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Simple and exact series solutions for flexure
of orthotropic rectangular plates with any combination

of clamped and simply supported edges
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Abstract

Rectangular plates with arbitrary clamped edges are not easily amenable to exact analysis. Available solutions are either ap-

proximate or mathematically complex. The purpose of this paper to present an exact solution methodology for such problems based

on superposition of double sine series solutions easily derived using the principle of virtual work. The paper includes tabulated

results for two laminates for all possible combinations of clamped–simply supported edges, which would be valuable for future

comparisons.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Problems involving rectangular plates fall into three

distinct categories:

(a) plates with all edges simply supported and subjected

to arbitrary transverse load;

(b) plates with a pair of opposite edges simply sup-
ported and subjected to transverse load which is in-

variant along the direction of these edges;

(c) plates which do not fall into any of the above cate-

gories.

Problems of the first and second categories are amenable

to straightforward rigorous analysis in terms of the well-

known Navier and Levy solutions, respectively [1,2].
Such, however, is not the case with the third category for

which rigorous analytical solutions, attempting to sat-

isfy the governing differential equation and the bound-

ary conditions exactly, turn out to be rather tedious and

are hence rare; it is common practice to resort to ap-

proximate techniques based on Ritz–Galerkin method-

ology or direct numerical analysis. The present paper is

concerned with solutions for plates with clamped–sim-
ply supported edges without sacrificing analytical rigor,
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and from this viewpoint, the few such analytical solu-

tions available in the literature are reviewed here. They

appear to be based on two approaches as described

below.

The first approach, which has a physical appeal, is

based on superposition of different solutions, each of

which would involve violation of either the governing

equation or some of the boundary conditions, but would
be in terms of arbitrary constants which can be adjusted

so that the combined solution would be exact. For ex-

ample, a plate with some edges simply supported and

the others clamped can be solved by superposing ap-

propriate Levy solutions for a simply supported plate––

one corresponding to the given load and the others

corresponding to fixed end moments which are adjusted

such that the net normal slopes are zero. Many such
solutions were presented in elaborate detail by Timo-

shenko and Krieger [3]. Extension of the method for

free-vibration studies was carried out by Gorman [4].

Superposition of other than Levy solutions is also pos-

sible; some such solutions of historical importance, for

the case of a plate clamped all around, have been dis-

cussed recently [5].

The second approach, which is essentially mathe-
matical, is based on the expansion of the deflection in a

boundary discontinuous Fourier series. This was first

used by Green [6] for isotropic plates, and was extended

to orthotropic plates by Dickinson [7] and Whitney [8].

Since term-by-term differentiation of the series is not
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valid, the method involves a complicated procedure in-

volving integration by parts and leads to an infinite

system of equations, which can be appropriately trun-

cated depending on the degree of accuracy desired.
The objective of the present work is to demonstrate

that simple, and yet exact, series solutions can be ob-

tained for orthotropic plates with clamped–simply sup-

ported edges. The method involves superposition of

easily derived double sine series solutions and yields

numerical results of any desired degree of convergence.
2. Formulation and methodology

A rectangular plate (06 x6 a, 06 y6 b), with some

or all edges clamped and the others simply supported, is
considered. The plate is assumed to be homogeneous

orthotropic with the material axes coinciding with the

geometric plate axes or a symmetric cross-ply laminate

with perfectly bonded layers, and is subjected to arbi-

trary transverse load.

The present methodology is based on superposition

of the following solutions for simply supported plates

(Fig. 1):

(i) a Navier solution corresponding to the applied

transverse load;

(ii) a number of double sine series solutions, equal to

the number of clamped edges, each corresponding

to the appropriate edge moment. These solutions

are obtained using the principle of virtual work,

which yields, as will be explicitly shown, the exact
equivalent of the Levy closed-form solution for

any particular harmonic of the edge moment.

Taking the moment–curvature relationship of the

plate as
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the governing equation of the plate is given by

D11w;xxxx þ 2ðD12 þ 2D66Þw;xxyy þ D22w;yyyy ¼ q ð2Þ

where wðx; yÞ and qðx; yÞ are the transverse deflection

and the transverse load per unit area, respectively.
Fig. 1. Superposition of different load cases.
For simply supported boundary conditions, Navier

solution results from substitution of double sine series

for both q and w as given by
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in the governing equation to obtain
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where Cðm; nÞ ¼ ½k2D11m4 þ 2ðD12 þ 2D66Þm2n2 þ D22n4=
k2�, and k ¼ b=a is the aspect ratio of the plate.

Let us now consider the simply supported plate

subjected to moment along an edge, say the top edge

y ¼ 0. Without loss of generality, this moment can be

taken as

Mtop ¼
X
m

Mtm sin
mpx
a

ð5Þ

Corresponding to any particular harmonic m, the de-
flection is obtained using the principle of virtual work,

as given byZ Z
½�Mxdw;xx �Mydw;yy � 2Mxydw;xy �dxdy

¼
Z a

x¼0

Mtm sin
mpx
a

ð�dw;yÞjy¼0 dx ð6Þ

The solution for w is assumed, once again, in terms of
double sine series as in Eq. (3). Determination of the

Fourier coefficients Wmn is then straightforward; this

merely involves the use of Eqs. (1) and (3) in Eq. (6) and

the following orthogonality relations:

Z l
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Z l
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cos
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ds ¼ 0

for a 6¼ b; and l=2 for a ¼ b ð7Þ

The final solution, for the particular harmonic Mtm �
sinmpx=a of the applied moment, is obtained as

w ¼ 2Mtma2

p3
sin

mpx
a

X1
n¼1

n
Cðm; nÞ sin

npy
b

ð8Þ

It will now be shown that the above solution is an exact

solution for the plate under the harmonic edge moment

because it represents the series equivalent of the closed-

form solution obtainable using Levy�s method. Let us
consider, for the sake of ease of presentation, a homo-

geneous isotropic plate with D11 ¼ D22 ¼ ðD12 þ D66Þ ¼
D, the flexural rigidity. Applying Levy�s method, which

involves reduction of the governing partial differential

equation (Eq. (2)) to an ordinary differential equation

by assuming a single sine series solution for w in the

x-direction and determination of the Fourier coefficients
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by solving the ordinary differential equation along with

the boundary conditions at y ¼ 0; b, one readily obtains

w ¼ Mtmab
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1

��
� coth2 mpb

a
� y
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�
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If the above result is expanded in a Fourier sine series in

the y-direction, one gets

w ¼ sin
mpx
a
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which is the same solution as can be obtained from Eq.

(8) for the isotropic homogeneous case being considered.

Thus, it is clear that the principle of virtual work yields
directly the series equivalent of the closed-form solution

for a harmonic edge moment; this can also be verified

for the orthotropic plate in a similar manner as above,

though the Levy solution turns out to be rather lengthy

and is hence not presented here.

The exact series solutions corresponding to sinusoidal

moments applied along the bottom edge y ¼ b, or the

left edge x ¼ 0, or the right edge x ¼ a can also be ob-
tained using the principle of virtual work as

w ¼ 2Mbma2
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a
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n cosðnpÞ
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ð11Þ
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Fig. 2. Convergence of results for a (0�) plate clamped at top and left edges w

respect to their final converged values).
where Mbm, Mln and Mrn are Fourier coefficients occur-

ring in the following expansions:
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a
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The final solution for the plate with any combination
of simply supported and clamped edges is obtained by

superposing the exact solutions (Eqs. (3), (4), (8) and

(11)–(13)), and by evaluating the Fourier coefficients

Mtm, etc. using the zero slope conditions at the clamped

edges. These steps are illustrated here with respect to a

plate clamped at the top and the left edges, and sub-

jected to uniformly distributed load q0. For this case, we
have

qmn ¼
4q0ð1� cosmpÞð1� cos npÞ

mnp2
ð15Þ

The net deflection is given by
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ith respect to number of Mtm �s and Mln�s (all results are normalized with



Table 1

Deflections and moments for (0�) square plate under uniform load

Clamped edgea Central deflection

(ETh3w=q0a4)
Moment at center of

top edge (My=q0a2)
Moment at center of

left edge (Mx=q0a2)
Moment at center of

the plate (Mx=q0a2)
Moment at center of

the plate (My=q0a2)

None 0.006497 0.1311 0.004076

Tb 0.006157 )0.02532 0.1244 0.005255

L 0.002644 )0.1319 0.06650 0.001028

T, B 0.005812 )0.02548 0.1176 0.006448

L, R 0.001293 )0.08602 0.04330 0.0002904

T, L 0.002615 )0.01564 )0.1310 0.06589 0.001573

T, L, R 0.001301 )0.01120 )0.08653 0.04360 0.0004897

T, L, B 0.002586 )0.01570 )0.1301 0.06528 0.002121

T, L, B, R 0.001308 )0.01121 )0.08703 0.04389 0.0006898

a The other edges are simply supported.
b T, L, B, R refer to top, left, bottom and right, respectively.

Table 2

Deflections and moments for (0�/90�/0�) square plate under uniform load

Clamped edge Central deflection

(ETh3w=q0a4)
Moment at center of

top edge (My=q0a2)
Moment at center of

left edge (Mx=q0a2)
Moment at center of

the plate (Mx=q0a2)
Moment at center of

the plate (My=q0a2)

None 0.006660 0.1298 0.008467

T 0.005999 )0.03614 0.1170 0.01025

L 0.002799 )0.1349 0.06806 0.002478

T, B 0.005340 )0.03609 0.1040 0.01204

L, R 0.001385 )0.08862 0.04481 0.0006393

T, L 0.002696 )0.02204 )0.1308 0.06563 0.003637

T, L, R 0.001378 )0.01563 )0.08839 0.04461 0.001236

T, L, B 0.002595 )0.02222 )0.1263 0.06313 0.004818

T, L, B, R 0.001371 )0.01569 )0.08809 0.04441 0.001838

Table 3

Deflections and moments for (0�) square plate under central concen-

trated load

Clamped edge Central

deflection

(ETh3w=Pa2)

Moment at

center of top

edge (My=P )

Left edge

(Mx=P )

None 0.02324

T 0.02293 )0.02418
L 0.01317 )0.5231
T, B 0.02261 )0.02433
L, R 0.009171 )0.3959
T, L 0.01317 )0.004070 )0.5230
T, L, R 0.009169 0.002091 )0.3959
T, L, B 0.01316 )0.004086 )0.5226
T, L, B, R 0.009167 0.002090 )0.3957

Table 4

Deflections and moments for (0�/90�/0�) square plate under central

concentrated load

Clamped edge Central

deflection

(ETh3w=Pa2)

Moment at

center of top

edge (My=P )

Moment at

center of left

edge (Mx=P )

None 0.02131

T 0.02040 )0.05109
L 0.01187 )0.4494
T, B 0.01949 )0.05102
L, R 0.008177 )0.3361
T, L 0.01179 )0.01652 )0.4464
T, L, R 0.008176 )0.002469 )0.3360
T, L, B 0.01171 )0.01668 )0.4432
T, L, B, R 0.008175 )0.002476 )0.3361
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The zero slope condition at the left edge (w;x ¼ 0 at

x ¼ 0) yields

2q0b2

p3

� �
1� cos np

n

� �X1
m¼1

ð1� cosmpÞ
Cðm; nÞ

þ n
X
m

mMtm

Cðm; nÞ þ k2Mln

X1
m¼1

m2

Cðm; nÞ ¼ 0 ð17Þ

for each n.
Similarly, the zero slope condition at the top edge

yields
2q0b2

p3

� �
1� cosmp

m

� �X1
n¼1

ð1� cos npÞ
Cðm; nÞ

þMtm

X1
n¼1

n2

Cðm; nÞ þ k2m
X
n

nMln

Cðm; nÞ ¼ 0 ð18Þ

for each m.
Eqs. (17) and (18) form two sets of infinite number of

equations in terms of the unknowns Mtm and Mln, and

appropriate truncation by considering a finite number

of these unknowns yields a solution to the uniformly
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loaded plate with two adjacent edges clamped to any
desired degree of accuracy. It is easy to visualize that the

more general problem would involve at the most four

sets of equations, with due reduction in the number in

case of any symmetry or antisymmetry about the mean

lines x ¼ a=2 and y ¼ b=2.
3. Numerical results and discussion

Though the methodology presented above is valid for

arbitrary loads, numerical results are presented here

only for two important cases, viz. uniform load q0 and a

central concentrated load P . Square plates with all

combinations of simply supported and clamped edges

have been studied. Two lay-ups––a single layer (0�) plate
and a three layer (0�/90�/0�) laminate––have been con-

sidered. The material properties have been taken to be

EL=ET ¼ 25; GLT=ET ¼ 0:5; tLT ¼ 0:25

where L and T are the fiber and transverse directions,

respectively. The bending stiffness coefficients D11, D12,

D22 and D66 can then be expressed in terms of ET [9].

The number of terms to be taken in the Navier so-

lution (Eqs. (3) and (4)) or the series for the edge mo-
ments (Eqs. (5) and (14)) has been decided based on a
convergence study. While enforcing the zero slope con-

dition at the clamped edges, the infinite series that occur

in the corresponding equations (see Eqs. (17) and (18))

have been evaluated without any truncation using

MATLAB [10]; this has been done by specifying the

upper limit of the summation index as infinity. The

evaluation is exact since corresponding closed-form

equivalents are automatically substituted in MATLAB
while summing infinite series; further, as can be ex-

pected, the evaluation takes less time as compared to

that for a finite partial sum. This capability of the

software package to evaluate infinite sums correctly has

been verified by evaluating the series solution (Eq. (10))

for the moment-loaded isotropic plate and comparing

the result with that obtained from the closed-form so-

lution of Eq. (9). After the determination of the un-
known moment coefficients Mtm, etc., the calculation of

the deflections once again involves infinite series (see Eq.

(16))––these have also been evaluated without any

truncation using MATLAB.

The convergence of the results with respect to the

increase in the number of moment coefficients is shown

in Fig. 2, for the case of the (0�) plate with top and

left edges clamped; all the results are presented in a
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normalized form with respect to their final convergent

values. Because of orthotropy, the convergence of the

results does not show the same trend with respect to an

increase in the number of Mln�s as with that in the
number of Mtm�s. As can be expected, a larger number of

terms is required for convergence of moments than for

that of deflections. From Fig. 2, it is clear that the

convergence is rapid and uniform though not mono-

tonic. Similar convergence studies have been carried out

for the other cases considered here; in all cases, the

number of moment coefficients taken is such that the

final results are all convergent up to the last decimal as
presented here.

Results for the central deflection, central moments

and the clamped edge moments at mid-sides are pre-

sented in Tables 1 and 2 for uniformly loaded (0�) and
(0�/90�/0�) plates, respectively. Corresponding results

for the central concentrated load are presented in Tables

3 and 4; the central moments for this case are infinitely

large and are hence not presented. These results would
be very useful for future comparisons while judging the

accuracy of various approximate/numerical methods.

A careful look at the results of Tables 1–4 indicates

that they are affected only marginally by a change in the

boundary conditions at the top and bottom edges, with

the other boundary conditions undisturbed; the only

significant change occurs for My at the center of the

uniformly loaded plate, but for this case My itself is quite
small compared to Mx. This is due to the degree of or-

thotropy of the plates considered here; this is made clear

in Fig. 3 where the effect of a change in EL=ET on the

significance of the top and bottom boundary conditions

is examined for the (0�) plate, with GLT=ET and tLT kept

constant as earlier (i.e. 0.5 and 0.25, respectively). This

figure indicate that an increase in EL=ET (or the corre-

sponding increase in D11=D22 for the lay-ups considered
here) leads to a situation where the results approach the

same values irrespective of the top and bottom bound-

ary conditions, because they tend to those for the lim-

iting case of an infinitely long plate in the y-direction.
4. Conclusion

A simple method, based on superposition of double-

sine series solutions, has been presented in this paper for
the analysis of arbitrarily loaded cross-ply plates with

any combination of simply-supported and clamped

edges. The method is valuable in view of the fact that

tables of deflections and moments cannot be presented

for laminated plates as for isotropic homogeneous plates

even for commonly encountered loads because the re-

sults depend on the orthotropic material properties in-

stead of a single flexural rigidity. Thus, for every new
lay-up, the analysis has to be carried out afresh. For this

purpose, it is necessary to have a simple and straight-

forward method; the present work fulfils this require-

ment and the solutions presented in Eqs. (4), (8) and

(11)–(13) enable one to obtain accurate results for any

clamped/simply supported laminated plate without te-

dious analytical manipulations.
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