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1 Introduction

This user guide accompanies the stochastic radial basis function (RBF) algorithm for global opti-
mization problems. The algorithm attempts to find accurate solutions for minimization problems of
the following form:

min f(x), subject to xl
i ≤ xi ≤ xu

i , i = 1, . . . , d, (1)

where f(x) is a computationally expensive objective function (often a time consuming simulation
model) whose analytical description is not available (black box). Considered are box-constrained op-
timization problems, i.e. only lower (xl

i) and upper (xu
i ) variable bounds exist for xi ∈ R, i = 1, . . . , d,

where d is the problem dimension. There are no other constraints.

Note that for problems with computationally cheap function evaluations the algorithm may not be
very efficient. Surrogate models are intended to be used when a single function evaluation takes
from several minutes to several hours or more. When reading this manual it is recommended to
simultaneously take a look at the code and to try out the examples. It is assumed that the user is
familiar with the papers on whose content this implementation is based:

• A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions
by R.G. Regis and C.A. Shoemaker, 2007, INFORMS Journal on Computing, vol. 19, pp. 497-
509

• Parallel Stochastic Global Optimization Using Radial Basis Functions by R.G. Regis and C.A.
Shoemaker, 2009, INFORMS Journal on Computing, vol. 21, pp. 411-426

These papers should be cited and the codes should be referenced whenever they are used to generate
results for the user’s own research. The user is urged to read these papers before continuing with
the manual since it helps understanding the following descriptions.

The authors of this Matlab implementation are

• J. Müller, juliane.mueller2901@gmail.com

• R.G. Regis, rregis@sju.edu

• C.A. Shoemaker, cas12@cornell.edu

1



This implementation contains the option for doing several function evaluations in parallel (in
addition to the option of doing one evaluation at a time).

The code is set up such that the user only has to define his/her optimization problem in a Matlab
file (see Section 6.1). Additional input such as the maximum number of allowed function evaluations,
the number of trials, an indication if the results should be plotted, and the number of function
evaluations to be done in every iteration are optional, and if not given by the user, default values
are assigned (see Section 6).

This document is structured as follows. In Section 2 the general surrogate model algorithm is
described. The installation of the algorithm is described in Section 3. The dependencies of the
single functions in the code are shown in Section 4. Section 5 briefly describes the main function
StochasticRBF.m. Section 6 describes the options for the input arguments of the main function
and contains an example. Further examples for using the stochastic RBF algorithm are given in
Section 7. The elements of the saved results are described in Section 8.

Finally, if you have any questions and recommendations, or if you encounter any bugs, please feel
free to contact me at the email address juliane.mueller2901@gmail.com.

2 Surrogate Model Algorithms

Surrogate models (also known as response surfaces or metamodels) are used in optimization algorithms
to approximate expensive simulation models [1]. During the optimization phase information from the
surrogate model is used in order to guide the search for improved solutions. Using the surrogate model
instead of the true simulation model reduces the computation time considerably. Most surrogate
model algorithms consist of the same steps as shown in the algorithm below.

Algorithm General Surrogate Model Algorithm

1. Generate an initial experimental design.

2. Do the costly function evaluations at the points generated in Step 1.

3. Fit a response surface to the data generated in Steps 1 and 2.

4. Use the response surface to predict the objective function values at unsampled points in the
variable domain to decide where to do the next expensive function evaluation.

5. Do the expensive function evaluation at the point(s) selected in Step 4.

6. Use the new data to update the surrogate model.

7. Iterate through Steps 4 to 6 until the stopping criterion has been met.

Typically used stopping criteria are a maximum number of allowed function evaluations (adopted
in this implementation), a maximum allowed CPU time, or a maximum number of failed iterative
improvement trials.

3 Installation

Download the file StochasticRBF.zip and unzip it in a location known to the Matlab search path.
Alternatively, you can add a new folder to the Matlab search path by clicking in the Matlab window
on

File → Set Path... → Add with Subfolders → Save

You can try if the algorithm works by typing

>> StochasticRBF(’datainput_hartman3’,200,3,1,1)

into the command prompt.
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4 Code Structure

The structure of the code is outlined here. The function at the highest level (StochasticRBF.m) is
the main function that has to be called by the user. The subtrees indicate dependencies between the
subfunctions.

StochasticRBF.m

TestLocalStochRBFrestart.m

LocalStochRBFrestart.m

SLHDstandard.m

LocalStochRBFstop.m

InitialRBFMatrices.m

phi.m

Minimize Merit Function.m

ComputeRBF.m

phi.m

phi.m

5 The Main File StochasticRBF.m

The file from which to run the algorithm is StochasticRBF.m. The file expects several inputs (see
Section 6) of which only the first one is mandatory. The algorithm starts by checking if the input
is correct and assigns default values to variables that have not been set by the user. If any manda-
tory input data is missing or incorrect, the algorithm terminates with an error message indicating
where the problem may be. Parameters, such as the type of the used RBF model, the corresponding
polynomial tail, and the number of candidate points, are set. The algorithm then calls TestLocal-
StochRBFrestart.m. After the optimization finished a plot of the results is generated (if so desired by
the user). The algorithm saves the results in the file Results.mat.

6 Input

The main file StochasticRBF.m requires several input arguments (see Table 1), out of which only the
first argument is mandatory to run the algorithm. If no input is given for the remaining arguments,
default values are used.

Table 1: Input parameters

Input Description

data file string with name of file containing optimization problem data (mandatory!)
maxeval positive integer defining maximum number of allowed function evaluations (de-

fault 20 · d, d =dimension)
Ntrials positive integer defining the number of times the algorithm is executed for the

given problem (default 1)
PlotResult 0 = no plot; 1 = plot (default 1)
NumberNewSamples positive integer defining the number of points selected in every iteration of the

algorithm for doing expensive simulation (default 1)

6.1 Input data file

The data file contains all the necessary problem information. See for example the file
datainput hartman3.m. The data file has no input argument, and one output argument (the structure
variable Data). The Data structure must contain the information shown on Table 2. It is recom-
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Table 2: Contents data file

Variable Description

Data.xlow variable lower bounds, row vector with d (=dimension) entries
Data.xup variable upper bounds, row vector with d (=dimension) entries
Data.dim problem dimension, positive integer
Data.objfunction handle to objective function/simulation model, must return a scalar value

mended to scale the variable domain such that Data.xlow = 0 and Data.xup = 1. See, for example,
the file datainput Branin.m for how to do it.

6.2 Input Ntrials

The input Ntrials indicates how often StochasticRBF.m should be run for the same problem. The
reason for running the algorithm more than once for the same problem is the random component
when creating the initial experimental design and when generating candidate points. In order to
average out the effect of these random components, several trials should be made. However, for
computationally expensive problems this might not be possible due to the required computation time
for doing the expensive function evaluations. Hence, for most application problems, Ntrials =1 is a
reasonable choice.

6.3 Input PlotResult

If set to 1 (or any value different from 0), a plot of the best objective function value averaged over all
trials after a given number of function evaluations is made. This allows the user to see the progress
of the algorithm and assess convergence.

6.4 Input NumberNewSamples

The variable NumberNewSamples indicates how many points are to be selected in every iteration of
the algorithm for doing expensive function evaluations. If NumberNewSamples is larger than one,
then the function evaluations are done in parallel (as suggested in [3]). Therefore, Matlab’s Parallel
Computing Toolbox must be installed. The objective function values for the points in the initial
experimental design are in this implementation computed iteratively such that users who do not have
Matlab’s Parallel Computing Toolbox are able to execute the serial version ([2]). If the user has the
Matlab Parallel Computing Toolbox installed and wishes to do the function evaluations of the points
in the initial experimental design in parallel, go to the file LocalStochRBFstop.m, comment out the
commands

%for serial evaluation of points in initial starting design:

%------------------------ SERIAL ------------------------------------------

for ii = 1:Data.m %go through all Data.m points

time1 = tic; %start timer for recording function evaluation time

Data.Y(ii,1) = feval(Data.objfunction,Data.S(ii,:)); %expensive simulation

Data.fevaltime(ii) = toc(time1); %record time for expensive evaluation

if ii == 1 %initialize best point found so far = first evaluated point

Data.xbest=Data.S(ii,:); %best point

Data.Fbest=Data.Y(ii); %best objective function value

else %update best point found so far if necessary

if Data.Y(ii) < Data.Fbest

Data.Fbest=Data.Y(ii); %best objective function value

Data.xbest=Data.S(ii,:); %best point

end

end

end

%-------------------- END SERIAL ------------------------------------------
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and uncomment the lines

% m=Data.m;

% Y=Data.Y;

% S=Data.S;

% ObjFunction=Data.objfunction;

% Time=Data.fevaltime;

%

% parfor ii = 1:m %go through all m points

% time1 = tic; %start timer for recording function evaluation time

% Y(ii,1) = feval(ObjFunction,S(ii,:)); %expensive simulation

% Time(ii) = toc(time1); %record time for expensive evaluation

% end

%

% [Data.Fbest, IDfbest]=min(Y(1:m));

% Data.xbest=S(IDfbest,:); %best point

%

% Data.Y=Y;

% Data.fevaltime=Time;

6.5 Input Example

The following example executes the stochastic RBF algorithm for finding the minimum of the three-
dimensional Hartmann function defined in the file datainput hartman3.m. The maximum number of
function evaluations is set to 300, Ntrials is set to 5 (the algorithm is started 5 times for the problem,
and each trial has a different seed for the random number generator). PlotResult is set to 1 in order to
illustrate the development of the objective function value vs. the number of function evaluations, and
NumberNewSamples is set to 4, i.e. in every iteration three new points are selected and the objective
function values of these four points are computed simultaneously using Matlab’s parallel for loop
(parfor). The user is encouraged to try out the example by typing into the Matlab command window
(make sure the location of the files is known to Matlab’s search path):

>> StochasticRBF(’datainput_hartman3’,300,5,1,4)

Note that in the command window the iteration number and the number of function evaluations
done so far is shown. The plot of the average objective function value vs. the number of function
evaluations should look similar to the graph in Figure 1.

7 Examples

This section contains test problems for continuous black-box optimization problems. The input data
files are included in the zip-archive, in the folder ExampleContinuous. The examples have computa-
tionally cheap objective functions in order to reduce the computation time when experimenting with
the code.

• datainput Ackley30.m

• datainput Branin.m

• datainput hartman3.m

For finding an approximation of the minimum of the 30-dimensional Ackley function, type

>> StochasticRBF(’datainput_Ackley30’,400, 1, 1, 5);

With this input the following settings are used (in the sequence of input arguments):

5



0 50 100 150 200 250 300
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Number Of Function Evaluations

Figure 1: Average objective function value vs. number of function evaluations.

• datainput Ackley30 is the data file

• 400 function evaluations are allowed

• the algorithm is executed one time (=1 trial)

• the results are illustrated in a plot

• 5 points are evaluated in every iteration

8 Results

The algorithm saves the results of the optimization to the file Results.mat. Type

>> load Results.mat

into the command window to load the data. If the algorithm has not been interrupted (e.g. by pressing
CTRL+C), the following elements are contained in the saved Solution structure (see Table 3).
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Table 3: Saved Solution structure elements

Elements Description

Solution.BestPoints (Ntrials×d) matrix with best point found in each trial of the algo-
rithm

Solution.BestValues (Ntrials×1) matrix with best objective function value found in
each trial of the algorithm

Solution.NumFuncEval (Ntrials×1) matrix with number of function evaluation in each
trial

Solution.AvgFuncEvalTime (Ntrials×1) matrix with average time needed for evaluating the
objective function in each trial

Solution.FuncVal (maxeval × Ntrials) matrix with objective function values in every
trial (ith column corresponds to ith trial)

Solution.DMatrix (maxeval ×d× Ntrials) matrix with points where objective function
has been evaluated in each trial. Third dimension corresponds to
trial number

Solution.NumberOfRestarts (Ntrials × 1) matrix with number of optimization restarts in each
trial. The optimization reboots whenever a local optimum has
been encountered and if there is a budget of function evaluations
left.

9 GNU Free Documentation License

This is part of the ”User Guide for Stochastic Radial Basis Function Algorithm” Copyright (C) 2013
Juliane Müller. For copying conditions see the GNU Free Documentation License in the file FDL.txt.
You should have received a copy of the GNU Free Documentation License along with this manual. If
not, see http://www.gnu.org/licenses/#FDL.
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