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Motivation and Objective

Optimization is needed in many areas of life:

• engineering (aerospace, automobile industry, medical
imaging)

• economics (utility maximization/expenditure minimization)

• operations research (transportation, scheduling,
environmental applications)

Common for all problems is that a certain objective should be
fulfilled. Considered are problems of the form

min f (x), x ∈ D ⊂ R
d.

Difficulties arising during the optimization process:

• objective function evaluation may become extremely time
consuming due to simulations

• ”black-box” - no gradient information available

• local optimality

Goal: the development of efficient algorithms for finding the
global optimal solution, i.e. finding the optimum while using
as few function evaluations as possible in order to achieve
low computational complexity.

Surrogate Models

Surrogate models [3] are simplifications of simulation models

f (x) = s(x) + ǫ

• f (x) output of simulation model at point x

• s(x) output of surrogate model at point x

• ǫ error

Surrogate models can be

• Interpolating

– Radial basis function interpolant
– Kriging

• Non-interpolating

– Polynomial regression models
– Multivariate adaptive regression splines

Which surrogate model should be used is problem dependent
and in general unknown.

Additionally, mixture surrogate models have been introduced:

ŷ(x) =

Nm∑

i=1

wiŷi(x),

Nm∑

i=1

wi = 1 (1)

• ŷi(x) prediction of ith contributing model

•wi ≥ 0 weight of ith contributing model

•Nm number of contributing models

The purpose of mixture models is to emphasize and
restrict good and bad model characteristics, respectively, by
adjusting the weights wi.

Problem:

How should the weights wi be adjusted?

Solution:

Dempster-Shafer theory

Dempster-Shafer Theory

Dempster-Shafer Theory (DST) [1, 2] is a mathematical
theory of evidence. It allows to combine (conflicting)
information from different sources. Conflicts can be
redistributed amongst the information sources using different
rules:

• Dempster’s rule

• Yager’s rule

• Inagaki’s rule

• Proportional conflict redistribution rule (PCR5)

Functions that are generally used as decision criteria:

• Belief function BEL(A)

• Plausibility function PL(A)

• Pignistic probability BetP(A)

The interval [Bel(A), PL(A)] contains the precise probability
of the set of interest A.

Proposed Algorithm

1. Construct initial experimental design (e.g. Latin hypercube
sampling)

2. Evaluate costly objective function

3. Build different surrogate models

4. Use cross validation to obtain information about the
models:

• correlation coefficients
• root mean squared errors
• median absolute deviation
• maximal absolute errors

5. Apply DST for calculating BetP of each model based on
information from 4

6. Use BetP to determine the weights wi of the models
contributing to mixture models

7. Apply DST to determine BEL and PL of each (mixture)
model

8. Choose model with highest BEL and build response
surface

9. Find minimum of response surface

10. Evaluate costly objective function at the minimum site

11. Repeat 3 to 10 until stopping criterion met

Experimental Results

Experiments have been conducted on six global optimization
benchmark problems with two to six variables. The numerical
results lead to the following conclusions

+ thorough examination of variable domain (global minima
could be detected)

+ approximation of global minima in most cases with error
< 1%

+ only limited number of function evaluations needed

- difficulties approximating very steep minima

• the choice of the conflict redistribution rule influences the
results

• algorithm’s computation time can be considered negligible
compared to time needed for function evaluation

•mixture models prove better for higher dimensional
problems

Consider the Branin function as example. This two-
dimensional problem has three global minima. The
surface and contour plots are illustrated in Figure 1. The
approximated contour and surface plots at various stages of
the algorithm are illustrated in Figure 2 (red asterisks denote
the true minima, black dots denote the samples taken).
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Figure 1: Original surface and contour plots
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Figure 2: Approximation of surface and contours after a) 4,
b) 29 and c) 73 function evaluations, respectively

This example shows that the vicinities of all three global
minima could be detected and that the algorithm repeatedly
samples close to the true optima.

Conclusions

The problem of finding the global optimum of a given
optimization task has been tackled by using surrogate
models. Appropriate (mixture) models have been selected
using Dempster-Shafer theory. The results showed that in
most cases the global optima could be approximated with
high accuracy. Extensions of the algorithm to handle realistic
engineering problems with more complicated constraints
and the application of Bayesian model choice and model
averaging will be considered in future research work.

References

[1] A.P. Dempster, 1968. A Generalization of Bayesian
Framework J. Roy. Statistical Society B 30: 105-247

[2] G. Shafer, 1976. A Mathematical Theory of Evidence
Princeton University Press

[3] D.R. Jones, 2001. A Taxonomy of Global Optimization
Methods Based on Response Surfaces J. Global Optim.
21:345-383


