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On turbulent chemical explosions into dilute aluminum particle clouds
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We use a hybrid two-phase numerical methodology to investigate the flow-field subse-
quent to the detonation of a spherical charge of TNT with an ambient distribution of a
dilute cloud of aluminum particles. Rayleigh–Taylor instability ensues on the contact
surface that separates the inner detonation products and the outer shock-compressed air
due to interphase interaction, which grows in time and results in a mixing layer where
the detonation products afterburn with the air. At early times, the ambient particles
are completely engulfed into the detonation products, where they pick up heat and ig-
nite, pick up momentum and disperse. Subsequently, as they disperse radially outwards,
they interact with the temporally growing Rayleigh–Taylor structures, and the vortex
rings around the hydrodynamic structures results in the clustering of the particles by
also introducing local transverse dispersion. Then the particles leave the mixing layer
and quench, yet preserve their hydrodynamic ‘footprint’ even until much later; due to
this clustering, preferential heating and combustion of particles is observed. With a
higher initial mass loading in the ambient cloud, larger clusters are observed due to
stronger/larger hydrodynamic structures in the mixing layer – a direct consequence of
more particles available to perturb the contact surface initially. With a larger particle size
in the initial cloud, clustering is not observed, but when the initial cloud is wider, fewer
and degenerate clusters are observed. We identify five different phases in the dispersion
of the particles: (1) engulfment phase; (2) hydrodynamic instability-interaction phase;
(3) first vortex-free dispersion phase; (4) reshock phase; and (5) second vortex-free dis-
persion phase. Finally, a theoretical Buoyancy-Drag model is used to predict the growth
pattern of the ‘bubbles’ and is in agreement with the simulation results. Overall, this
study has provided some useful insights on the post-detonation explosive dispersal of
dilute aluminum particle clouds.

Keywords: explosive; mixing layer; aluminum combustion; clustering; dispersion;
Rayleigh–Taylor instability

1. Introduction

Explosives are ubiquitous in many engineering industries and have applications in mining,
in modern warfare, to quench fires in the oil industry, etc. Although explosions have been
widely studied by the research community for well over a century, many phenomena still
remain to be investigated in order to properly understand and characterize the flow-field in
the post-detonation regime. In particular, the characterization of explosions into ambient
solid non-reactive or reactive particles has not been previously addressed in detail. For
instance, ambient aluminum (or any other material) particles can perturb the flow-field
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behind the leading blast wave, ensuing in hydrodynamic instabilities that can grow with
time. Hydrodynamic instabilities such as Rayleigh–Taylor and Richtmyer–Meshkov have
been shown to occur in the flow-field behind blast waves [1–5]. Experimental studies to
understand these flow physics are very difficult due to the hostile, short-lived environment
behind explosive blast waves; thus, investigations based on computational simulations, such
as the present one, offer wider leverage to properly understand and characterize the flow-
field in the post-detonation regime of a high explosive, particularly when ambient reactive
particles like aluminum are present.

Two of the earliest studies of blast waves from intense explosions were carried out
independently by Taylor [6] and Sedov [7], and are seminal in the field. These studies
are primarily one-dimensional explosions, which is generally not the case in most real
explosions, especially the flow-field behind the blast wave. When a spherical (or cylindrical)
charge of a high explosive such as trinitrotoluene (TNT) or nitromethane (NM) is detonated,
a blast wave propagates outwards after the detonation wave consumes all the high explosive;
this blast wave attenuates and decelerates with time due to spherical spreading. The contact
surface that separates the inner detonation products and the outer shock-compressed air also
propagates outwards as the detonation products expand. At the same time, a rarefaction wave
propagates inwards from the outer boundary of the charge, subsequently over-expanding
the flow near the core of the charge. This over-expansion creates a secondary shock that
is initially swept outwards, subsequently implodes inwards and, later, explodes outwards
again after reflection from the origin [8]. To better illustrate the physics of explosions,
in particular when a ring of solid particles is present surrounding the explosive charge, a
schematic of the primary and secondary shocks, the contact surface, and the dispersing
particle cloud are presented in Figure 1, albeit in a one-dimensional sense.

Concomitant to these processes is the interaction of the contact surface with ambient
particles, if present. Recent experimental studies of Shock-Dispersed Fuel (SDF) charges
[9, 10], i.e., charges of a high explosive surrounded with a shell of aluminum particles,
have shown that significant amounts of afterburn, both of the detonation products as well
as the aluminum, results in increased impulse. If ambient particles are too small and/or

Figure 1. Radius–time diagram of the one-dimensional post-detonation flow-field. Note: this is a
schematic only.



Combustion Theory and Modelling 585

light, the leading blast wave may rapidly set them into motion and they may never interact
with the contact surface. This is particularly true apropos of blast waves propagating into
a cloud of liquid droplets [11]. On the other hand, if the particles are sufficiently large
and/or heavy, the leading blast wave may not impart a significant enough momentum to the
particles, thus allowing for the contact surface to overtake the particles. Then, the particles
pick up momentum, are set into motion, and catch up with the contact surface [2]. Thus,
for sufficiently large and/or heavy particles, the contact-surface interaction with particles
occurs twice – the first time when the contact surface overtakes the particles, and the second
time when the particles again overtake the contact surface. Since particles are inevitably
randomly distributed in a realistic cloud, perturbations to the contact surface may occur at
various locations and hence trigger instabilities at multiple wavelengths. These perturbations
can grow in time into Rayleigh–Taylor instability [12] owing to the high density ratio
(∼ 500–1000) across the contact surface at early times; since the perturbations/instabilities
are random, i.e., they have different wavelengths, they will grow at different rates [13]. In
Figure 1, ‘RT’ denotes the instant when Rayleigh–Taylor instability grows on the contact
surface.

Rayleigh–Taylor instability grows as ‘bubbles’ of lighter fluid ‘rising’ into the heavier
fluid, and ‘spikes’ of heavier fluid ‘falling’ into the lighter fluid [14–16]. Thus, the early-
phase mixing is primarily macroscopic in the sense that large-scale intrusions of one fluid
into the other occur. Since explosions inevitably involve very high density ratios between
the high and low density fluids, i.e., Atwood number (A = (ρh − ρl)/(ρh + ρl), where
ρh and ρl denote respectively the densities of the high and low density fluids) close to
unity, the bubbles are significantly larger in transverse scale than the spikes. These bubbles
exist at multiple sizes and wavelengths, and so with time larger bubbles easily overtake
the volume occupied by their smaller counterparts, thereby engulfing them. This results
in a ‘bubble competition’ [14–16] where contiguous bubbles interact and merge, giving
rise to larger scale structures. This competition can also occur between bubbles of different
generations [15,16], i.e., smaller bubbles can compete, merge and, subsequently, the merged
larger bubbles can again compete and merge. Miles and coworkers [15, 16] classify this
bubble merging as an inverse cascade process, as kinetic energy is transferred from smaller
bubbles (or smaller scales) to larger ones; this merging can lead to a loss of memory of
the initial perturbations and an acceleration of the bubble front. Due to bubble merging,
the total number of hydrodynamic structures decreases with time, but their size increases.
This results in a mixing layer, i.e., a finite region of space where the inner detonation
products mix with the outer air and burn, accompanied with the release of afterburning
energy [1, 2, 4, 5]. The mixing layer grows in time and convects downstream due to flow
expansion, with the boundaries asymptoting at late times. Finally, once sufficiently large
enough scales have been reached, no further bubble merging occurs, and self-similar growth
of the Rayleigh–Taylor structures is possible.

Subsequent to the aforementioned phenomena, the secondary shock, during its outward
passage, interacts with the hydrodynamic structures in the mixing layer, a phenomenon
that gives rise to a Richtmyer–Meshkov instability [17]. Here, vorticity is created by the
baroclinic mechanism, and this sustains the mixing process at later times [1, 2, 4]. In
Figure 1, ‘RM’ denotes the instant when Richtmyer–Meshkov instability occurs on the
contact surface/mixing layer. Particles when present in the detonation of a high explosive,
either inside or outside the charge, enhance the mixing process, which in turn releases energy
in addition to the detonation energy. This energy release results in increased temperature
and volumetric expansion, which can play a role in the subsequent mixing process and
hydrodynamic instability growth.
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Although the large and/or heavy particles interact with the contact surface twice, the
first and second interactions may not be of similar proportions due to several reasons. First,
the particle-to-gas velocity difference and the gas densities are different during the first and
second interactions, as the flow expands. Second, when the ambient particles are reactive
(say, aluminum), they can ignite subsequent to the first interaction, and can significantly
burn, so the particles are smaller in size during the second interaction. In addition, since
the second particle-contact surface interaction occurs radially farther than the first (as the
mixing layer is convected downstream), even the spacing between contiguous particles
is now increased. Thus, the second interaction is not as significant as the first in terms
of the amount of mixing introduced to the gas-phase. However, this second interaction
can be significant to the dispersion characteristics of the particle phase, as we will show
in this paper. Subsequently, the particles by virtue of their higher inertia than the gas,
slow down less and then leave the mixing layer. We have recently shown that ambient
aluminum particles enhance mixing between the detonation products and the air [2], with
the following conclusions with regard to mixing and afterburn: (1) the amount of mixing is
nearly independent of the particle size; (2) mixing is enhanced when the mass loading ratio,
η (defined as the ratio of the mass of the solid to the mass of the gas in a given volume),
of the particles is higher; and (3) mixing is enhanced when the initial radial extent of the
outer particle cloud is wider. Furthermore, we also showed in [2] that aluminum particle
ignition due to an explosive blast wave is related to the amount of mixing and afterburn
energy release, i.e., the mixing aspects of the detonation products and air play a central role
in the sustenance of burning of the aluminum particles. Moreover, the aluminum particles
quench as they leave the mixing layer due to the surroundings being relatively ‘cooler’ and
the amount of aluminum that remains after the quenching is also related to the amount
of mixing and afterburn [2]. In [2], we explored aluminum particles of 10 µm radius and
higher; here, the focus is on 5 and 10 µm particle radius clouds, as these smaller size
particles have faster momentum response time-scales, and can thus ‘respond’ to the vortex
rings around the hydrodynamic structures in the mixing layer.

Depending on the size of the aluminum particles, they can ignite either when present in
the mixing layer, or when completely engulfed into the detonation products, or when present
in the outer air. Since the availability of heat and the choice of the oxidizer are different in
these three regions, it is expected that their ignition and burning characteristics also differ;
the burning can be aerobic (O2 controlled) or anaerobic (CO2 or H2O controlled) [18].
Furthermore, if the particles ignite in the mixing layer, there can be competition between
aluminum and the C and CO of the detonation products for the limited availability of the
oxidizer(s) – this is still unknown to the research community. The other challenge pertains
to the different combustion regimes of aluminum particles. Aluminum particle combustion
can occur in the diffusive or the kinetic regimes [19,20]. In the diffusive regime, aluminum
evaporates and the aluminum gas diffuses farther away from the particle surface until it
encounters an oxidizer to burn; here, the diffusion flame is far from the particle surface.
On the contrary, in the kinetic regime, the oxidizer diffuses to the surface faster, resulting
in chemical reaction near to the particle surface. Thus, the two regimes are very different
in the physical phenomena that govern them, resulting in different burn-time predictions.
The interested reader is referred to more elaborate theoretical discussions on aluminum
particle combustion regimes elsewhere [19, 20]. One of the primary distinctions between
the two regimes is the burn time – theoretically, it scales as d2 for the diffusive regime, and
as d for the kinetic regime, where d denotes the particle diameter. The diffusive regime of
aluminum particle combustion has been more widely used by the research community with
the correlation provided by [21] and the references therein. However, recent experimental
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shock tube data of small aluminum particles (30–11 µm dia.) shows that the burning of
aluminum is very different in different oxidizers and is also pressure dependent [22, 23],
conforming to the kinetic regime. Another research group [19] has also shown that the
kinetic regime is more appropriate for aluminum particle combustion in post-detonation
events.

In addition to the ignition and combustion issues, the dispersion of a cloud of solid
particles is also of preponderant interest. In a mixing layer, where heat and/or oxidizer
availability are not uniformly distributed, dispersion of particles can play a central role
in the ignition and the subsequent combustion process. For, dispersion can either enable
particles to concentrate in regions with surplus heat and/or oxidizer, or can carry them away;
thus, dispersion may either assist in the ignition and combustion of the aluminum particles,
or may be detrimental to the same. Evidence from computational simulations outlined in [2]
clearly demonstrate the preponderance of the mixing-controlled afterburn energy release
on the ignition and the sustenance of burning of aluminum particles; thus, dispersion
of particles (which cannot be accurately predicted from one-dimensional simulations)
is critical to the problem under study. Particle dispersion can also result in clustering
effects due to transverse dispersion, which is also of interest in the current investigation.
The study of dispersion and ignition of aluminum particles by explosive blast waves and
their interaction with hydrodynamic instabilities is still in its infancy, and requires more
elaborate studies – this paper aims to provide some useful insights along these lines. These
studies have applications to explosive dispersal of reactive metal particles – also known as
Shock-Dispersed Fuel (SDF) charges [9,10] – where hydrodynamic instabilities can play a
significant role in the amount of late time mixing and afterburn. Insights on the physics of
particle dispersion due to their interaction with hydrodynamic instabilities can be directly
applied for investigations of SDF charges.

The main objectives of this paper are to understand the interaction of an ambient cloud
of aluminum particles and the contact surface during the post-detonation flow-field of a
TNT explosive charge. The ignition, combustion, and clustering effects of the particle cloud
are studied in detail and explained. The paper is organized as follows: in Section 2, we
present the governing equations and the numerical methodology; in Section 3, the results
from the current study are reported and the involved physics elucidated; finally, in Section 4,
the conclusions drawn from this research effort are presented.

2. Governing equations and numerical method

2.1. Gas-phase

We use the Large Eddy Simulation (LES) methodology of the compressible, unsteady,
multiphase gas-phase equations using a finite-volume method [24,25]. Since the flow-field
is dilute in nature, the entire volume is exclusively made available to the gas, i.e., we neglect
the solid volume fraction. The favre-filtered gas-phase governing equations are summarized
as follows [24, 25]:

∂ ρ

∂t
+ ∂ ρũi

∂xi

= ˜̇ρs, (1)

∂ ρũi

∂t
+ ∂

∂xj

[
ρũi ũj + Pδij − τij + τ

sgs
ij

]
= ˜̇Fs,i , (2)
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∂ ρẼ

∂t
+ ∂

∂xj

[
ρũj Ẽ + ũj P + qj − ũi τji + H

sgs
j + σ

sgs
j

] = ˜̇Qs + ˜̇Ws, (3)

∂ ρỸk

∂t
+ ∂

∂xi

[
ρ(Ỹkũi + ỸkṼi,k) + Y

sgs
i,k + θ

sgs
i,k

] = ω̇k + ˜̇Ss,k, (4)

for the continuity, momentum, energy and k-th species equations, respectively. The tilde
(∼) denotes the resolved scale, and the overbar represents a spatial filtering; the variables
denote the usual flow parameters [24,25]. The terms with the superscript ‘sgs’ represent the
subgrid terms, and appropriate closures are used to model them [24, 25]. These terms are
identified as the subgrid stress tensor τ

sgs
ij , subgrid total enthalpy H

sgs
j , subgrid convective

species flux Y
sgs
i,k , subgrid viscous work σ

sgs
j , and subgrid diffusive transport θ

sgs
i,k [24, 25].

To close these terms, we solve the subgrid kinetic energy (ksgs) equation:

∂

∂t
ρ ksgs + ∂

∂xi

(ρ ũik
sgs) = −τij

sgs ∂ũi

∂xj

+ Pksgs − Dksgs . (5)

Pksgs and Dksgs denote, respectively, the production and dissipation of ksgs, obtained as:

Pksgs = ∂

∂xi

(
ρνt

∂ksgs

∂xi

)
; Dksgs = Cερ

(ksgs)1.5

�
. (6)

Here, νt represents the subgrid eddy viscosity, and is modeled as νt = Cν�
√

ksgs, where �

is computed using the local grid size as � = (�x�y�z)1/3. The constants Cν and Cε are
set values of 0.067 and 0.916, respectively [25]. The subgrid stress tensor is obtained as

τ
sgs
ij = −2ρνt

[
S̃ij − 1

3
S̃kkδij

]
+ 2

3
ρksgsδij , (7)

where S̃ij denotes the resolved strain rate tensor, and δij is the Kronecker delta. The subgrid
total enthalpy is obtained as

H
sgs
j = −ρ

νt

P rt

∂H̃

∂xj

, (8)

where H̃ is the filtered total enthalpy, and Prt is the turbulent Prandtl number, assumed to
be unity [25]. The total enthalpy term H̃ is obtained as

H̃ = h̃ + 1

2
ũi ũi + ksgs, (9)

where h̃ is the specific enthalpy of the mixture. Following [24, 25], the subgrid convective
species flux is obtained as

Y
sgs
i,k = −ρνt

Sct

∂Ỹk

∂xi

, (10)
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where Sct is the turbulent Schmidt number, assumed to be unity [25]. For the present study,
the other two subgrid terms, σ

sgs
j and θ

sgs
i,k , are neglected; however, these terms may have to

be revisited in future studies.
The terms that appear on the right side of the governing equations (Equations 1–4), viz.˜̇ρs ,
˜̇Fs,i ,

˜̇Qs ,
˜̇Ws and ˜̇Ss,k , denote the source/coupling terms due to interphase interaction, and

are obtained from the Lagrangian tracking of the solid particles, discussed elsewhere [2].
To close the chemistry, the chemical reaction rate, ω̇k , is assumed to be infinitely fast,

i.e., the reaction rate is dictated by turbulent mixing, rather than by kinetics/temperature
(this approximation is widely referred to as the ‘flame-sheet’ approximation). This approach
has been used in the past for modeling the post-detonation flow-field of explosives [11],
especially because an Arrhenius-type reaction rate applicable for the very high pressures
and temperatures behind an explosion is not available in the literature. The infinite chemistry
assumption does not, however, account for subgrid turbulent micro-mixing effects, which
can play a role in turbulence-chemistry interactions, as well as smoothing out species
gradients at micro-scales. We assume a six-step chemistry, and consider the following
chemical equations (T̃ is the resolved gas temperature):

(1) C(S) + 1

2
O2 → CO,

(2) CO + 1

2
O2 → CO2,

(3) Al + 1

2
O2 → AlO if T̃ > 3500 K,

(4) Al + 3

4
O2 → 1

2
Al2O3(L) if T̃ ≤ 3500 K, (11)

(5) Al + H2O → AlO + H2,

(6) Al + CO2 → AlO + CO.

Aluminum combustion can be aerobic as well as anaerobic [2]. The aerobic reactions are
represented by the third and fourth reactions, while the anaerobic is represented by fifth
and sixth; the terms ‘aerobic’ and ‘anaerobic’ here are based on the choice of the oxidizer:
O2 or otherwise. Furthermore, we use temperature dependent curve-fits for the specific
heats, Cp(T ) for the species [26]. Note that the species C(S) and Al2O3(L) exist in the
condensed phase, and thus we use their respective condensed phase Cp(T ) curve-fits. For
thermodynamic closure, we employ the Noble–Abel equation of state [11, 27], which is
typically used for post-detonation behavior of explosives, and is given by

P = ρRT̃

1 − An
, (12)

where R denotes the gas constant, n is the number of moles per unit volume, and A is an
empirical constant. The term An is ∼0.75 in the vicinity of the initial detonation wave,
but rapidly tends to zero thereafter (our experience shows that for a 5.9 cm radius TNT
charge, An decreases to O(10−3) in about 0.15 msec). Within the initial explosive charge,
detonation profiles based on the Gas-Interpolated-solid Stewart–Prasad–Asay (GISPA)
method [2,3,28,29] are computed using the conventional one-dimensional Euler equations.
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Here, the pressure, density and velocity profiles are obtained from the one-dimensional
GISPA method, and extrapolated to a three-dimensional sector grid (to be discussed in
Section 3) in the radius corresponding to the initial explosive charge. The detonation
profile within the TNT charge is obtained from the GISPA procedure and can be found
elsewhere [2].

The flow-field for the three-dimensional simulations involves both discontinuities such
as shocks and contact surfaces, as well as relatively smoother turbulent regions; it is
customary to use a numerical scheme that can handle both natures of the flow. To this end,
we use a hybrid approach that uses the MUSCL (Monotone Upstream-centered Schemes for
Conservation Laws) [30] shock-capturing scheme in regions dominated by discontinuities,
and a central scheme in relatively smooth regions of turbulence [24]. For the shock-capturing
scheme, the HLLC Riemann solver [30] is used in directions normal to the discontinuity,
and the HLLE approach in the tangential directions so that the carbuncle effects can be
minimized [24]. The scheme is second-order accurate in both time and space. Several
canonical studies have been carried out recently to verify the simulation strategy and the
numerical approach used in the current hydrocode [2, 3, 24].

2.2. Solid-phase

For the solid-phase, we use the Lagrangian tracking approach to compute the particle
velocity vector (up,i) from the forces acting on a particle, i.e., Newton’s law. The particle
position vector (xp,i) is obtained from the velocity vector. These kinematic equations
are summarized below for a particle in the i-th direction:

dxp,i

dt
= up,i, (13)

mp

dup,i

dt
= π

2
rp

2CDρ|ũi − up,i |(ũi − up,i), (14)

where mp is the solid particle mass and rp is the particle radius. In the above equation,
CD represents the drag coefficient and is usually expressed as an empirical function of
the Reynolds number (Re) [31]. Other forces on the particle, such as pressure gradient,
Saffman lift, Magnus effect, Basset term, etc. [32] have been neglected in the present study
based on an order of magnitude estimate. We use the idea of a parcel to represent a group
of particles with the same position, velocity, temperature and radius [2]. The heat transfer
between the two phases is estimated assuming convection and radiation, and is used to
obtain the solid particle temperature (Tp) as follows:

mpCp

dTp

dt
= 2πrpκNu(T̃ − Tp) − ṁpLv + 4πrp

2εσ
(
T̃ 4 − Tp

4
)
. (15)

In this equation, Cp represents the specific heat of the solid particle; κ , the thermal con-
ductivity of the gas-phase; Lv , the latent heat of vaporization; ε, the emissivity; and σ ,
the Stefan–Boltzmann constant. In the literature, the Nusselt number (Nu) is typically ex-
pressed as an empirical function of the Reynolds and Prandtl numbers [32]. The interphase
mass transfer is obtained as:

dmp

dt
= −ṁp = d

dt

(
4

3
πρpr3

p

)
, (16)
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where ρp denotes the particle material density. It is very critical to accurately compute the
last term of the above equation, essentially drp/dt . To obtain this term, we employ the
widely used empirical quasi-steady evaporation law following other studies [2, 33, 34]:

drp

dt
= − rp

tb

(
1 + 0.276

√
Re

)
, (17)

where tb denotes the burning time; this term is critical to the accurate prediction of the
evaporation rate of aluminum. As mentioned in Section 1, two regimes of aluminum
combustion exist: diffusion and kinetic [19, 22, 23], and appropriate burn times need to
be used. For simplicity, we use the evaporation law as specified in Equation (17), and use
the burn time data from [19]. Furthermore, we assume the ignition temperature of the
aluminum particles to be 1000 K [2]. A fourth-order Runge–Kutta scheme is used to solve
the solid-phase governing equations to obtain the solid particle position vector, velocity
vector, temperature and radius.

3. Results and discussion

The simulation hydrocode has been extensively tested with many canonical studies, and has
a demonstrated record for simulating problems similar to the current undertaking [2,3,24].
In the present study, we consider a 5.9 cm radius TNT charge with an ambient distribution of
a cloud of aluminum particles. A 45◦ spherical sector grid centered about the equator is used
with free-slip boundary conditions along the sides of the sector, and outflow in the outermost
plane; the one-dimensional GISPA detonation solution (Section 2) is extrapolated into the
three-dimensional sector grid within the initial 5.9 cm radius charge (see [1] for more dis-
cussions on the sector grid approach). The initial detonation products are obtained from the
balanced chemical equation: C7H5N3O6(TNT) → 1.5N2 + 2.5H2O + 3.5CO + 3.5C(S).

Aluminum particles of size 5 µm radius are randomly distributed in the region from
outside the charge to a radial location of 8.68 cm, occupying an initial mass loading ratio
(ratio of mass of solid to mass of air in a given volume), η = 1. Grids of sizes 1000 ×
45 × 45, 1000×60×60 and 1000 × 90 × 90 are tried in the radial (r), azimuthal (θ ) and
zenith (φ) directions, respectively, and our experience shows that whereas the 1000 × 45 ×
45 grid barely suffices to resolve the mixing layer boundaries, the 1000 × 60 × 60 grid is
required to resolve the dispersion characteristics of the particles upon their interaction with
the hydrodynamic structures in the mixing layer. Thus, for the rest of this study, we employ
the 1000 × 60 × 60 grid. Figure 2 presents a schematic of the initial setup showing the TNT
charge, the ambient cloud of aluminum particles and air. For the aluminum combustion
model, Equation (17), we use the burn time, tb, based on recent experimental data [19],
which conforms to the kinetic regime of aluminum burning. The focus here, inter alia, is
on particle ignition, combustion, clustering and dispersion.

We normalize all times presented in the rest of the paper using the time required for
detonation completion within the charge, to. For comparisons, explosives are generally
scaled using W 1/3, where W represents the mass of the explosive in the initial charge [1].
Since W ∼ r3

o , where ro denotes the initial charge radius, and to = ro/D, where D represents
the detonation velocity of the explosive used, the choice of using to to scale times is
equivalent to the use of W 1/3. For a 5.9 cm radius TNT charge, the GISPA simulation
(described in Section 2) predicts to = 8.25 µsec, and we use this scaling for the times
reported in the rest of the paper.
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Figure 2. Initial setup used for the simulations (charge and particle sizes not to scale). Note: this is
a schematic only.

The simulation case with rp = 5 µm, η = 1 and the initial cloud extending from
outside the charge (r = 5.9 cm) till r = 8.68 cm is chosen as the baseline case for the
analysis to explain the primary physics. Parametric studies will follow this analysis with the
consideration of other particle sizes, loading ratios, initial radial extent of the particle cloud,
and the choice of the aluminum evaporation burn time (tb in Equation 17). A summary of
the different cases considered in this paper is presented in Table 1.

3.1. Dispersion and ignition

The primary physics of the post-detonation phase of the baseline case (Case 1 in Table 1)
as observed from our simulation is summarized here. As mentioned in Section 1, when the
detonation wave reaches the outer boundary of the initial charge, a primary shock wave (PS)
propagates outwards and a rarefaction wave inwards. The contact surface initially overtakes
the particles, and due to the high density gradients across it, is sensitive to perturbations.
The particles pick up momentum and heat from the gas, and thereby introduce perturbations
on the contact surface. These perturbations subsequently grow into Rayleigh–Taylor [12]
hydrodynamic instabilities at multiple transverse scales and wavelengths. By t/to ∼ 4,
the entire particle cloud is engulfed into the detonation products. At the same time, the
inward moving rarefaction overexpands the local flow, giving rise to a secondary shock
(SS) [8]. This SS is initially a weak compression wave and is swept outwards by the
outward expanding gases, during which it strengthens. The schematic of the post-detonation

Table 1. Summary of the different cases considered in this study.

Case rp in µm η Radial cloud width in cm Remarks

1 5 1 5.9–8.68 baseline case
2 5 2 5.9–8.68 effect of η
3 10 1 5.9–8.68 effect of rp

4 10 1 5.9–12 effect of radial cloud extent
5 5 1 5.9–8.68 afterburn turned off
6 5 1 5.9–8.68 different choice of tb (tb = 1 msec)
7 5 1 5.9–8.68 different choice of tb (tb = 0.4 msec)
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flow-field presented earlier in Figure 1 is based on this simulation case. However, note that
this representation in Figure 1 is in a one-dimensional sense only; in reality, the contact
surface will develop into a three-dimensional mixing layer (also known as a fireball).

Ignition occurs in the cloud around t/to ∼ 5, initially at the leading edge by virtue of it
being closer to the source of heat – that due to the afterburn between the inner detonation
products and the outer air. Subsequently, the hydrodynamic structures decelerate more than
the particles, as the latter have a higher inertia; this results in the leading edge of the particle
cloud catching up and interacting with the structures – the second interaction. Around this
time instant, while the leading edge (LE) of the particle cloud is in the mixing layer where
the detonation products (C(S), CO, H2O), air, and afterburn products (CO, CO2) coexist, the
trailing edge (TE) of the cloud is still engulfed into the detonation products. Furthermore,
around this time instant (t/to ∼ 5), the SS, which is still a compression wave, penetrates
into the TE of the cloud, and subsequently strengthens into a shock around t/to ∼ 8; note
that this strengthening is not due to the particles, but due to coalescence of pressure pulses
arising from the relatively higher pressure immediately behind the PS (see [8] for more
discussions on the formation of the SS). Following this, the SS slows down faster than
the particles, as the latter has a higher inertia. By t/to ∼ 12, the particles are completely
engulfed between the PS and SS, and interact with the Rayleigh–Taylor structures that
have already started to grow; this growth of the structures in size is due to two reasons:
(1) entrainment of the outer air into the structures; and (2) ‘bubble competition’ between
contiguous structures [2, 14–16]. Note that this second interaction between the particle
cloud and the contact surface (which by now is essentially a highly perturbed surface due
to the growth of the Rayleigh–Taylor structures) lasts for a longer time than their first
interaction, as the hydrodynamic structures have grown to a larger transverse scale and
width by this time.

Around t/to ∼ 35, the SS implodes inwards as the pressure has reduced considerably
near the core due to the earlier rarefaction wave. During this implosion phase, the TE of
the particle cloud slows down as the local gas velocity reverses – this inevitably widens
the particle cloud width. At the same time, the LE of the cloud starts to emerge out of the
hydrodynamic structures, whose growth hitherto has ensued in a mixing layer. At this time,
the choice of the oxidizer varies across the width of the particle cloud for the aluminum
combustion – it is O2 near the leading edge (aerobic); is H2O near the TE (anaerobic), and a
mixture of possible oxidizers (CO2, H2O, O2) in the middle of the cloud that is currently in
the mixing layer. Furthermore, by this time (t/to ∼ 35), about 75% of the initial aluminum
by mass has already evaporated, indicating that most of aluminum evaporation occurs
primarily when the particles are engulfed inside the detonation products.

Vortex rings exist around the hydrodynamic structures [5] due to shear and baroclinic
effects, and they introduce transverse velocity components to the otherwise radially dis-
persing particle cloud. This transverse dispersion of the particles leads to their clustering
(preferential accumulation) around these vortex rings. Thus, a ‘footprint’ of the Rayleigh–
Taylor structures is left on the particle cloud and is preserved even until much later – we will
soon revisit this phenomenon. Note that we refer to particle structures as a ‘cluster’, merely
to distinguish them from hydrodynamic structures; thus, for the remainder of this paper,
we refer to hydrodynamic fluid structures simply as ‘structures’, and particle structures as
‘clusters’ to avoid confusion.

Subsequently, beyond t/to ∼ 75, the particle cloud leaves the mixing layer, and is
quenched shortly thereafter due to the unavailability of heat and the relatively cooler
surrounding air; analysis shows that only 12% of the original aluminum mass remains
unevaporated in the solid-phase for the chosen particle radius (rp = 5 µm) and mass loading
(η = 1). Furthermore, outside the mixing layer, the sources of turbulence and vorticity are
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not as preponderant as in the mixing layer; thus, the particles disperse mostly along the
radial direction once outside the mixing layer, maintaining their clustered shape, i.e., the
earlier hydrodynamic-induced footprint in the cloud is maintained. Aerodynamic drag slows
down the particles and their clustered shape grows in size as they expand outwards into
free space. Meanwhile, the SS that has been imploding reflects from the origin (t/to ∼
125), and subsequently explodes outwards. During this second outward passage, the SS
interacts with the hydrodynamic structures in the mixing layer – giving rise to a Richtmyer–
Meshkov instability [17] – this event is also termed as a ‘reshock’ [1,4]. Here, the pressure
gradient across the secondary shock is misaligned with the density gradients across the
hydrodynamic structures, which results in the creation of vorticity due to baroclinic torque
effects (ω̇ = 1

ρ2 ∇p × ∇ρ). This vorticity sustains afterburn, as it allows for fresh sources
of oxygen in the air that was hitherto unreachable to the inner detonation products, to come
into contact. Furthermore, during this reshock the mixing layer is compressed [1, 4], due
to which the vorticity is able to sustain itself for a slightly longer time, a consequence
of the two stretching terms in the vorticity equation [2]. Subsequently, around t/to ∼
325, the SS catches up with the particle cloud and penetrates it, essentially a reshock
for the particle cloud, thereby shrinking the width of the cloud. However, the quenched
particles do not re-ignite, as their interaction with the SS occurs radially far away, and the
latter has already attenuated due to spherical spreading. To illustrate the aforementioned
hydrodynamic instabilities behind the blast wave, we present the isosurface of the mass
fraction of CO, shaded with ln(ρ) in Figure 3 at times (a) t/to ∼ 35 and (b) t/to ∼ 460.
As is evident, at the earlier time, the hydrodynamic structures are spatially organized and
are mushroom shaped; at the later time, which is after the reshock, the structures are more
convoluted/wrinkled owing to the deposited vorticity.

3.2. Chronology of particle clustering

Here, we further elaborate on the physics of particle clustering effects. The clustering of
solid particles due to isotropic turbulence is well known [35]; however, here the clustering

Figure 3. CO isosurface shaded with ln(ρ) at times (a) t/to ∼ 35; (b) t/to ∼ 460. Particles are not
shown for better clarity.
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Figure 4. Interaction of the particle cloud with the hydrodynamic structures at t/to ∼ 35: (a) CO2

mass fraction; (b) ln(ω) contours and particle locations.

is owing to the interaction of the particle cloud with the hydrodynamic structures. One main
difference is that in isotropic turbulence, the vortices have no directional bias; consequently,
no spatial bias for the particle clusters. However, in the present problem, the vortex rings
exist only around the Rayleigh–Taylor structures which are spatially aligned along the radial
direction. Hence, the clustering shapes of the particles due to explosion are also spatially
biased. We have also verified that clustering of particles occurs even when the subgrid
turbulence model is turned off, i.e., the clustering is not a consequence of the subgrid
modeling aspects, but is physical.

Vorticity in the mixing layer is primarily concentrated around the Rayleigh–Taylor
structures, i.e., at the interface between the two fluids, due to shear and baroclinic effects.
In regions between contiguous structures where the fluid is air only, and in the regions inside
the structures where the fluid is only the detonation products, vorticity is not as significant.
This gives rise to local regions with vorticity (at the tip of the hydrodynamic structures),
and those without significant flow rotationality (regions between contiguous structures and
inside the structures). To better illustrate the clustering phenomena, the CO2 mass fraction
and vorticity (ω) contours are presented in Figure 4, along with the particles (shown as black
dots) at t/to ∼ 35 – one of the time instants corresponding to the interaction of the particle
cloud with the hydrodynamic structures; these profiles are zoomed near the interaction
region. The outer and inner bold lines in Figure 4(b) represent the primary and secondary
shocks, respectively. Vorticity is accumulated near the product regions, and particles interact
with this vorticity, causing them to cluster. The particle cloud is virtually unaffected in the
vorticity-free regions, but is inevitably influenced in the regions dominated by the vortices;
this, essentially, gives rise to the preferential accumulation (or concentration) of particles.

The clustering patterns of the particle cloud will now be discussed, and are presented
chronologically in Figure 5 (the view presented is that as seen from the outermost plane of
the sector looking inwards at the origin). At early times (Figure 5a), the expanding particle
cloud is still completely engulfed into the detonation products, and no clustering effects are
evident due to the absence of vorticity. Subsequently, the particles enter the mixing layer;
since they enter the mixing layer from the inside, the particles first encounter the vortex
rings around the bubbles (Figure 5b). The vorticity around these rings causes the particles to
also disperse in the transverse directions, and this centrifugal (θ and φ directions) motion,
combined with their inertia, results in the particles clustering around the vortex rings (more
discussions below). Essentially, the transverse dispersion causes the particles to be flung out
from the core of the vortex rings of the hydrodynamic structures [36]. Later, the dispersion
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Figure 5. Clustering of particle cloud at times t/to (a) 20; (b) 25; (c) 35; (d) 50; (e) 560. The scales
of the figures have been adjusted for better clarity.

is complete, and the particles are clustered by t/to ∼ 50 (Figure 5d). Furthermore, the
particle cloud front is also corrugated due to the local dispersion of the particles due to
the vorticity in the hydrodynamic structures during the interaction event; note that this
interaction event is not instantaneous, but lasts for a finite, albeit small period of time (from
t/to ∼ 20 till t/to ∼ 60). After this, the particles leave the mixing layer, and enter vortex-
free regions, thereby preserving their clustered shape, i.e., the hydrodynamic ‘footprint’
(Figure 5e). Note that beyond t/to ∼ 50, even though the clustered cloud shape is preserved
(albeit not size), the particles are still moving in the radial direction as the frontal surface
area of the cloud increases. Thus, even outside the mixing layer the physical size of the
clusters increases with time due to the radial-only dispersion of the particles, but the angular
size and the shape of the clusters are frozen. We have appropriately adjusted the different
subfigures presented in Figure 5 for better clarity of illustrating the transverse motion only.

The dispersion characteristics of particles and the formation of clusters when particle
clouds interact with fluid structures is dictated by the Stokes number, St , which is the ratio
of the particle’s momentum response time to the flow-field time-scale, and is given by the
expression

St = ρpd2
p

/
18µ

Lo/Uo

, (18)

where ρp is the particle material density, dp is the particle diameter, µ is the viscosity of
the gas, and Lo and Uo denote, respectively, the flow length and velocity scales. In previous
studies, different dispersion characteristics for different St have been reported [36–38].
While particles with very small St tend to follow the flow, particles with St of the order
of unity tend to accumulate near the circumference of fluid structures [38]. Particles with
slightly larger St , on the other hand, tend to accumulate near the regions of low vorticity
and high strain [38]. The clustering patterns observed in Figure 5 are reminiscent of those
presented in [38] (see, for instance, Figure 19 of this reference), where the authors study
the particle dispersion characteristics in a three-dimensional temporal mixing layer using
direct numerical simulations. In the current study, analysis shows St of the order of unity
for the rp = 5 µm particles (which are rp = 2.5–3 µm during their interaction with the
Rayleigh–Taylor structures); and St of the order of 10 for rp = 10 µm particles (which are
rp = 8–8.5 µm during their interaction with the Rayleigh–Taylor structures). Furthermore,
the particles are also travelling at speeds in excess of 1 km/s in the radial direction, and so
the time they have to interact with the hydrodynamic structures is limited, indicating that in
addition to the particle response time-scale, the residence time – the time a particle takes
to traverse the hydrodynamic structures – is also of significance. Note that the transverse
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velocity component is used for the definition of Uo and not the radial velocity, since the
focus here is on clustering of particles due to transverse motion.

3.3. Parameters that affect particle clustering

3.3.1. Particle mass loading ratio

To investigate the effect of mass loading ratio, we also consider η = 2 for the same particle
radius (5 µm) and initial radial extent of the particle cloud distribution (radial location
5.9–8.68 cm), i.e., Case 2 in Table 1. Recently, we observed more mixing in the gaseous
detonation products when the initial particle loading ratio is higher [2]; specifically, the
mixing layer width is wider and, consequently, more of the detonation product fuel was
consumed, i.e., more afterburn when the initial outer particle cloud mass loading ratio
is higher. Note that this enhanced mixing is due to more perturbations introduced to the
contact surface during the first interaction event between the particles and the contact
surface. These enhanced perturbations later result in stronger/larger vortex rings around the
Rayleigh–Taylor structures for the η = 2 case than for η = 1. Consequently, the interaction of
the particle cloud with these structures, i.e., the second interaction, is also more prominent
when the initial particle loading ratio is higher.

The clustering process is chronologically presented in Figure 6 for η = 2; closer ob-
servation reveals that due to these larger vortex rings for η = 2, many clusters, albeit
not all, appear larger due to more dispersion for η = 2 – a direct consequence of the
stronger vortex rings in the ensuing Rayleigh–Taylor structures. Moreover, some clusters in
Figure 6 appear as a combination of two partial clusters. This formation is owing to the
particle cloud having earlier interacted with two merging hydrodynamic structures; recall
from Section 1 that the bubble competition process prevalent in the mixing layer can result
in contiguous hydrodynamic structures to interact. Thus, when the particle cloud interacts
with two competing hydrodynamic structures, it disperses locally corresponding to this
‘merging shape’, and this shape is preserved even at later times (Figure 6e). Since η = 2
(Figure 6) results in more merging shapes of the particle cloud than η = 1 (Figure 5), we
believe that bubble competition is more significant for η = 2, due to more perturbations
introduced to the contact surface during the first interaction event by the higher loading
particle cloud.

For a better understanding of the actual clustering process, it is of interest to track the
local transverse gas velocities as ‘seen’ by different particles as they disperse. To this end,
we consider four groups of particles based on their initial locations in the cloud, and denote
as C60 a collection of 100 randomly chosen particles initially located at radial location

Figure 6. Effect of η on clustering of particle cloud (η = 2): times t/to (a) 20; (b) 25; (c) 35; (d) 50;
(e) 560. The scales of the figures have been adjusted for better clarity.



598 K. Balakrishnan and S. Menon

0 100 200 300
t/t

o

5

10

15

20

A
ve

ra
ge

 lo
ca

l g
as

 v
el

oc
it

y,
 m

/s η=1; u
gas,θ

η=1; u
gas,φ

η=2; u
gas,θ

η=2; u
gas,φ

(a)

0 100 200 300
t/t

o

5

10

15

20

A
ve

ra
ge

 lo
ca

l g
as

 v
el

oc
it

y,
 m

/s η=1; u
gas,θ

η=1; u
gas,φ

η=2; u
gas,θ

η=2; u
gas,φ

(b)

Figure 7. Effect of η on the average local gas velocity seen by the particles for particle group
(a) C70; (b) C86.

r = (6.0 ± 0.1) cm; as C70, a collection of 100 randomly chosen particles initially located
at radial location r = (7.0 ± 0.1) cm; similarly, C80 corresponds to r = (8.0 ± 0.1) cm; and
C86 corresponds to r = (8.6 ± 0.1) cm. Of particular interest here is the average local gas
velocity as ‘seen’ by the particles corresponding to each group. Note that for the averaging,
we consider absolute values, i.e., |ugas,θ | & |ugas,φ|, so that two particles at diametrically
opposite ends of a vortex ring, which ‘see’ local gas velocities equal in magnitude, but
opposite in direction, do not cancel out on the averaging.

For the cases corresponding to rp = 5 µm, the initial cloud extending radially from
r = 5.9–8.68 cm, and η = 1 & 2, Figure 7 presents the average local gas velocity as seen
by the particles corresponding to the groups C70 (Figure 7a) and C86 (Figure 7b) (similar
results also hold for C60 and C80, not shown here for brevity). At very early times, the local
azimuthal (ugas,θ ) and zenith (ugas,φ) velocity components are almost negligible, but rise up
rapidly as the particles pick up momentum from the gas and are set into motion. Around
t/to ∼ 20, the particles start to interact with the vortex rings around the hydrodynamic
structures, as is evident from the peaks in Figures 7(a), (b). Around t/to ∼ 30, the transverse
local gas velocities are ∼ 20 m/s – this creates significant enough transverse velocities that
cluster the particles around the hydrodynamic structures. Comparing the two different η

cases, as is evident from Figure 7, the local average gas transverse velocity components
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are slightly higher for the η = 2 case during the peak of the second interaction (t/to ∼ 30).
Subsequently, the average local azimuthal and zenith gas velocities as seen by the particles
are also higher, by a factor of 1.5–2 near the region indicated by the arrow. This sustained
higher transverse velocities in the gas for η = 2 result in the slightly more pronounced
clustering observed for the higher loading ratio in Figure 6.

3.3.2. Particle size and distribution

Recently [2], we observed particles larger than about 20 µm radius not to be susceptible to
the formation of clusters for the chosen explosive conditions (initial charge size, explosive
used: TNT, particle mass loading ratio, initial cloud width, etc.). In [2], we concluded
that the mixing and afterburn aspects in the gas-phase are nearly independent of particle
size for the same initial mass loading ratio (η) and initial radial extent of the particle
cloud. Furthermore, we also showed in [2] that more mixing occurs when the initial cloud
distribution extends farther. Here, we compare the clustering effects due to 5 µm and 10
µm particle radius, for η = 1, and initial radial extent of the cloud r = 5.9–8.68 cm (Cases
1 & 3 in Table 1). Our analysis shows that the 10 µm radius particles do not form clusters
for the chosen conditions, as their ignition is delayed vis-à-vis the 5 µm radius particles,
due to which the particles are still sufficiently large (∼8–8.5 µm radius) during the second
interaction event with the hydrodynamic structures. On the other hand, the particles in the
5 µm cloud have already ignited during their engulfment into the detonation products,
and are about 2.5–3 µm in radius during the second interaction event. The interphase
momentum transfer time scales as r2

p, where rp denotes the particle radius; i.e., larger
particles take longer to be influenced by the flow. Hence, the particles corresponding to the
10 µm cloud, by virtue of their higher inertia during the second interaction event, are not
easily dispersed by the hydrodynamic vortex rings. Consequently, the 10 µm particle cloud
does not form clusters upon their explosive dispersal for the chosen conditions (η = 1;
initial cloud width = 5.9–8.68 cm, etc.). Due to this subdued dispersion of the cloud, even
the width of the 10 µm particle cloud is nearly preserved with time, not shown for brevity.

By considering 10 µm radius particle clouds of the same mass loading ratio (η = 1),
but an initial distribution extending from radial location r = 5.9–12 cm (Case 4 in Table 1),
significant differences are observed; in Figure 8, we present the particle cloud at different
times for this case. Comparing this with the aforementioned case with the 5 µm radius
particles (Figure 5), it is evident that although clusters form for the 10 µm radius particle
cloud when initially distributed from r = 5.9–12 cm, they are much fewer in number and
are not prominently visible, i.e., they are more or less degenerate clusters. Furthermore, the
clusters are relatively ‘diffuse’ in the sense that the regions of higher particle concentration
only gradually change to regions of lower concentration vis-à-vis the sharp particle con-
centration gradients observed for the 5 µm particle radius (Figure 5). Thus, although more
particles (and more mass) are now present for the 10 µm cloud extending initially from 5.9
to 12 cm than the 5 µm cloud extending initially from 5.9 to 8.68 cm, both corresponding
to η = 1, the particle clustering effect is more significant for the latter, due to the shorter
momentum transfer time-scales during their interaction with the hydrodynamic structures.
Hence, the particle size during the second interaction event is critical to cluster formation.

To illustrate the effect of the local gas velocity in support of the observations made in
Figure 8, we present the average local gas azimuthal (ugas,θ ) and zenith (ugas,φ) velocities
as seen by the particle groups C70 and C86 in Figure 9 for rp = 10 µm, η = 1, and the
initial particle cloud extending radially from (1) r = 5.9–8.68 cm and (2) r = 5.9–12 cm
(the definitions of C70 and C86 are the same as described previously). As is evident from
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Figure 8. Effect of particle size on clustering of particle cloud (rp = 10 µm; initial cloud distribution:
5.9–12 cm; η = 1): times t/to (a) 20; (b) 25; (c) 35; (d) 50; (e) 560. The scales of the figures have
been adjusted for better clarity.

Figure 9, the average local azimuthal and zenith gas velocities as seen by the particles
are higher, when the initial cloud width is wider and, consequently, the clustering is more
pronounced. More particles are available to perturb the flow, and the total perturbation time
on the contact surface by the particles during the first interaction event is longer for a wider
initial cloud width; hence, significantly higher transverse velocities are seen by the particles
as they disperse outwards. These differences in the local gas transverse velocities result
in the clustering observed for rp = 10 µm when the particles initially extend radially till
12 cm (Figure 8), but no clustering is observed when initially extending till 8.68 cm. We
could not verify this result for rp = 5 µm extending till 12 cm, as this setup requires too
many particles to be tracked, stretching available computational memory.

3.4. Mixing layer boundaries and width

Also of interest is the quantification of the dynamics of the mixing layer, so as to shed
light on the mixing process between the inner detonation products and the outer air. To this
end, we first define the mixing layer (ML) boundaries based on the mass fraction of CO,
as also done in our recent study [2]. Four phases are of interest here for the gas: (a) blast
wave; (b) implosion; (c) reshock; and (d) asymptotic mixing [1, 2, 4, 5] (these references
describe the four phases more elaborately). The inner and outer boundaries of the ML are
presented in Figure 10(a) for the 5 and 10 µm particle radius cases, corresponding to η =
1, and the initial cloud extending from r = 5.9 to 8.68 cm. The afterburn energy release can
also play a central role in the dynamics of the ML as this inevitably results in volumetric
expansion of the gas in the ML; to investigate its significance, we also consider a case with
5 µm particle radius, but with the afterburn (of both the detonation products as well as the
evaporated aluminum) fictitiously turned off – we refer to this case simply as ‘no afterburn’
(Case 5 in Table 1). As is evident from Figure 10(a), the implosion phase (t/to ∼ 125) is
delayed by about t/to ∼ 50 with the afterburn is turned off. Furthermore, the inner and outer
boundaries stretch farther outwards without this afterburn during the implosion phase: the
outer boundary due to the absence of CO consumption; the inner boundary due to a weaker
secondary shock – a consequence of unavailability of the excess energy. In addition, the
weaker secondary shock also results in a subdued reshock phase (t/to ∼ 300 in Figure
10a) for the no-afterburn case in terms of the distance traversed by the lower boundary of
the ML around this time (it traverses from r/ro = 5 to r/ro = 9 with the afterburn energy
release on; r/ro = 7 to r/ro = 8, otherwise). At sufficiently late times (t/to ∼ 500), the
outer boundary stretches farther outside for the realistic cases than the no-afterburn case,
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Figure 9. Effect of initial cloud width on the average local gas velocity seen by the particles for
particle group (a) C70; (b) C86.

for the same reason. Thus, the afterburn exothermic energy release plays a critical role in
the dynamics of the ML.

In Figure 10(b), we present the ML width (δML), normalized with the charge radius,
ro, with the initial cloud extending from r = 5.9 to 8.68 cm. Here, δML is the spatial
difference between the outer and inner boundaries of the ML. As is evident, δML grows
slower during the implosion (t/to ∼ 125) without the afterburn energy, due to the delayed
and subdued implosion phase (Figure 10a). During the asymptotic phase (t/to ∼ 500),
clearly the afterburning energy release expands the gases in the ML radially further, i.e., the
fireball is bigger with the excess energy release, exemplifying the role played by volumetric
expansion of the gas in the ML.

3.5. Particle cloud boundaries and width

An investigation of the boundaries and the width of the particle cloud as it disperses is
of interest to understand the exact dispersion process subsequent to the detonation. Since
the particle cloud leading (LE) and trailing edges (TE) are corrugated due to clustering
effects, it is essential to define the LE and TE of the cloud to investigate their dispersion
process. Here, we define the LE (r98%) and TE (r2%) of the particle cloud as the radial
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Figure 10. Growth of the mixing layer: (a) outer and inner boundaries of the mixing layer; (b) mixing
layer width (δML). Both variables are normalized with the initial charge radius, ro.

location corresponding to which 98% and 2%, respectively, of the total number of particles
are contained. Note that this definition is rather ad hoc, and is used only to illustrate the
dispersion process. We define the particle cloud width, δcloud = r98% − r2%.

In Figure 11(a), the LE and TE of the cloud are presented for the 5 µm particle radius
clouds considered hitherto, normalized with the initial charge radius (ro). Also shown
here are the results corresponding to tb = 1 msec (Case 6 in Table 1), which is close to
recent shock tube data [39] for a similar particle size, and with tb = 0.4 msec (Case 7 in
Table 1), which would be the burn time predicted with the classical d2 law [34] for rp =
5 µm aluminum particles. We have identified five discernable phases of interest in the
particle dispersion process: (1) engulfment phase; (2) hydrodynamic instability-interaction
phase; (3) first vortex-free dispersion phase; (4) reshock phase; and (5) second vortex-free
dispersion phase. As mentioned above, at early times, the particles are engulfed into the
detonation products – we refer to this as the ‘engulfment phase’. Subsequently, the particles
are readily set into motion, and interact with the hydrodynamic instabilities/structures in the
ML – we refer to this phase as the ‘hydrodynamic instability-interaction phase’; note that
this second phase could essentially be also referred to as the ‘mixing layer phase’, as the
particles traverse the ML during this time interval. This is the phase where the clustering
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Figure 11. Different phases in the dispersion of the particle cloud: (a) leading and trailing edges of
the particle cloud; (b) cloud width. The phases are denoted by (1) engulfment phase; (2) hydrodynamic
instability-interaction phase; (3) first vortex-free dispersion phase; (4) reshock phase; and (5) second
vortex-free dispersion phase. The particle cloud boundaries for tb = 0.4 msec are not presented in (a)
for better clarity of the different cases shown.

of particles occurs, owing to the presence of vortex rings in the hydrodynamic instabilities
in the ML. Then, the particles leave the ML and penetrate into the vortex-free outer region
of air. Here, the momentum picked up earlier drives the dispersion, and later the particles
slow down; the dispersion during this phase is essentially radial, i.e., free of any significant
three-dimensional phenomena like hydrodynamic instabilities, vortices, etc. – hence the
name ‘first vortex-free dispersion phase’. This third phase lasts for a longer time than the
earlier two phases. Subsequently, the secondary shock (SS) penetrates into the particle
cloud, compressing it from the inside, as is evident from the slight outward acceleration of
the TE around t/to ∼ 325. We refer to this phase as the ‘reshock phase’ – not to be confused
with the reshock phase pertinent to the gas as well. Our observations show that since the
reshock phase for the particles occurs outside the ML, baroclinic effects are not significant
for the particle reshock phase – note that this is not true for the gas reshock phase. Lastly,
after the SS leaves the particle cloud, the LE and TE further disperse radially outwards,



604 K. Balakrishnan and S. Menon

Table 2. Scaling laws for the mixing layer (δML/ro) and particle cloud (δcloud/ro) widths.

η Phase aML m acloud n

1 blast wave 6.31 1.172
implosion 13.07 1.346
hydrodynamic instability-interaction 3.315 1.395
first vortex-free dispersion 1.799 0.487

2 blast wave 6.552 1.171
implosion 12.743 1.315
hydrodynamic instability-interaction 3.687 1.259
first vortex-free dispersion 2.33 0.326

preserving their cluster ‘footprint’ – we refer to this as the ‘second vortex-free dispersion
phase’.

In Figure 11(b), the cloud width (δcloud), normalized with the initial charge radius (ro),
is plotted with time, demonstrating the five different phases; we present three cases based
on η and tb, self-explanatory from the legend in Figure 11(b). As is evident, the cloud
width grows faster during the hydrodynamic instability-interaction phase vis-à-vis the first
vortex-free dispersion phase. During the particle reshock phase, δcloud decreases by about
1
2 ro and, subsequently, continues to grow slowly during the second vortex-free dispersion
phase, owing to the LE being slightly faster than the TE. Also evident from Figure 11(b)
is the near-similarity of δcloud for η = 1 with different tb, showing the independence to the
choice of the three different burn times (tb) used. For η = 2, δcloud is about 1

2 ro greater than
for η = 1, and the differences between the two different ηs starts to occur even at early
times, showing that the concomitant enhanced mixing for a higher η leads to a wider cloud.
Hence, the strength of the vortex rings during the hydrodynamic instability-interaction
phase play a critical role in the later time cloud width. Furthermore, starting from the first
vortex-free dispersion phase and thereafter, δcloud for the different ηs maintains a more or
less uniform difference (∼ 1

2 ro), showing self-similar behavior.

3.6. Scaling laws

Scaling laws are widely used to model explosives – see the introduction in [1]. They
have also been used to model explosive ML boundaries obtained from computational
simulations [1, 4]. Of interest is the variation of the ML width with time, so that the
hydrodynamic growth rate of the Rayleigh–Taylor structures can be compared for different
parametric test cases. Scaling laws for particle cloud dispersion can also be useful for
comparing the cloud dispersion behavior. Stated in these terms, we now focus on scaling
laws for the width of the ML of the explosive fireball, as well as that of the particle cloud
(δcloud). Specifically, we consider the ML width (δML) for the early blast wave and implosion
phases. For the particle phases, we scale δcloud for the hydrodynamic instability-interaction
and the first vortex-free dispersion phases. These are modeled using power law curve-fits as
δML/ro = aML tm and δcloud/ro = acloud tn, respectively, where ro denotes the initial charge
radius. The coefficients obtained from the power law curve-fits are summarized in Table 1
(t in msec).

As is evident from the table, the hydrodynamic structures in the ML grow close to linear
(m ∼ 1.17) during the initial blast wave phase. Earlier studies [1, 4] have demonstrated
linearity during the early blast wave phase, albeit for single-phase explosive charges with
an initial perturbation added near the outer periphery of the charge. We believe the slight
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departure from linearity for the current scenario is owing to the continuous nature of
the perturbation, i.e., the finite albeit small time span of early interaction of the contact
surface with the particle cloud. Thereafter, the growth becomes nonlinear (m ∼ 1.31–1.35)
during the implosion phase, as the inner boundary of the ML is dragged inwards by the
imploding secondary shock. For the particle cloud, the power law index (n) shows a slightly
more pronounced dependence on the mass loading ratio (η). Whereas the index n ∼ 1.4
for η = 1, it is ∼ 1.26 for η = 2 during the hydrodynamic instability-interaction phase.
Subsequently, during the first vortex-free dispersion phase, the index n ∼ 0.49 for η = 1,
and ∼ 0.33 for η = 2. The decrease in the power index n between the two phases is due to
the slowing down of the particles outside the ML in the first vortex-free dispersion phase
due to aerodynamic drag.

3.7. Afterburn of the detonation products

The afterburn of the detonation products is prominent in the ML, where they mix with the
outer air and form products. The mass of C(S) remaining in the charge, normalized with
the initial charge mass, is presented in Figure 12 for four different cases, self-explanatory
from the legend. The C(S) mass fraction decreases rapidly at early times, as it comes in
contact with the outer air for the first time; subsequently, the afterburn products (not to
be confused with the detonation products) blanket out the inner detonation products and
the outer air, and thus the sustenance of burning is limited to where the inner detonation
products mix and react with the outer air, which is controlled by the vorticity [2,4,5]. From
Figure 12, the C(S) mass fraction decay is nearly identical for rp = 5 and 10 µm, i.e., is
independent of particle size – a result proven very recently [2] (in [2], only rp > 10 µm
were considered). Other observations from [2] that are also evident in Figure 12 are the
higher afterburn observed for a higher mass loading ratio, and for a longer initial radial
extent of the particle cloud.

While Figure 12 is useful to estimate the carbon mass remaining with time, also of
interest is the rate of carbon mass remaining with time, for this illustrates the profile of the
consumption rate of the fuel. To this end, the rate of mass of carbon remaining, normalized
with the initial charge mass, is presented in Figure 13 for the four cases considered hitherto,
self-evident from the legend in Figure 13. As is evident, the carbon consumption rates are
sufficiently fast at early times (t/to ∼ 30) as the detonation products and the air interact for
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Figure 12. Carbon mass remaining with time, normalized with the initial charge mass.
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Figure 13. Rate of carbon mass remaining with time.

the first time. Subsequently, the afterburn products blanket the inner detonation products
and the outer air, thereby subduing the mixing between them – this decreases the carbon
consumption rates. Later, during the reshock phase (t/to ∼ 275), the carbon consumption
rates are locally enhanced owing to the enhanced mixing rates during the reshock phase
– a consequence of the baroclinically generated vorticity. Upon close observation, the
carbon consumption rates are nearly similar in time for rp = 5 and 10 µm, showing near-
independence with respect to particle size. Also evident at early times is the higher carbon
consumption rate for a wider initial particle cloud distribution, i.e., 5.9–12 cm versus
5.9–8.68 cm. These results conform to the observations made in [2].

The afterburn of the detonation products and air is mixing-controlled, and how soon
they mix is critical to the afterburn rates encountered. Thus, of preponderant interest here
is to quantify the mixing process and investigate its variation with time. To this end, we
define the quantity, ‘degree of mixedness’, denoted DM hereafter, similar to the definitions
used elsewhere [15, 16], albeit for a binary and non-reacting system in these references.
Specifically, we define the DM as follows:

DM =

[∫
YCO

(
YN2 −Y i

N2

)
dV∫

dV

]
[∫

YCO dV∫
dV

] [∫ (
YN2 −Y i

N2

)
dV∫

dV

] , (19)

where YCO and YN2 denote the instantaneous mass fractions of CO and N2, respectively,
and Y i

N2
is the mass fraction of N2 in the detonation products at the onset of detonation

completion, obtained from the chemical balanced equation. Note that we use the quantity
YN2 − Y i

N2
instead of YN2 , as N2 is present on both sides of the contact surface (more on the

side of the air), and this difference represents only the ‘excess N2’ that belongs to the side of
the air. Stated in these terms, the quantity DM will start from zero initially, as the inner CO
and the excess N2 are not yet mixed, and the quantity will increase as they mix subsequently.
In Figure 14(a), we study DM for rp = 5 µm, and the initial cloud extending from r = 5.9 to
8.68 cm, for η = 1 and η = 2. From Figure 14(a), at early times, DM rapidly rises from zero
to 0.03 as the species begin to mix. Subsequently, DM slightly decreases near t/to ∼ 12, as
the CO is consumed. Then, DM rises again during the implosion phase until about t/to ∼
180; DM is slightly greater for η = 2 than for η = 1, as more perturbations associated with
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Figure 14. Degree of mixedness (DM): (a) effect of η; (b) effect of rp and initial cloud width.

the higher η result in enhanced hydrodynamic structures induced mixing. DM decreases
during the reshock phase as the ML is compressed and, subsequently, increases again during
the asymptotic phase at late times as the vorticity deposited in the ML during the reshock
sustains the subsequent mixing process. Consequently, DM continues to be superior for the
higher η. In Figure 14(b), we study the dependence of DM on particle size and initial width
of the cloud – the legend is self-explanatory. Whereas DM is independent of particle size
(for rp = 5 and 10 µm), a wider initial cloud width (r = 5.9–12 cm) results in a superior
DM.

3.8. Theoretical hydrodynamic considerations

The growth of hydrodynamic instabilities in classical gravity-driven fluid interfaces as well
as blast wave driven systems alike, has been studied in the past using many theoretical
models; among these, the Buoyancy-Drag (BD) model is common [40–42]. In the BD
model, the ‘rise’ of bubbles is modeled accounting for buoyancy, drag, and decompression
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effects. The bubble amplitude (h) is obtained as [41]

d

dt

dh(t)

dt
= Ãg(t) − C̃

λ
uinst(t)

2 + d

dt
ω(t)h(t), (20)

where Ã denotes the post-shock-modified Atwood number Ã = A(1 + η∗)/(Ca + η∗),
where A is the post-shock Atwood number given by A = (1 − η∗)/(1 + η∗), η∗ is the
post-shock density ratio, and Ca is the added mass coefficient and equals 2 for 2D and
1 for 3D. Furthermore, g(t) denotes the driving acceleration, and C̃ is the modified drag
coefficient, given by the expression C̃ = C/(Ca + η∗), with C being the drag coefficient
and equals 3 ∗ 2π for 2D and ≈ 1.22 ∗ 2π for 3D [41]. In addition, λ represents the per-
turbation wavelength, uinst is the instability velocity, and ω(t) is the radial velocity gradient
evaluated at the instantaneous interface, given as ω(t) = [∂u(r, t)/∂r]r=ri (t). Following the
approach outlined in [41], the bubble amplitude is obtained as

dh

dt
= uinst(t) + ω(t)h(t), (21)

where the second term accounts for decompression effects. Substituting this into Equation
(20), we obtain the standard BD equation

duinst

dt
= Ãg(t) − C̃

λ
uinst(t)

2. (22)

In the current study, the BD analysis is carried out for the bubbles only, as we believe
volumetric expansion effects due to chemical reactions, which is not accounted for in the
present BD model, will be very significant for spikes as they are smaller (in terms of
transverse length-scale) than bubbles at the high Atwood numbers encountered in chemical
explosions. We consider an ensemble of 10 bubbles from the simulation corresponding to
rp = 5 µm, η = 1 case (Case 1 in Table 1), and track the instantaneous amplitude (h) and
transverse scale (L). The bubble amplitude is a measure of how much the bubble tip grows
farther away from the 1D ‘unperturbed interface’, which is obtained from an additional
single-phase, 1D unperturbed simulation. This 1D simulation is also used to evaluate the
instantaneous interface radius (ri(t)), g(t) and ω(t) required for solving the BD equation
(22). Past studies using the BD model assume self-similar growth to obtain an amplitude-
dependent transverse length-scale [15, 41]. We differ in the current analysis in the sense
that self-similarity is not tacitly assumed; rather, it is demonstrated using the BD model.
In our approach, transverse length-scales from the 3D simulations are used as inputs to the
BD model to estimate bubble amplitudes, which are then compared with the amplitudes
obtained from the 3D simulations. First, the L(t) for the bubble ensemble from the 3D
simulations are used to compute uinst(t) from Equation (22), and from it h(t) is evaluated
using Equation (21). This analysis is performed using the initial amplitudes from t/to∼12
– approximately the time required for the contact surface to overtake the initial particle
cloud – until t/to ∼ 160 – the time when the secondary shock explodes into the mixing
layer during the reshock phase.

Our simulation results show that a range of length-scales exists for the bubbles, presented
in Figures 15(a), (b), including some ‘runaway’ [43] bubbles. Here, a ‘runaway’ bubble is
one which has grown significantly larger in size vis-à-vis its neighboring counterparts, and
often tends to behave very differently than the other bubbles in the vicinity. A wide range of
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Figure 15. Bubble analysis from the 3D simulation for η = 1, rp = 5 µm and the initial particle
cloud extending from r = 5.9 to 8.68 cm (Case 1 in Table 1): (a) L; (b) ln(ρ) contours at t/to ∼ 130
and (c) L/h. The bold dots in (a), (c) denote the 3D simulation results.

length-scales exist for the bubbles, and this needs to be accounted for in the BD analysis. To
this end, we classify the ensemble of bubbles into three branches – lower, middle and upper
– and use three L(t) curve-fits for the current analysis (all length-scales are normalized with
the initial charge radius, ro). Of preponderant interest here is the self-similarity of bubbles
at late times, a topic of wide debate in the recent literature for Rayleigh–Taylor instability
growth, albeit not previously studied for chemical explosions. By self-similarity, we refer
to the growth of bubble amplitudes (h) proportional to their transverse scale (L). Based on
our 3D simulations, the L/h ratio for the bubbles is presented in Figure 15(c), and suggests
L/h ∼0.8 ± 0.3 at early times, but tends to asymptote near t/to∼150 to 0.2 ± 0.07. Also,
as is evident, the ‘runaway’ bubbles shown do not conform to self-similarity.

The asymptotic behavior of the ratio L/h essentially means that the ‘bubble compe-
tition’ process terminates and the bubbles evolve with little or no memory of the initial
length-scales of the early perturbations. Such studies have been carried out in the past
for supernovae and nuclear explosions, but not for chemical explosions to the best of the
authors’ knowledge. At late times, the bubbles reach a ‘freeze-out stage’ [15], i.e., no
further merging occurs. The mode numbers (m) during this late time freeze-out stage are
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of preponderant interest; here, the mode number is defined as m = 2πri(t)/λ(t), where
ri(t) denotes the instantaneous radial location of the interface. From [15], past simulations
of supernova explosions conform to the freeze-out stage m ∼ 16–20; X-ray images of the
Cassiopeia A supernova show m ∼ 20; and high-altitude nuclear explosions conform to
the freeze-out stage m ∼ 18–36. Our simulations predict freeze-out m ∼ 24–44 for the
chemical explosions into ambient particle clouds. We believe that for systems that involve
instantaneous perturbation followed by subsequent growth with no further external pertur-
bations, freeze-out stage mode numbers may conform better to the predictions of [15], i.e.,
m up to 36. However, for chemical explosions into ambient particle clouds, the nature of
the initial perturbations is not instantaneous, but rather lasts for a finite albeit small time –
the time required for the contact surface to overtake the particle cloud. This prolonged ini-
tial forcing inevitably introduces additional perturbations during the first interaction event,
which in turn correlates as marginally larger late time freeze-out stage mode numbers, m,
up to 44.

The similarity ratio, L/h, for the 3D simulation corresponding to η = 2, rp = 5 µm and
the initial particle cloud extending from r = 5.9 to 8.68 cm (Case 2 in Table 1) is shown in
Figure 16. As is evident, L/h is nearly similar in value to the η = 1 case (Figure 15c) at early
times. However, since more perturbations are introduced for η = 2 during the first interaction
event, the late time freeze-out stage L/h asymptotes to 0.27 ± 0.1, indicating that there is
partial retention of memory of the initial conditions at late times, i.e., the freeze-out L/h is
not a ‘universal’ value. Recent supernova simulations also predict memory retention of the
initial conditions at late times [41]. Furthermore, although there is this weak dependence
of the initial conditions, the fact that L/h nearly asymptotes at late times for η = 1 (Figure
15c) and η = 2 (Figure 16), indicates that a ‘quasi-self-similar growth’ is possible for
chemical explosions, where the transverse scale of the bubbles grows in proportion to its
amplitude. However, this quasi-self-similar regime occurs only for a brief time instant,
t/to∼120–150, after which the reshock shrinks the hydrodynamic structures and deposits
vorticity (baroclinic effect) which subsequently wrinkles/convolutes the structures. Due
to the partial memory retention, the late time freeze-out stage photography of chemical
explosions may contain some useful information on the nature of the initial perturbations.
Our analysis shows that the reshock phase is faster for the η = 2 case than η = 1 by about
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Figure 16. Bubble similarity from the 3D simulation for η = 2, rp = 5 µm and the initial particle
cloud extending from r = 5.9 to 8.68 cm (Case 2 in Table 1). The bold dots denote the 3D simulation
results.
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Figure 17. Bubble amplitudes obtained from the BD model for the case corresponding to (a) η = 1,
rp = 5 µm and initial cloud extending from r = 5.9 to 8.68 cm (Case 1 in Table 1); (b) η = 2, rp =
5 µm and initial cloud extending from r = 5.9 to 8.68 cm (Case 2 in Table 1). The bold dots denote
the 3D simulation results.

t/to ∼ 5; due to this earlier reshock for η = 2, the secondary shock reaches the structures
in the mixing layer around t/to∼155 and compresses them. Consequently, h decreases,
causing an increase in L/h beyond t/to > 150, which is of no interest in the present study.

We apply the BD model for the ensemble of bubbles with the transverse length-scale as
input, and predict the amplitude growths with time. Critical to the BD model calculations
is the definition of λ; λ = L has been used by some researchers [40], as well as λ =
2L by others [42]. To be precise, λ should be the ratio of the volume to cross-sectional
area for the bubbles, which can be different for the bubbles depending on their shape. For
instance, a ‘hemi-ellipsoidal bubble’ can have a higher volume to cross-sectional area ratio
than hemispherical bubbles. Both λ = L and λ = 2L are used in the current analysis and
the amplitudes (h) obtained from the BD model are presented in Figure 17 for the lower,
middle and upper branches, along with the 3D simulation results. As is evident, λ = 2L is
in better accordance with higher amplitude bubbles, while λ = L conforms to the smaller
amplitude bubbles. During the implosion phase, our 3D simulation results show that small
bubbles, albeit not all, implode deep into the core – increasing their amplitude, as shown in



612 K. Balakrishnan and S. Menon

0 50 100 150
t/t

o

0

0.01

0.02

0.03

u in
st
/(

r o/t
 ) o

Lower
Middle
Upper

acceleration deceleration

Figure 18. Bubble velocities predicted by the BD model for the case corresponding to η = 1, rp =
5 µm and the initial particle cloud extending from r = 5.9 to 8.68 cm (Case 1 in Table 1).

Figure 15(b). These small bubbles have less drag and thus ‘rise’ higher (higher is actually
deeper by convention), resulting in more oblong shapes that have high volume-to-area ratio;
thus, as expected, the BD model predicts a higher amplitude for λ = 2L. Larger bubbles,
on the other hand, have a higher drag, which slows them as they try to ‘rise’ away from the
interface; thus, these bubbles have relatively smaller amplitudes, as is also predicted by the
BD model results. We believe that to properly characterize bubbles using the BD model, it
is necessary to appropriately define bubble wavelengths (λ) based on their shapes. There is,
however, limited work in the literature on theoretical models with bubble shape-dependent
wavelengths.

Also of interest is to predict the velocity with which the bubbles can ‘break-away’
from the unperturbed interface. This is a direct measure of bubble growth rates due to
the forces acting on them, i.e., buoyancy and drag effects. In Equation (22), the first term
represents the buoyancy term, and the second the drag effects; quantifying the effects of
both these terms can be useful to investigate the effects of each of these terms. Figure 18
shows the instability velocities (uinst) for the lower, middle and upper branches, for the
simulation with η = 1, rp = 5 µm and the initial particle cloud extending from r = 5.9
to 8.68 cm (Case 1 in Table 1). The instability velocity presented here is normalized with
ro/to. As is evident, the acceleration term (the first term in Equation 22) dominates at early
times, with the bubbles reaching a non-dimensional terminal velocity of ≈0.025–0.03 (this
corresponds to a physical velocity of ≈200 m/s) at around t/to ≈ 30. Subsequently, as
the bubbles have grown to sufficiently large sizes (transverse scale), drag effects become
more significant than the driving acceleration, thereby slowing down the bubbles. As is
evident from Figure 18, the bubbles slow down to uinst/(ro/to) ≈ 0.01 at late times, i.e., just
before the reshock phase. This investigation demonstrates that theoretical models such as
the currently employed Buoyancy-Drag model can be applied to directly obtain the bubble
growth velocities and amplitudes; in addition, the terminal velocity of the bubbles can be
determined using the BD model, which is useful for estimating the fireball dynamics from
chemical explosions.

3.9. Preferential particle combustion

After the particles ignite during their early engulfment into the detonation products, their
sustenance of burning depends on the clustering aspects. The vortex rings around the
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Figure 19. Preferential combustion of aluminum particles: particle temperature ((a), (b)) and radius
((c), (d)) at times t/to ∼ 25 ((a), (c)) and t/to ∼ 120 ((b), (d)). Temperature is in kelvin, and radius
is in m. The scales of the figures have been adjusted for better clarity.

hydrodynamic structures bring into contact the inner detonation products and the outer air,
and thereby sustain the afterburn of the detonation products. Thus, the local gas in the
vortex rings is significantly hotter than the vortex-free regions, and so the particles that
disperse through these vortex rings pick up more heat than their counterparts that do not.
Consequently, preferential combustion of aluminum occurs, with the particles that pass
through these vortex rings burning more.

To illustrate this preferential combustion/burning of particles, Figure 19 presents the
particle temperature (Figures 19a, b) and radius (Figures 19c, d) at times t/to ∼ 25 (Figures
19a, c) and t/to ∼ 120 (Figures 19b, d). From Figure 19(a), significant particle temperature
gradients exist during this burning phase, as is evident from the transitions between the red
and green regions; this corresponds to the t/to ∼ 25 time instant, when the particles are
interacting with the hydrodynamic structures in the ML – where afterburn occurs in regions
dictated by where the inner detonation products and the outer air mix. At t/to ∼ 120 (Figure
19b), the particles have quenched, but temperature gradients still persist; however, note that
after quenching, the range of particle temperatures has narrowed down vis-à-vis that during
the earlier burning phase. Comparing the particle radii at these times (Figures 19c, d),
it is evident that the particles are relatively smaller in the regions where they are hotter,
obviously due to the availability of heat from the afterburning regions of the ML. Thus, the
burning characteristics of the particles are mixing-controlled, i.e., turbulent mixing plays a
critical role in the burning of the aluminum particles.

3.10. Boundaries of aluminum combustion products

Our observations show that aluminum particles, owing to their ignition during their en-
gulfment into the detonation products, initially start to burn anaerobically; later, as the
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Figure 20. Boundaries of the region of aluminum oxides (AlO, Al2O3(L)): (a) inner boundary; (b)
outer boundary. Radius r is normalized with the initial charge radius, ro.

leading edge of the particle cloud enters the mixing layer, both aerobic and anaerobic
burning concurrently occur; later, after all the particles leave the mixing layer, burning is
strictly aerobic; subsequently, the particles quench. This transition between anaerobic and
aerobic occurs gradually, and thus the different products of aluminum combustion exist in
varying concentrations at different locations. Consequently, the oxides of aluminum (AlO
and Al2O3(L)) exist in an annular region, similar to the aforementioned ML, i.e., they have
radial inner and outer boundaries; it is also of interest to investigate the motion of the exact
region of this annular region where they exist. To study the region of existence of the alu-
minum oxides, and their convection with time, we present the boundaries of the aluminum
oxides layer in Figure 20: the inner boundary in Figure 20(a) and the outer boundary in
Figure 20(b). Here, we define the inner boundary of the aluminum oxide layer as the radial
location where the azimuthally averaged mass fraction of AlO or Al2O3(L), as the case may
be, transitions from zero to 5% of the instantaneous maximum of the azimuthally averaged
mass fraction of the respective aluminum oxide. Likewise, the outer boundary is defined as
where the transition is reversed, i.e., from 5% to zero of the respective aluminum oxidizer.
Note that this definition is rather ad hoc, but is useful to portray a qualitative picture of
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the aluminum oxide layer. Furthermore, note that the region corresponding to AlO will be
different from that of Al2O3(L). Here, we consider the 5 and 10 µm particle radius, with
η = 1, and the initial cloud extending from r = 5.9 to 8.68 cm. The radius r (y-axis) is
normalized with the initial charge radius, ro. The profiles of the AlO and Al2O3(L) region
boundaries, from Figures 20(a), (b), look similar qualitatively, to the detonation product–air
mixing layer.

As is evident from Figure 20(a), while the inner boundary of the AlO region is radially
inside by ∼ 1.5ro for the 10 µm size, it is outside by approximately the same distance for
Al2O3(L). Since the 10 µm radius particles have a higher inertia than the 5 µm particles,
they spend a longer time engulfed into the detonation products. Consequently, when they
ignite and burn, anaerobically to begin with, the AlO inner boundary is thus inside for
the 10 µm radius particles. Due to the same reason, the 10 µm radius particles take a
slightly longer time to reach the ML – the region where aerobic burning first occurs for
the aluminum combustion; consequently, the inner boundary of the Al2O3(L) region is also
radially outside for the 10 µm particles. Note that once the particles pick up significant
amounts of momentum from the gas they are set into motion, and will overtake the aluminum
that was evaporated from them at earlier times by virtue of their higher inertia. Observing
Figure 20(b), whereas the outer boundary of the AlO region is only marginally inside for
the 10 µm radius particles, it is significantly outside (∼2ro) for the outer boundary of
the Al2O3(L) region. Thus, for both aluminum oxides, the trends in the inner and outer
boundaries conform to the fact that aluminum burning transitions smoothly (in time) from
anaerobic to aerobic burning, irrespective of particle size.

4. Conclusions

A hybrid two-phase numerical methodology is used to study the flow-field behind turbulent
explosions into an ambient dilute cloud of solid particles. Rayleigh–Taylor instabilities
are observed at the contact surface and this grows in time into a mixing layer where the
detonation products afterburn with the outer air. Five discernable phases of interest are
identified in the particle dispersion: (1) engulfment phase; (2) hydrodynamic instability-
interaction phase; (3) first vortex-free dispersion phase; (4) reshock phase; and (5) second
vortex-free dispersion phase. As the particles disperse radially outwards, they interact with
the vortex rings around the Rayleigh–Taylor structures in the mixing layer, which introduces
transverse velocity components to the particles, causing them to cluster. Later, the particles
leave the mixing layer, yet preserve their clustered shape or hydrodynamic ‘footprint’. A
higher mass loading ratio of the initial cloud results in larger and fewer clusters; a larger
particle size tends to form fewer and diffuse clusters when the initial particle cloud is
wider. Preferential heating and combustion is observed in the particle cloud due to the
clustering effects. Later, the secondary shock reshocks the mixing layer, resulting in a
Richtmyer–Meshkov instability; and subsequently reshocks the particle cloud.

A theoretical analysis of the ‘bubble’ growth is undertaken using the Buoyancy-Drag
model, and the amplitude predictions are in reasonable agreement with the simulation
results. Furthermore, a quasi-self-similar regime is observed where the bubble transverse
scales grow in proportion to the amplitude, although this regime lasts only for a small time
interval. The ratio of the transverse length-scale to amplitude during this quasi-self-similar
regime is slightly higher when the initial particle cloud is wider, signifying partial memory
retention of the initial perturbations for explosions into ambient particle clouds. Overall, this
study has provided some useful insights into the ignition and clustering of dilute aluminum
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particle clouds upon explosive dispersal, and on the hydrodynamic characterization of
turbulent explosions.
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