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The dissolution-diffusion-convective process removes CO5 « Discretization o o, D0,
from a highly mobile and buoyant gas phase and puts it into a » pressure equation — elliptic £, stabilized mass flux (Fo) c
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‘ ‘ due to gravitational & | | * Results validates the = ! ©
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Accurate solver ensures the onset of convection is solely due to heterogeneity 0 \ \ \ N l0go _ ¢ _ 7D X 10° _
in rock properties and the onset time converges as grid spacing — 0. 0 D2 0 4 « Stabilized mass flux dependS Ilnearly on ~ but not on ¢ and 7D : convection-dominated.
.Downward . Mul.tlscale: re.solves difference in length scales t?etween flow - Based on the Carrizo-Wilcox aquifer modeled by a mean permeability of 1/128 m (finest grid shown)
moving COz (aq) regimes and time scales betV\{een flow ?”d reaction. 500 mD, uniform porosity of 0.15 and uniform diffusivity of 2x10-° m2/s.
l \ plumes due to » Parallelized codes: good scaling behavior up to several
| - higher density. thousands CPUs, allowing large 3D simulation. . . Var, GO7
Top and bottom boundaries are impermeable * Improved resolution: significant gain compared to existing . y |
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» Convective flow is induced by random permeability or porosity.
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