Radiation

Flux-limited diffusion

Mixed-frame formulation

Coupled gas pressure
and radiation pressure in
hydro step

Gray or multigroup
photons

Neutrino model in
progress (coupling to Ye)
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Three dimensional simulation of ra-
diative blast wave with AMR
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NYX

Cosmology

Dark matter

Collisionless
particles
Couple to
baryonic matter
through gravity

Hydrodynamics
equation in comoving
coordinates

Self gravity for
baryonic and dark
matter

Simulation of Santa Barbara cluster
test problem

Animation courtesy of Casey Stark
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Low Mach number models

Compressible models work well for modeling supernovae explosion, cosmology, etc.,
but . . .

Another class of phenomena are characterized by low Mach number flows where
U << c

Convection leading up to igntion in an SNIa

Type I XRB

Convection in main sequence stars.

Construct specialized low Mach number models that exploit the separation of scales
between fluid motion and acoustic wave propagation

Model needs to include a number of effects

Background stratification

Nonideal equation of state

Reactions and heat release

Overall expansion of the star
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A hierarchy of possible models

We want to eliminate acoustic waves (so we don’t have to track them)
but make as few assumptions as possible about the magnitude of
density and temperature variations.

Possible models for convective motion:

Boussinesq: simplest model - allows heating-induced buoyancy
in a constant density background (constant p0, ρ0,T0)

Variable-ρ incompressible: finite amplitude density variation but
incompressible

Anelastic: allows small variations in temperature and density
from a stratified background state (p0(r), ρ0(r),T0(r))

Low Mach number : large variations in temperature and density
in a time-varying stratified background state (p0(r), ρ0(r),T0(r))
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Buoyant bubble rise
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Low Mach Number Approach

Asymptotic expansion in the Mach number, M = |U|/c, leads to a
decomposition of the pressure into thermodynamic and dynamic
components:

p(x, t) = p0(r , t) + π(x, t)

where π/p0 = O(M2).

p0 affects only the thermodynamics; π affects only the local
dynamics,

Physically: acoustic equilibration is instantaneous; sound waves
are “filtered” out

Mathematically: resulting equation set is no longer strictly
hyperbolic; a constraint equation is added to the evolution
equations

Computationally: time step is dictated by fluid velocity, not sound
speed.
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Low Mach Number Model

∂(ρXk )

∂t
= −∇ · (UρXk ) + ρω̇k ,

∂(ρh)

∂t
= −∇ · (Uρh) +

Dp0

Dt
−
∑

k

ρqk ω̇k + ρHext ,

∂U
∂t

= −U · ∇U −
1
ρ
∇π −

(ρ− ρ0)

ρ
ger ,

∇ · (β0U) = β0

(
S −

1
Γ̄p0

∂p0

∂t

)
where

S = −σ
∑

k

ξk ω̇k +
1
ρpρ

∑
k

pXk
ω̇k + σH

Cannot assume fixed background for net large-scale heating. We need evolution
equations for p0, ρ0, etc.

Use average heating to evolve base state. Remaining dynamics evolves perturbations

∂p0

∂t
= −w0

∂p0

∂r
where w0(r, t) =

∫ r

r0

S(r′, t) dr′

Self gravity introduces additional complexity
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White dwarf convection

Convective flow pattern on inner 1000 km
of star

Red / blue is outward / inward
radial velocity

Yellow / green shows burning rate

Two dimensional slices of temperature a
few minutes before ignition
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Distribution of ignition

What we would like to know the the distribution of the ignition
site and the structure of the turbulence

Monitor peak temperature
and radius during simulation

Filter data

Bin data to form histogram

Assume that hot spot loca-
tions are “almost” ignitions

Map data into compressible
code to model explosion
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Implementation

One wants to implement these types of algorithms within a software
framework that supports the development of block-structured AMR
algorithms

Represent dynamically changing hierarchical solution

Manage error estimation and regridding operations

Orchestrate multistep algorithms and synchronization

Support for iterative methods for implicit algorithms

There are a number of frameworks that support implementation of these
types of algorithms

We use BoxLib

Data structures

Operations on those data structures

Model for parallelization
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Data Structures

Index space

Box : a rectangular region in index space

BoxArray : a union of Boxes at a level

Real data at a level

FAB: FORTRAN-compatible data on a single box

Data on a patch
These patches are quite large – thousands of points

MultiFAB: FORTRAN-compatible data on a union of rectangles

Data at a level

FluxRegister: FORTRAN-compatible data on the border of a
union of rectangles

Data for synchronization
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Parallel Data Distribution

AMR hierarchy represented by a BoxArray and MultiFAB at each level

Each processor contains the full BoxArray.

Simplifies data-communications: send-and-forget

Data itself is distributed among processors; different resolutions
are distributed independently, separately load-balanced.

Owner computes rule on FAB data.

Issues for efficient implementation

Dynamic load balancing
Efficient manipulation of metadata
Optimizing communication patterns
Fast linear solvers
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Metadata, communications and solvers

Index space operations are naively O(n2)

Each box needs to know its neighbors

Bin BoxArray spatially

Limit searches to boxes in neighboring bins

Communication

Every MultiFAB with the same BoxArray has the same distribution

Each processor caches list of its grids’ nearest neighbors and their processors

Each processor caches list of coarse grids and their processors used to supply
boundary conditions

Messages are ganged: no more than one message is ever exchanged between
processors in an operation

Solvers

Semi-structured solvers

Current approaches based on multigrid
As problem is coarsened, floating point to communication gets small
Communication avoiding algorithms
Consolidate data at coarse levels of multigrid

Bell, LBNL Parallel AMR



Multi-core architectures

Pure MPI approach

Each grid is assigned to a core

Cores communicate using MPI
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Hybrid model

Each grid is assigned to a node

OpenMP used to spawn threads so that cores within a node
work on the grids simultaneously

Nodes communicate using MPI
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MPI versus Hybrid model

Advantages of hybrid model
Fewer MPI processes lead to reduced communication time
Less memory for storing ghost cell information
Reduced work from larger grids – surface to volume effect

Disadvantages of hybrid model
Spawning threads is expensive – makes performance
worse for small core counts
Can’t hide parallelization from physics modules

With hybrid model, we have been able to scale multiphysics
applications to O(100K) processors
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Exascale architectures
Power and cost constraints→ a significant shift in architectural design for next
generation systems

Higher concurrency in low-power many-core, possibly heterogeneous nodes
Much lower memory per core
Performance based on memory access patterns and data movement, not FLOPS
High synchronization costs
High failure rates for components
Reduction in relative I/O system performance

Need to integrate analysis with simulation
Makes simulation look much more like physical experiments

Current programming models are inadequate for the task
MPI reasonable for coarse-grained parallelism but at fine-grained level we
write basically serial and add bandaids (OpenMP) to express parallelism
We express codes in terms of FLOPS and let the compiler figure out the
data movement
Non-uniform memory access is already an issue but programmers can’t
easily control data layout

Rethink discretization methods for multiphysics applications
More concurrency
More locality with reduced synchronization
Less memory / FLOP
Analysis of algorithms currently based on a performance ≡ FLOPS
paradigm – can we analyze algorithms in terms of a more realistic
performance model
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What’s next

Where to we need to go with algorithms?

Characteristics of current generation algorithms

Second-order in space and time

Strang split coupling between processes

Lots of synchronization

AMR metadata bottlenecks

Communication-rich multigrid
AMR synchronization points and bottlenecks

For exascale we would like things that are

Higher-order in space and time

Implicitly requires more sophisticated coupling
Better way to deal with constrained systems

Distributed AMR metadata

Communication avoiding iterative methods

Refactor AMR to reduce synchronization and bottlenecks
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Improving the coupling
Potential options to couple advection, diffusion and reaction

Weak (lagged) coupling of operators
Boris and Oran
Iterated operator splitting methods
Approximate factorization
Difficult to make higher-order

Fully implicit MOL approaches
BDF or IRK integration methodology
Fully coupled nonlinear solve

IMEX methods
Treat one scale explicit, rest implicit; two-scale model
Fully coupled nonlinear solve

Spectral deferred corrections
Introduced by Dutt, Greengard and Rokhlin for ODE
Minion – SISDC
Bourlioux, Layton, Minion – MISDC
Layton, Minion – Conservative MISDC
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Spectral Deferred Corrections
Basic idea (Dutt, Greengard, Rokhlin): write solution of ODE, ut = f (t , u) on
[a, b] as

u(t) = ua +

∫ t

a
f (τ, u) dτ .

If we have an approximate solution û(t), we can define the residual

E(t , û) = ua +

∫ t

a
f (τ, û) dτ − û(t) .

Then, the error δ(t) ≡ u(t)− û satisfies

δ(t) = u(t)− ˆu(t) = (ua +

∫ t

a
f (τ, u) dτ)− (ua +

∫ t

a
f (τ, û) dτ − E(t , û))

MISDC for advection/diffusion/reaction (Minion et al.):

Treat each term separately using a simple approach

Explicit advection, implicit diffusion, implicit reactions

Use different time steps for each process

Iterate SDC correction equation

Interpolating polynomial couples the processes
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SDC for ADR

Generalized SDC framework

Use different representations for each physical process

Reuse existing components of the methodology

Integrate reactions using VODE – Think of VODE as ”exact”

Consider a simple model problem

(ui )t + a(ui )x = D(ui )xx + Ri i = 1, 4

where

R1 = −k1u1u4 − k2u1, R2 = k1u1u4

R3 = k2u1, R4 = −k1u1u4.
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Spectral Deferred Corrections

Develop a general framework for coupling processes in multiphysics applications

Treat individual processes uses representation appropriate for that process

Solver simpler subproblems but iterate to couple processes

Higher-order in time is a change in quadrature rule

Potential to evolve processes simultaneously

Need detailed understanding of SDC properties

Accuracy and robustness of the overall discretization

Convergence properties of the SDC iterations

and how these properties are related to

Properties of processes

Choice of quadrature rules

Initialization and correction algorithms

Potential acceleration strategies

Some work in this area by Minion and collaborators for ODE / DAE

This lays the ground work for higher-order temporal discretization
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SDC, AMR and Parallel

SDC and Parallel

Simultaneous evaluation of different processes with best available approximation
to other processes

Initial iterations at lower resolution / lower fidelity

SDC - Parallel in time (Minion, CAMCOS 2011)

Standard block-structured AMR integration advances levels sequentially from coarsest
to finest

Use SDC ideas to restructure core AMR time-step strategy

No need to complete iteration at a given level before starting the next level

Use initial iterations on coarse grid to compute initial fine grid solutions

This enables integration of different levels in the AMR hierarchy simultaneously

Requires substantive changes to the underlying infrastructure to support efficient
implementation

All of these ideas will reduce serial performance but they expose more concurrency
and have potential for improving parallel performance
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Summary

Shift in architectures as we move to the exascale

FLOPS don’t matter (much)

Memory and data movement are the key

Focus is on changes to the node-level architecture – issues are
likely broader than just exascale

Slow I/O

For astrophysics

Need higher-order in space and time with AMR but avoid difficult
nonlinear systems

Ideally, use formulation that respects the scales in the problem

SDC framework for coupling processes

New programming model
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