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Motivation
The dissolution-diffusion-convective process removes CO2 
from a highly mobile and buoyant gas phase and puts it into a 
less mobile and negatively buoyant aqueous phase.  We study 
the short term and long term behaviors of the process through 
high resolution simulations using a second-order accurate 
sequential algorithm, implemented within a block structured 
adaptive mesh refinement framework.

Problem Setup
Variable-density single-phase incompressible model to 
efficiently capture the transport mechanisms.  
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Only aqueous CO2 diffuses into domain

Top and bottom boundaries are impermeable
Periodic conditions on other boundaries

thin diffusion layer

Initialization of 
convective flow 

due to gravitational 
instability.

• Integral measures (onset time and stabilized mass flux) are 
robust and insensitive to details of fluctuation.

• The onset time of convection follows the prediction of linear 
stability analysis.

• At long time, convection is the dominant transport mechanism.

Adaptive Mesh Refinement (AMR) Framework
• Multiscale:  resolves difference in length scales between flow 

regimes and time scales between flow and reaction.
• Parallelized codes: good scaling behavior up to several 

thousands CPUs, allowing large 3D simulation.
• Improved resolution: significant gain compared to existing 

codes, e.g. TOUGH family of codes.
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Onset time

         : component density, mass fraction      ρi, Xi
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ρ

=
2∑

i=1

Xi

ρi
• Equation of states:

Second-order IMPES Algorithm
• Discretization  
• pressure equation → elliptic
➥ finite difference, solved implicitly.

• mass conservation equation → parabolic
➥ advection term: 2nd order Godunov method;
➥ diffusion term: Crank-Nicolson implicit scheme. 

• Time stepping: time-centered.
• Advantages
• minimizes numerical dispersion.
• amenable to simple parallelization.
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Governing Equations
Based on a total velocity splitting approach:
• Velocity divergence constraint reflects dependence of fluid 

density on the mass fraction of dissolved CO2:

  : porosity      : diffusion coefficient     φ D

• Mass conservation.

• Darcy flow.
u = −κ

µ
(∇p− ρg)

   : permeability       : viscosity         : pressureκ µ p

∇ · u =
2∑

i=1

1
ρi
∇ · φρτD∇Xi, i = 1(CO2), 2(H2O)

∂φρXi

∂t
+∇ · (ρXiu) = ∇ · φρτD∇Xi, i = 1, 2

• Density increase due to CO2 dissolution = 10.45 kgm-3.

Downward 
moving CO2 (aq) 
plumes due to 
higher density.

• Convective flow is induced by random permeability or porosity.  
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Accurate solver ensures the onset of convection is solely due to heterogeneity 
in rock properties and the onset time converges as grid spacing → 0. 

• Results validates the 
relation from linear 
stability analysis:  
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• Stabilized mass flux depends linearly on    but not on    and       : convection-dominated.κ̄ φ̄ τD

3D Simulation

3.8 x 108 s

3.0 x 107 s

4.8 x 107 s

• Based on the Carrizo-Wilcox aquifer modeled by a mean permeability of 
500 mD, uniform porosity of 0.15 and uniform diffusivity of 2x10-9 m2/s.

4.8 x 107 s

Effective resolution of 
1/128 m (finest grid shown)

Ridges act as
conduits for 
downward 
moving fluid. 

3D plumes 
resemble 
flattened 

extended 
fingers. 

Conclusion

Smaller 
fingers 

merge into 
larger fingers 

over time.

Fine grids are needed to 
capture the onset of 

convection accurately.

4 m

0.5 2 4

4 m 4 m

10 mD

1000 m 10 m 1 m

10 mD 1 D 80 D

1 m 1 m 1 m

0.05 0.1 0.4

tonset

〈F0〉


