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Deviational methods are a class of stochastic particle simulation tools for solving kinetic
equations. They have been developed [1–3] to alleviate the most important, perhaps,
disadvantage of MC methods, namely their inability to efficiently simulate low-signal
problems, such as small temperature differences. Deviational methods reduce statisti-
cal uncertainty by making use of deterministic information, a technique widely known
as control-variate variance reduction [4]. In the case of kinetic equations, deviational
methods make use of the observation that statistical noise becomes a limitation when
transport signals are small, that is, the system state is close to equilibrium. By us-
ing that equilibrium state as a control, and using a stochastic method to simulate the
deviation therefrom, deviational methods leverage exact solutions and focus the com-
putational resources onto the unknown component of the phonon distribution function.
As discussed further in Section 8, the ability to focus computational resources on the
non-equilibrium component of the distribution function is very valuable for simulating
multiscale problems.

In the context of small-scale processes, the need for solving kinetic equations such as
the Boltzmann transport equation (BTE), arises from the fact that the more tractable
continuum description is only a limiting description valid in the limit of “small” mean
free path, where transport is diffusive. Deviation from diffusive transport can be quan-
tified by the Knudsen number,

Kn =
Λ

L
,
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where Λ denotes the mean free path and L the characteristic transport length scale.
Diffusive transport is expected for Kn �1; this regime is typically referred to as the
continuum regime. When the mean free path is much larger than the system length scale
(Kn �1), scattering can be neglected and transport can be approximated as ballistic.
Between these two limiting cases, that is, when the mean free path is on the same order
as the system length scale (0.1 . Kn . 10), transport is neither diffusive nor ballistic
and is referred to as transitional.

The most well known, perhaps, example of such behavior is the breakdown of Navier-
Stokes theory, extensively studied in the context of rarefied gas dynamics. In addition
to applications related to high altitude aerodynamics, transitional transport has more
recently been studied in the context of micro and submicrometer gas dynamics [5] (the
mean free path of air molecules at STP is approximately 60nm). A new class of problems
that is currently receiving considerable attention is heat transport in semiconducting
materials. In these materials, heat is carried by lattice vibrations whose quantized unit
is the phonon. With typical semiconductor feature sizes ranging from the nanometer to
the millimeter scale [6], phonon transport modeling using a mesoscopic approach such as
the BTE is very desirable. Practical applications of interest include the calculation of the
thermal conductivity of bulk and nanostructured semiconductors [7–16], fundamental
understanding and manipulation of the thermal properties of semiconducting [17–19], as
well as low-dimensional materials like graphene [20–22] and solution of coupled electron-
phonon transport problems [23–28].

Monte Carlo methods for solving the Boltzmann equation in the context of phonon
transport have been recently reviewed by the authors [29]. As a result, this article
will only briefly review the basics of deviational simulation and instead focus on recent
developments. More details on standard as well as deviational Monte Carlo simulation
methods for phonon transport can be found in [29].

Provided coherence effects can be neglected [14, 30–32], phonon transport is governed
by the Boltzmann equation

∂f

∂t
+∇kω(k, p) · ∇xf =

[
∂f

∂t

]
scatt

, (1)

where f = f(t,x, ω, θ, φ, p) is the phonon distribution function, x denotes position vector
in physical space, and k is the wavevector in reciprocal space with magnitude k and
direction given by the angles θ, and φ. The phonon frequency ω is a function of the
wavevector through the dispersion relation ω(k, p); here, p denotes the polarization.

2. Background 

2.1 Boltzmann equation for phonon transport 
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The scattering operator can be written as [33,34]

=
∑
k′,p′

{
fk′p′(fkp + 1)− fkp(fk′p′ + 1)

}
Qk′p′

kp (2)

+
∑

k′p′,k′′p′′

{
(fkp + 1)(fk′p′ + 1)fk′′p′′ − fkpfk′p′(fk′′p′′ + 1)

}
Qk′′p′′

kp,k′p′

+
1

2

∑
k′p′,k′′p′′

{
(fkp + 1)fk′p′fk′′p′′ − fkp(fk′p′ + 1)(fk′′p′′ + 1)

}
Qk′p′,k′′p′′

kp ,

where Q is the transition rate matrix, determined by the Hamiltonian of interaction
and the appropriate conservation laws [34]. The first term in this expression represents
“two-phonon” scattering processes, modeling phonon scattering by impurities. The
second and third terms correspond to three-phonon (phonon-phonon) scattering; more
specifically, the second term corresponds to type I processes in which two phonons
combine to create a third phonon, while the third term corresponds to type II processes,
in which a single phonon decays into two phonons. Three phonon processes are separated
into normal processes, which conserve momentum, and umklapp processes for which

k± k′ = k′′ + G (type I/II processes), (3)

where G is a reciprocal lattice vector. Four phonon and higher order processes are
typically negligible [35].

The equilibrium solution of the Boltzmann equation is the Bose-Einstein distribution

f eq(ω, Teq) =
1

exp
(

~ω
kBTeq

)
− 1

, (4)

which is parametrized by the equilibrium temperature Teq.
Knowledge of the distribution function allows the calculation of a number of physical

observables, such as the number of phonons per unit volume

n(t,x) =
∑
p

∫ ∫ ∫
f(t,x, ω, θ, φ, p)

D(ω, p)

4π
dωd2Ω, (5)

where Ω denotes the unit vector whose direction is defined by the polar and azimuthal
angles θ and φ, respectively, and d2Ω denotes the differential solid angle element
sin(θ)dθdφ. Here,

D(ω, p) =
k(ω, p)2

2π2Vg(ω, p)
(6)

is the density of states used for converting integration over wavevector to integration
over frequency (assuming three-dimensional, isotropic material) and Vg(ω, p) is the mag-
nitude of the group velocity given by Vg = ∇kω(k, p). We note that in addition to an

[
∂f

∂t

]
scatt
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isotropic material, we also assumed that the system states are closely spaced allowing
conversion of the sum over states to an integration.

Following this notation, the energy density is given by

U(t,x) =
∑
p

∫
~ωf(t,x, ω,Ω, p)

D(ω, p)

4π
dωd2Ω, (7)

while the heat flux is given by

q′′(t,x) =
∑
p

∫
~ωVgf(t,x, ω,Ω, p)

D(ω, p)

4π
dωd2Ω. (8)

In systems out of equilibrium, the local temperature is usually defined as the tem-
perature parameter of an equilibrium distribution with the same energy density. Deter-
mining its value requires (numerical) solution of∑

p

∫
~ωf(t,x, ω,Ω, p)

D(ω, p)

4π
dωd2Ω =

∑
p

∫
~ωf eq(ω, T )D(ω, p)dω, (9)

for T = T (t,x).
Our discussion above assumed three dimensional materials; the corresponding rela-

tions for two dimensional materials directly follow from the above definitions. Compre-
hensive reviews of phonon physics and the associated Boltzmann equation can be found
in numerous publications (e.g. [14, 33,36–38]).

Due to the complexity associated with the scattering operator (2), solutions of the
Boltzmann equation using this operator have appeared only recently. The mainstream
approach to date consists of “modeling” (2) using what is known in the literature as the
relaxation-time approximation [36,39][

∂f

∂t

]
scatt

= −f − f
loc

τ
, (10)

which assumes that out-of-equilibrium modes do not interact, but rather decay indepen-
dently toward the system local equilibrium with a characteristic timescale τ . Clearly,
(10) achieves enormous simplification, to the extent that in order to capture some of
the complexity of phonon-phonon interactions, the relaxation time typically needs to
be taken to depend on the carrier state (e.g. τ = τ(ω, p, T )). In this case, the inter-
pretation of the distribution f loc = f eq(ω, T̃ ) is more complex [15, 39] because if the
temperature parameter, T̃ , is set to the local temperature, the scattering operator does
not satisfy energy conservation. Therefore, and in order for energy conservation to be
strictly satisfied, T̃ is determined by the energy conservation statement∫

ω

∑
p

~ωD(ω, p)f loc(ω, T̃ )

τ(ω, p, T )
dω =

∫
ω

∑
p

~ωD(ω, p)f

4πτ(ω, p, T )
dωd2Ω, (11)

2.2 Relaxation-time approximation 
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and is referred to as the pseudo-temperature.
Despite being rather crude, the relaxation-time approximation has been successful

in describing thermal transport in three-dimensional materials, especially when the
relaxation time is treated as frequency dependent [18, 40], making it by far the most
prevalent scattering model. As a result, simulation methods have also overwhelmingly
focused on this model. Our discussion below also focuses on this model; a discussion on
the simulation of the ab initio operator (2) can be found in Section 7.

Monte Carlo methods for solving the Boltzmann equation originated in the Direct Sim-
ulation Monte Carlo (DSMC), originally conceived by Bird [41]. One of the major
breakthroughs associated with DSMC is the realization that the Boltzmann equation
may be integrated explicitly in time at a timescale that approaches (but remains smaller
than) the scattering timescale (as opposed to the atomistic timescale) by splitting the
two major physical processes modeled by the Boltzmann equation, namely advection
and carrier-carrier scattering. In other words, given a sufficiently small timestep of du-
ration ∆t, time integration may proceed by interleaving a collisionless advection substep
which integrates

∂f

∂t
+ Vg · ∇xf = 0 (12)

by moving particles ballistically, with a scattering substep which integrates

∂f

∂t
=

[
df

dt

]
scatt

. (13)

The scattering step updates the distribution function by stochastically simulating the
appropriate [15, 42, 43] number of scattering events between carriers within the same
spatial cell.

By choosing scattering partners stochastically, this process essentially treats scatter-
ing events as spatially homogeneous within each cell and thus introduces a discretization
error. Numerical analysis of such algorithms is significantly more advanced in the rar-
efied gas literature compared to the phonon transport literature, presumably due to the
longer history of Monte Carlo methods in the former (originating in Bird’s original 1963
paper). In the rarefied gas dynamics literature it has been shown [44] that algorithms of
this type converge to solutions of the Boltzmann equation, provided that a sufficiently
fine discretization is employed, namely, an appropriately large number of particles is
used, while the integration timestep and cell size are chosen appropriately small. The
latter two requirements have been put on a more firm footing more recently when it was
shown that the discretization error scales quadratically with the cell size and, provided
the algorithm is symmetrized in time [45, 46], quadratically in the timestep. The same
work also showed that for errors less than a few percent in the transport coefficients, the
(smallest) linear dimension of the cell in which scattering events are processed should

2.3 Monte Carlo simulation 
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be smaller than the mean free path [42], while the timestep needs to be smaller than
the mean free time.

Monte Carlo methods have become the prevalent Boltzmann solution methods for
a number of reasons. They offer simplicity and a formulation that relies more on al-
gorithms that intuitively reproduce the physics of the problem of interest rather than
numerically solving the partial differential equation governing it. The latter makes them
easy to code, debug and extend to include additional physics for which it may be very
difficult to write the governing equation. Additional advantages include their ability
to handle the high dimensionality associated with the distribution function better than
mesh-based techniques which need to discretize and store the distribution function in
phase space. Also, the particle formulation employed by Monte Carlo methods is ideal
for accurately and stably capturing the propagation of traveling discontinuities in the
distribution function [47] resulting from the advection operator in the Boltzmann equa-
tion. Finally, the particle formulation naturally employs importance sampling which
yields superior computational efficiency [2].

As usual in MC simulation, macroscopic properties of interest are related to moments
of the distribution function, and can be recovered via sampling. As a result, these
properties can only be estimated to within some statistical uncertainty, which is inversely
proportional to the square root of the number of independent samples. In the field of
kinetic transport, the statistical uncertainty in transport properties relative to their
actual value can be quite large; this is a result of both large population variances (e.g.
see [29,48]) and the fact that, in most applications of current interest [5], deviations from
equilibrium are small (e.g. small temperature differences), leading to (relatively) small
signals. Because statistical uncertainty diminishes proportionally to the square root of
the number of samples, this situation quickly leads to intractable simulations, especially
in cases of very small deviation from equilibrium. Deviational methods, discussed next,
have been developed for the purpose of alleviating this limitation.

The limitations associated with MC methods discussed above arise from the fact that
these methods reproduce the complete fluctuation spectrum, albeit modified by the
fact that each computational particle represents a number of real physical particles
(molecules, phonon bundles—see [48] for a discussion). As a result, close to equilibrium
where transport magnitudes (signals) are small, the signal to noise ratio becomes small,
since the noise is dominated by the ever-present equilibrium spectrum.

Deviational methods overcome this limitation by removing the statistical noise asso-
ciated with the equilibrium part of the distribution. This is achieved by employing the
method of control variates, in which the Monte Carlo calculation is used to calculate
the difference from a nearby solution that is known deterministically (analytically or
numerically) and referred to as the control.

The general idea behind control variates can be illustrated by the following exam-
ple. Consider the random variable m associated with the outcome of rolling a slightly

2.4 Deviational methods: motivation and an example 
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biased die and let p(m) denote the probability of the various possible outcomes. More
specifically, let

p(m) =

{
1/6 + α if m = 1, 2, 3

1/6− α if m = 4, 5, 6
, (14)

where α� 1/6. Although this problem is sufficiently simple for calculation of moments
of p(m) to be analytically possible, let us consider, as an example that serves to illustrate
the rationale for the development of deviational methods, the calculation of the mean
〈m〉 by Monte Carlo simulation. Such a simulation could be an idealization of an
experiment aimed at extracting the unknown value of α for a particular die. The
simulation (experiment) proceeds by generating M random variates mi with the above
probabilities and estimating 〈m〉 using

m̄ =
1

M

M∑
i=1

mi. (15)

This estimator is expected to approach the correct value 〈m〉 = 3.5 − 9α as M → ∞.
More specifically, from the central limit theorem we expect the standard deviation of
m̄− 〈m〉 to be

σm̄−〈m〉 =

√
V ar(m)

M
=

√
35/12− 81α2

M
. (16)

Our ability to discern the value of α from the noisy experimental (simulation) data will
depend on the relative magnitudes of the signal 9α and the uncertainty given by (16).
Clearly, in the limit α→ 0 this problem becomes challenging because the noise to signal
ratio

√
35/12/(9α

√
M) diverges for fixed M , or alternatively, because it requires M to

increase proportionally to α−2 for the noise to signal ratio to remain constant.
Deviational formulations overcome this problem by removing the fluctuations asso-

ciated with the known “baseline” solution (control). In the present case, a deviational
formulation takes advantage of the fact that the results for an unbiased die are well
known 〈m(α = 0)〉 = 3.5 and proceeds to calculate m̄ from

m̄ = 3.5 + 6α
1

M

M∑
i=1

simi, (17)

where

si =

{
1 if m = 1, 2, 3

−1 if m = 4, 5, 6
. (18)

This can be seen by writing

〈m〉 = 3.5 + α(1 + 2 + 3− 4− 5− 6) = 3.5 + 6α(1 + 2 + 3− 4− 5− 6)
1

6
, (19)

In other words, in the deviational simulation, the various outcomes (m = 1, ..., 6) are
equiprobable (probability 1/6), but some events have a negative sign, indicating prob-
ability “less than” that of the control. Thus, we have mathematically decomposed
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the problem in a manner that does not correspond to a physical experiment we could
perform, but which yields enormous computational gains.

It is easy to show that this formulation is now characterized by a statistical uncer-
tainty

√
465α/

√
M , which leads to a noise to signal ratio (or relative statistical uncer-

tainty) equal to
√

465/(9
√
M), that is constant and independent of α. In other words,

the deviational formulation can be used to solve this problem at arbitrarily small α, in
contrast to the standard MC approach whose cost (relative to the deviational approach)
increases as α−2 for small α. Here we assume that the costs of the two simulations per
sample are similar, as can be concluded from the discussion of their formulation.

It is also important to note that the deviational formulation described here does
not introduce any approximation. In other words, its considerable computational ad-
vantage derives from introducing (exact) deterministic information and not from an
approximation of some form. Clearly the computational benefit will depend on the
choice of the baseline distribution (control). For example, for values of α such that
35/12− 81α2 <

√
465α (but still α ≤ 1/6), the standard Monte Carlo approach will be

more efficient and should be preferred, but even then the deviational approach should
be expected to return the correct answer.

We now proceed to discuss how these ideas can be used to accelerate Monte Carlo
simulations of the BTE.

The control-variate formulation lends itself naturally to MC methods for solving the
BTE, because the control can be readily identified as a nearby Bose-Einstein equilibrium
distribution f eq(ω, Teq). In principle, the choice of Teq is fairly arbitrary, provided the
resulting deviations from f eq(ω, Teq) are small; for further discussion see [29]. Here, as
is usually the case, we will always take Teq 6= Teq(t); a discussion of the consequences
associated with taking Teq = Teq(t) can be found in [49].

It was recently shown [3] that it is preferable to simulate the energy-based Boltzmann
equation

∂e

∂t
+ Vg · ∇xe =

eloc − e
τ(ω, p, T )

, (20)

obtained by multiplying the BTE by ~ω and letting e = ~ωf and eloc = ~ωf loc. The ad-
vantage of this formulation is that particle conservation, which can be enforced exactly,
guarantees energy conservation, which is highly desirable and could only be achieved
approximately in previous methods and only after cumbersome manipulations of the
particle distribution.

In a deviational simulation, computational particles simulate the deviation from
equilibrium ed = e−eeq

Teq
, by introducing the approximation Ded/(4π) = Ed

eff

∑
i siδ

3(x−
xi)δ

2(Ω−Ωi)δ(ω−ωi)δp,pi where si denotes the particle sign, Ed
eff denotes the amount of

deviational energy carried by each computational particle and eeq
Teq

= ~ωf eq(ω, Teq). The

parameter Ed
eff is chosen such that the competing requirements of low computational cost

3. Deviational methods for phonon transport 
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and good statistical resolution are balanced as well as possible; an extensive discussion
can be found in [29]. For Teq 6= Teq(x), the dynamics of these particles are governed by
the energy-based deviational Boltzmann equation

∂ed

∂t
+ Vg · ∇xe

d =
(eloc − eeq

Teq
)− ed

τ(ω, p, T )
. (21)

The case Teq = Teq(x) will be discussed further below and in Section 4.
We now provide a brief outline of the simulation method: more details can be found

in [3, 29]. The simulation is initialized by sampling the initial deviational distribution
e(t = 0) − eeq

Teq
, where e(t = 0) = ~ωf(t = 0) and f(t = 0) is the initial condition

on the phonon distribution. Time-integration proceeds using a splitting algorithm with
timestep ∆t. During advection, particles encountering one of the simulation domains are
treated according to the boundary condition corresponding to that boundary. Particles
are also generated volumetrically if a spatially variable equilibrium distribution has been
chosen (see Section 4). During the collision step, particles to be scattered are chosen
based on their respective frequency-dependent scattering rate

∆t

τ(ω, p, T )
. (22)

Post-collision properties are then drawn from the deviational distribution

~ωD(ω, p)

4πτ(ω, p, T )

 1

exp
(

~ω
kBT̃

)
− 1
− 1

exp
(

~ω
kBTeq

)
− 1

 . (23)

This process provides an opportunity for introducing particle cancellation between
positive and negative particles and thus prevents uncontrolled growth of the number of
particles in the simulation as a result of particle generation processes, such as boundary
conditions, or source terms to be discussed below. The cancellation process takes advan-
tage of the fact that energy conservation only requires the net amount of energy to be
conserved during scattering; in other words, positive and negative particles selected for
deletion may be cancelled and only the net number of particles (of the appropriate sign)
needs to be generated. Some boundary conditions (e.g. isothermal boundaries) also
contribute to particle cancellation by allowing cancellation of particles incident upon
them. More details can be found in [3].

As discussed in Section 2.4, in the limit of small deviation from equilibrium, de-
viational methods exhibit relative statistical uncertainty that is independent of the
deviation from equilibrium. This is verified in Figure 1, which shows the average sta-
tistical uncertainty in the heat flux normalized by the heat flux, σq̄′′/q̄

′′, as a function
of the normalized temperature difference |Tl − Tr|/Teq; note that for the problem con-
sidered here, namely heat transfer between two parallel walls at temperatures Tl and
Tr and at a distance apart such that Kn = 1, the heat flux is constant across the
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Figure 1: Ratio σq̄′′/q
′′ as a function of ∆T/Teq.

∆T

Teq

σq̄′′

q′′

domain. Specifically, the figure compares the statistical uncertainty of the variance-
reduced case with Teq = 300 K to the non-variance-reduced case for the silicon model
(dispersion relation and relaxation times) described in [50]. The figure verifies that in
the variance-reduced case, the standard deviation is proportional to ∆T = |Tl − Tr|.
For ∆T/Teq = 0.1—which, for Teq = 300 K, corresponds to a relatively large amplitude
of 30K—the standard deviation is reduced by a factor of 7, meaning that the variance-
reduced method can reach a given level of statistical uncertainty using 72 ≈ 50 times
less samples. For ∆T/Teq = 0.01, which corresponds to a temperature difference of 3K,
the speedup is approximately 5,000 times. This is particularly important because it is
achieved without introducing any approximation, using algorithms of complexity that
is comparable to traditional (non-variance reduced) MC methods.

In the case Teq = Teq(x), the equation governing the deviation ed = e − eeq
Teq(x) can be

written as

∂ed

∂t
+ Vg · ∇xe

d =

(
eloc − eeq

Teq(x)

)
− ed

τ(ω, p, T )
−Vg · ∇xTeq

deeq
Teq(x)

dT
, (24)

where the new term on the RHS is a result of the fact that eeq
Teq

is no longer constant.
In simulations, this term can be interpreted as a source of computational particles. The

4. Spatially varying controls 
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number of particles emitted by this source (per timestep), the distribution of these
particles, as well as a discussion of efficient methods for generating these particles from
this distribution are discussed in detail in [29]. Here we discuss briefly the rationale for
using a spatially variable control.

Although a spatially variable control leads to a moderately more complex algorithm,
it provides additional freedom for tailoring the control to the local conditions and thus
improving variance reduction. As has been shown in previous work [49, 51], the com-
putational benefit from this approach can be significant [51], particularly in the limit
Kn → 0 where the distribution function is described very well [39] by a spatially de-
pendent equilibrium distribution (known as the local equilibrium). In fact, this endows
methods employing variable controls with the ability to efficiently simulate multiscale
phenomena, since in regions where kinetic effects are not important (Kn→ 0), very few
particles are used, and the system is primarily described by the deterministic control.
In the present paper this is demonstrated again in the context of multiscale simulation,
discussed in Section 8.

Source term formulations are also valuable for simulating systems under the action of
large-scale temperature gradients. In some cases [3], source terms are useful for reducing
the dimensionality of such systems (rather than explicitly simulating this dimension and
using boundary conditions to impose a temperature difference and thus a gradient),
while in other cases they can be used to efficiently apply temperature gradients in
complex geometries, which is of particular interest in the context of calculating the
effective thermal conductivity of nanostructured materials [29].

Although the deviational formulation introduces no approximation and can therefore
be used for arbitrary deviations from equilibrium, computational benefits are obtained
when deviations from equilibrium are small. Previous studies have shown [52] that the
range over which large computational benefits are observed includes the regime where
linearization of the governing equation is valid as well as the early non-linear regime.
It is therefore justified to work with the linearized form of the governing equation,
especially if further benefits, such as additional simplicity, follow. In the case of the
relaxation time approximation, it was recently shown [53] that in addition to simplicity,
considering the linearized Boltzmann equation results in considerable computational
advantages.

The linearized BTE in the relaxation time approximation can be written as

∂ed

∂t
+ Vg · ∇xe

d =
L(ed)− ed

τ(ω, p, Teq)
, (25)

where

L(ed)(ω) =
deeq
Teq

dT
(T̃ − Teq), (26)

5. Efficient methods for linearized problems 
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where T̃ is the pseudo-temperature defined in (11).
The (linearized) dynamics described by this equation can be simulated by deleting

particles with probability (22) and generating particles from the distribution

D

4πτ(Teq)

deeq
Teq

dT
(T̃ − Teq). (27)

The key to additional computational benefits is to realize that once normalized, this
distribution does not depend on (T̃ − Teq) and thus knowledge of T̃ (other than for
reporting purposes) is not necessary. This, however, implies that particle trajectories
can be simulated independently (knowledge of T̃ was the only consideration coupling
particle trajectories and necessitating a small timestep).

Uncoupled particle trajectories can be integrated significantly more efficiently using
algorithms known in the Monte Carlo literature as Kinetic Monte Carlo (KMC) [54].
These algorithms exploit the fact that starting from a scattering event (boundary or
relaxation) the particle trajectory will be a straight line until the next scattering event.
For a spatially constant Teq, the time between phonon-phonon scattering events is ex-
ponentially distributed, implying that the time to the next relaxation event can be
calculated from ∆t = −τ(ω, p, Teq) ln(R), where R is a uniformly distributed random
number in (0, 1). Therefore, integration proceeds by finding and processing the next
scattering event, by comparing ∆t to the time traveled by the particle until it encoun-
ters a boundary. The earliest scattering event is processed and the process is repeated
until the final time of interest is reached.

The benefits associated with the linearized formulation are numerous: in addition to
being significantly easier to code, the linearized simulation is significantly more efficient
because it involves less operations per simulated particle and uses significantly less mem-
ory. Moreover, because it allows each particle to evolve at its own characteristic time
rather than requiring a timestep that is much smaller than the smallest relaxation time,
additional computational benefits are enjoyed, especially for problems with disparate
relaxation times. Additional benefits are obtained in the case of steady problems, which
the linearized method can simulate without the need to explicitly march to the steady
state from an initial condition. Steady-state formulations are discussed in [29,53].

Although typically considerable, the speedup compared to other methods will be
problem dependent as it depends on a number of factors. It was reported in [53] that over
a number of applications, the speedup ranged between a factor of 100 and 1000. Figure 2
shows the surface temperature as a function of time in a grating experiment (sometimes
referred to as Transient ThermoReflectance—see Section 6 for details) simulated with
the timestep-based deviational method and with the linearized, KMC-type method. For
similar computational times, the latter could calculate the response over significantly
longer time scales (around three orders of magnitude).
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The computational speedup obtained by the linearized KMC-type algorithm described
in the previous section is a manifestation of the fact that a linearized governing equation
will in general be more amenable to analysis than its non-linear counterpart. In fact,
more speedup is possible by exploiting yet another feature stemming from the linearity
of the operators involved, namely the duality between the linearized Boltzmann equation
and its adjoint, using techniques already developed in the fields of neutron and photon
transport, and more generally in linear transport theory [55,56]. The methods described
below are particularly useful in problems where the quantity of interest is the result
of integration over a small region of (phase) space. For such problems, the number
of particle trajectories contributing to the averaging process is small, leading to high
statistical uncertainty. Adjoint methods offer the option to replace the integration
domain with its adjoint; if the latter is significantly larger and thus more likely to
be visited by particles, considerable computational gains can be realized. The basic
principles behind such formulations are reviewed below.

The adjoint formulation is most conveniently presented in general form using the con-
cept of sources and detectors [55]. Sources are responsible for particle generation and
can be used to represent boundary conditions, initial conditions as well as sources of
particles due to a spatially variable equilibrium introduced in Section 4. In what fol-
lows, we will use the notation q for the sum of all sources in a given problem [57],
such that energy-based deviational particles are emitted from (4π)−1D(deeq/dT )q. The
Boltzmann transport equation with such a source term reads

∂ψ

∂t
+ Vg · ∇xψ =

L(ψ)− ψ
τ

+ q, (28)

where ψ = e(deeq/dT )−1 and

L(ψ) =

∫
D

4πτ
deeq

dT ψdωd
2Ω∫

D
τ
deeq

dT dω
. (29)

Detectors are generalizations of the sampling process used to extract macroscopic
quantities of interest, such as the average temperature in a given volume at a given
time. Mathematically, a detector is represented by a characteristic function h related
to the quantity of interest I by

I =

∫
h
D

4π
eddωd2Ωd3xdt =

∫
h
D

4π

deeq

dT
ψdωd2Ωd3xdt, (30)

where the integration spans the phase space and time; here, the sum over phonon
polarizations is implied. The function h contains information not only on the type of

6. Adjoint formulations 

6.1 The adjoint Boltzmann equation 
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quantity that is extracted (temperature, heat flux, ...) but also on the location over
which the quantity is averaged. For instance, the detector associated with the average
deviational temperature within a volume V and between t1 and t2 is

h =
1

CV (t2 − t1)
1V 1[t1,t2], (31)

where C refers to the heat capacity of the materials of consideration and 1V refers to
the function which takes the value 1 inside the volume V and 0 otherwise. For the
temperature at a given time t0, this quantity would instead be

h =
1

CV
1V δ(t− t0), (32)

where δ(t− t0) refers to the Dirac delta function centered in time on t0.
Now consider the adjoint Boltzmann equation

−∂ψ
∗

∂t
−Vg · ∇xψ

∗ =
L(ψ∗)− ψ∗

τ
+ h. (33)

Particles simulating the adjoint solution ψ∗ evolve backwards in time and are emitted
by the adjoint source that is, in fact, h, or in other words, the detector in the original
problem. Let us also introduce the adjoint quantity of interest I∗ which uses the source
q as a detector. Using integration by parts and the above definitions, one can show that

I∗ =

∫
q
D

4π

deeq

dT
ψ∗d3xdωd2Ωdt (34)

=

∫ [
∂ψ

∂t
+ Vg · ∇xψ −

L(ψ)− ψ
τ

]
D

4π

deeq

dT
ψ∗d3xdωd2Ωdt (35)

=

∫
ψ
D

4π

deeq

dT

[
−∂ψ

∗

∂t
−Vg · ∇xψ

∗ − L(ψ∗)− ψ∗

τ

]
d3xdωd2Ωdt (36)

=

∫
ψ
D

4π

deeq

dT
hd3xdωd2Ωdt = I (37)

which suggests that solving the adjoint problem with source h and a detector that
is identical to the source of the original problem (q) is equivalent in terms of final
answer to solving the original (forward) problem (with source q and detector h). In
the derivation above, expression (36) was obtained from (35) by integration by parts,
where surface terms proportional to ψψ∗ evaluated at the phase space boundaries were
assumed to go to zero. This is usually the case for problems that can be simulated by
the deviational Monte Carlo method [55] and is made possible by the inclusion of the
boundary and initial conditions in the source term which allows the extension of the
domain of integration beyond those boundaries.

The above property (I∗ = I) can be used to alleviate the computational limitations
arising from problems in which the detector, h, is small, such as, for example, when the
temperature in a small region of space (e.g. a point) is required. The adjoint formulation
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uses h as a source and q as a detector; if q extends over a large region of space, replacing
h by q (and solving the adjoint problem) brings considerable improvement.

One example application is the simulation of the Transient ThermoReflectance
(TTR) experiment which has received significant interest recently [18, 58]; KMC-type
Monte Carlo simulations have already been employed for the simulation of this prob-
lem [53, 59] bringing computational savings compared to traditional MC methods and
timestep based deviational methods. In this problem, a thin material layer resting on a
silicon substrate is heated using a short laser pulse at time t = 0. It is usually assumed
that the initial deviational temperature field induced by the laser pulse is of the form

Ti(x) = T1 exp(−βz − r2

2R2
0

), (38)

where z and r represent the depth and the distance from the center of the heated zone,
respectively. The values of T1, the penetration depth β−1 and the characteristic radius
R0 depend on the physical characteristics of the laser used. The resulting evolution
of the temperature field is unknown and needs to be solved using the BTE because
the material layer size is on the order of the phonon mean free path and the problem
characteristic evolution time is on the order of the mean time between scattering events.

Connection to experiments is made by measuring the surface temperature evolu-
tion for t > 0; in the “forward” Monte Carlo method, the probability for a particle
to be exactly located at the surface at a given time is zero. As a result, in previous
simulations [3] the surface temperature was approximately measured by averaging par-
ticle contributions in a layer of finite thickness adjacent to the surface. On the other
hand, the adjoint formulation allows a direct measurement of the surface temperature
by switching the detector with the source: in this case, the material surface becomes a
source of particles distributed over time (since the temperature at the surface was to be
detected as a function of time), while the initial temperature distribution, Ti(x), which
was the initial source of non-equilibrium, becomes the detector and records particles
which, after being initialized at t > 0 are integrated backwards in time and contribute
Ti(xj(t = 0))/N each, where xj(t = 0) denotes the position of particle j at t = 0 (the
temperature field can be used as an estimator because the heat capacity, C, appears
both in the effective energy and the detector and cancels). This formulation replaces
the original detector whose volume is zero with a detector whose volume is finite and
thus, theoretically provides infinite speedup since the probability of collecting samples
goes from zero to a finite number. Practically speaking, as explained above, calculations
in the forward case collect samples by approximating the surface as a volume of small
thickness. Figure 2 shows the results obtained from such a simulation with the results
obtained by an adjoint calculation for the temperature at one point. The forward calcu-
lation averages the temperature over a cylinder of radius 10µm and thickness 5nm. As
can be seen from the figure, this approximate approach achieves comparable variance
that comes at the expense of some error due to averaging over a finite region of space.

We also note that adjoint formulations are sufficiently general and do not require a
particular numerical implementation (i.e. timestep based, or KMC-type). The adjoint



1616

Péraud, Landon and Hadjiconstantinou, Mechanical Engineering Reviews, Vol.1, No.2 (2014)

[DOI: 10.1299/mer.2014fe0013] © 2014 The Japan Society of Mechanical Engineers

results in figure 2 were obtained using the KMC-type method of Section 5.
The adjoint method has already proven useful in [60] where it is used as a means

of calculating the contributions of each phonon frequency mode to heat conduction
in nanocrystalline materials (namely, silicon and silicon-germanium). For such calcu-
lations, the “forward” method performs poorly in resolving the contributions of low
frequency phonons: the latter usually feature a low density of states and thus the oc-
currence of a particle contributing to the corresponding estimate is rare, resulting in a
large statistical uncertainty. In other words, the forward Monte Carlo technique tends
to under-resolve the contribution of low-frequency phonons and to over-resolve the con-
tribution of high-frequency phonons. The “adjoint” technique alleviates this stiffness in
a simple and elegant manner. Regardless of the phonon mode, it guarantees that each
computational particle contributes to the calculated estimate. Using this technique,
Hua and Minnich have shown that low frequency phonons still significantly contribute
to the thermal conductivity in spite of the small grain size.

10 10 10 9 10 8 10 7 10 6 10 510 6

10 5

10 4

10 3

10 2

10 1

100

Time (s)

 T
 (K

)

 

 

Linearized, forward MC method
Timestep based method
Temperature at (r=0, z=0), calculated with the adjoint method

Figure 2: Temperature at point (r = 0, z = 0) from an adjoint solution as a function of
time, compared to the forward solution averaged over a finite region of space. The latter
is obtained using both a timestep-based and a KMC-type method. In these calculations,
the following model parameters were used: T1 = 1K, β−1 = 7nm and R0 = 15µm.

The advent of two-dimensional materials, for which the relaxation-time approximation
predicts a divergent thermal conductivity with material size, has served to highlight

7. Simulation of the ab initio collision operator 
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the limitations of the relaxation-time approximation and show that some of its success
was a result of fortuitous cancellation of errors [61]; for example, perhaps as a result of
neglecting coupling between out of equilibrium modes, this model fails to capture the
distribution of thermal energy transport across modes [20,21,62].

Until recently, methods for solving the Boltzmann equation with the ab initio scat-
tering operator (2) have been limited to solutions of the space-homogeneous, time-
independent problem associated with determining the thermal conductivity of (homo-
geneous) semiconductors [20, 21, 34, 62, 63]. Previous studies used iterative methods
to solve the homogeneous linearized Boltzmann equation. These solutions have been
limited to zero spatial dimensions due to two reasons: first, the large computational
cost associated with evaluation of the scattering operator—in addition to identifying
all the possible pathways associated with a particular scattering process (k → k′ + k′′

or k + k′ → k′′) and calculating the matrix elements associated with the Hamiltonian

of interaction (e.g. Qk′p′,k′′p′′

kp of (2))—makes formulations requiring frequent evalua-
tion of this operator intractable; second, because the functional form of this operator
differs significantly from traditional operators for which direct or deviational Monte
Carlo procedures have been developed—for example, it involves three-phonon processes
instead of the “four” molecule processes involved in the hard-sphere operator and its
variants [64]—procedures for efficiently sampling these scattering events, up until re-
cently, had not been developed.

Recently, a deviational simulation method was developed [65–67] for simulating the
Boltzmann equation using the ab initio scattering operator. This method writes the
Boltzmann equation in the form

∂ed
i

∂t
+ [Vg]i · ∇xe

d
i + [Vg]i · ∇xe

eq
i =

∑
j

Bije
d
j , (39)

where [Vg]i denotes the group velocity of state i and the matrix B represents the action
of the linearized scattering operator on ed

j ; the latter denotes the discrete in recip-

rocal (wavevector) space energy distribution, namely ed
j = ed(x,kj , t), where kj , j =

1, ..., Nstates denotes the discrete states in which the reciprocal space is discretized. The
latter is necessary due to a lack of a computationally tractable continuous model—the
interaction terms are typically calculated on a discrete grid and tabulated for later use,
because their real time calculation is overwhelmingly expensive.

Simulation of (39) via deviational procedures requires small modifications due to the
discrete nature of the distribution in reciprocal space. It also requires an algorithm for
simulating the effect of the linearized scattering operator, which here is written in the
form [

df

dt

]
scatt

=
∑
j

Bije
d
j . (40)

Despite being suggestive of a Markov chain formulation, Markov-chain related simula-
tion processes cannot be used for this problem for two reasons: first, the distribution ed

i
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can take positive or negative values (since it represents a deviational quantity); second,
the elements of the propagator,

P (∆t) = eB∆t =
∞∑
k=0

∆tk

k!
Bk, (41)

can be negative (a consequence of having negative off-diagonal elements in B due to
three phonon coupling). The algorithm developed in [65–67] for integrating (40) is ex-
act in time (no timestep error) and is strictly energy conserving, but requires particle
cancellation because it results in the generation of additional particles. Although parti-
cle cancellation occurs at the boundaries (see Section 3), when the scattering operator
creates additional particles, boundaries typically do not provide sufficient cancellation
in the scattering-dominated limit (Kn < 1) [68]. In the case discussed here, particle
cancellation can be effected relatively efficiently, but results in discretization error since
cancelled particles will not be at exactly the same physical location (particle states in
reciprocal space are discrete and therefore particles in the same wavevector state but
of opposite sign can be deleted). This places a rather strict requirement on the size
of cancellation cells, which are, in this algorithm, the only contribution to spatial dis-
cretization. In other words, the development of more accurate (higher-order) methods
for treating particle cancellation, or alternatively, new algorithms that do not require
cancellation would constitute an important improvement to this field.

We also note that one advantage of Monte Carlo methods, as opposed to determin-
istic approaches, is that there is no underlying need for discretizing the reciprocal space.
In [65–67], reciprocal space discretization was unavoidable because no acceptable con-
tinuous description of the scattering operator in reciprocal space was available. If such
a representation is developed, either for the linearized operator used in this work or its
non-linear counterpart (Eq. (2)), it could lead to more efficient Monte Carlo algorithms
and be particularly useful for three dimensional problems.

Efficient simulation of multiscale problems has received considerable attention in the
context of a wide range of applications including kinetic transport. As discussed in
more detail in [49], deviational methods exhibit a number of features that makes them
very well suited for the simulation of multiscale problems. Specifically, by separating
out the equilibrium component of the distribution function, computational resources
are focused on the regions where the deviation from equilibrium is appreciable. This is,
in essence, the objective of multiscale methods; namely, the ability to reserve the use of
the expensive, high-fidelity, computational descriptions only in regions where they are
needed, while using an inexpensive description where possible. In contrast to traditional
approaches [69,70] which achieve this goal using domain decomposition (of the solution
domain), deviational methods achieve this using algebraic decomposition (of the
distribution function). This approach ensures that computational resources are focused

8. Multiscale problems via algebraic decomposition 
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on regions of high non-equilibrium which are, primarily, the regions where the traditional
continuum description fails. Moreover, this decomposition occurs automatically and
adaptively with no user intervention and without requiring any simplifying assumptions
or approximate coupling techniques.

An example of the computational benefits of algebraic decomposition is the simula-
tion of the TTR experiment discussed in Section 6: due to the localized nature of the
heating, large parts of the computational domain remain in equilibrium. At early times,
in particular, only a very small region of space is under non-equilibrium conditions while
the remainder of the domain is at equilibrium at the initial domain temperature. Al-
gebraic decomposition uses this information to minimize the number of computational
particles required, or alternatively, for a given number of computational particles, resolve
the deviation from equilibrium more effectively. The computational savings compared
to traditional MC methods are very large [3], both due to variance reduction, but also
because the simulation domain does not need to be filled with particles representing the
equilibrium distribution in the vast majority of the domain.

The TTR experiment discussed above is a special case where equilibrium coincides
with the exact continuum solution. In general, regions in which a continuum description
is still adequate will exhibit temperature gradients that may be described by Fourier’s
law. Progress towards taking those gradients into account can be achieved by using a
spatially variable (local) equilibrium distribution: it is well known [14, 29] that local
equilibrium corresponds to the leading order term in the expansion

e = eloc +Kne1 +Kn2 e2 + ... , (42)

which may be used to construct a solution to the BTE in the presence of a homogeneous
temperature gradient. The above equation shows that using eloc as the control ensures
that the remainder to be simulated using particles scales as O(Kn) or higher, ensuring
that it goes to zero as characteristic lengthscales become large (Kn → 0). One mani-
festation of this property is that, in contrast to standard particle simulation methods
which become increasingly more expensive as the NSF (Kn → 0) limit is approached
(larger length scales imply not only more simulation particles, but also longer evolu-
tion timescales), deviational methods with a spatially variable equilibrium distribution
become more efficient as this limit is approached, because they are able to relegate in-
creasingly more of the description to the equilibrium part, thus reducing the number
of particles required for the simulation [49].

Methods with variable equilibrium distributions have been developed for dilute gases
[2, 51] and shown to exhibit improved variance reduction, particularly as Kn → 0, as
expected. In these formulations, the variable control was implemented as piecewise
constant within each cell, requiring source terms resulting from the discontinuities in
the control at cell boundaries and making multidimensional implementations complex
[49,51]. Using a continuously variable control, which results in a volumetric source term,
requires knowledge of the local temperature field as a continuous function of space which
is difficult to retrieve from the simulation.
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An alternative approach that sidesteps this issue is to use an asymptotic expansion
based on the equilibrium distribution eeq

T0(x′), namely

e = eeq
T0(x′) +Knê1 +Kn2ê2 + ... , (43)

where T0(x′) is the solution of the heat conduction equation for the temperature field
based on no-jump boundary conditions and x′ is the dimensionless space coordinate.
Solving the BTE via an asymptotic solution procedure [71–73] can be used to show that

ê1 = eeq
T1(x′) + eK1(x′)−Ω · ∇x′eeq

T0(x′), (44)

where T1(x′) corresponds to solution of the heat conduction equation subject to jump
boundary conditions (see [71–73] for details) and where eK1(x′) is a boundary layer
correction that is important close to the boundaries. To minimize complexity, one may
instead use the distribution eeq

T0
− τV g · ∇xe

eq
T0

as a control (written here in dimensional
units), which does not require knowledge of the local temperature field nor the kinetic
boundary layer eK1 or the temperature field T1. One complication arising from this
formulation is that the source term from which particles need to be generated is

q = −Vg · ∇x

(
−τVg · ∇xe

eq
T0

)
= τV 2

g ΩiΩj

∂2eeq
T0

∂xi∂xj
, (45)

where Ωi denotes cartesian components of the unit vector Ω. (Note that L(eeq
T0
− τV g ·

∇xe
eq
T0

) 6= eeq
T0
− τV g · ∇xe

eq
T0

.) Although drawing particles from such a distribution in
phase space is theoretically feasible, the routines involved would be delicate to implement
in a general way, and represent a significant programming burden. This limitation can be
sidestepped by using the adjoint formulation described in Section 6. Specifically, using
this source as a detector eliminates the need to generate particles from this distribution
and only requires evaluation of integrals of the source term over a particle’s trajectory,
yielding an algorithm that is considerably simpler.

Figure 3 shows a comparison between a traditional deviational adjoint simulation
using eeq

Teq
as a control (Teq constant) and a simulation using eeq

T0
− τV g · ∇xe

eq
T0

as
a control. All simulations were performed with the same number of particles. More
specifically, the figure shows the standard deviation in the temperature field as a func-
tion of Kn in a one-dimensional problem of heat transport between two boundaries at
different prescribed temperatures; the standard deviation is averaged over local values
at fifty equispaced points spanning the simulation domain. The figure shows that the
standard deviation observed when using eeq

T0
− τV g · ∇xe

eq
T0

as a control is proportional
to Kn. Similar behavior was observed for more complex 2D problems [57]. Therefore,
it appears that this formulation exhibits the desirable feature σ(Kn → 0) → 0, which
ensures that it is more efficient than a constant-control formulation in the limit Kn→ 0.
We note that the scaling σ ∝ Kn observed in figure 3 is superior to the one achieved
in [2, 51] (σ ∝

√
Kn) using a local equilibrium as a control. The generality of this

result, as well as a more general investigation of the statistical uncertainty associated



2121

Péraud, Landon and Hadjiconstantinou, Mechanical Engineering Reviews, Vol.1, No.2 (2014)

[DOI: 10.1299/mer.2014fe0013] © 2014 The Japan Society of Mechanical Engineers

with deviational methods and its dependence on physical system properties as well as
numerical parameters will be undertaken in the future. We finally note that because
MC methods converge with the square root of the number of samples, the speedup is
proportional to σ2 and is invaluable since as Kn decreases, the computational cost of
each particle’s trajectory increases. More details can be found in [57].

10 1 100

10 1

Kn

 

 

variable control
constant control

Figure 3: Comparison of the standard deviation σ between the adjoint method using
a constant equilibrium as a control, and the variable-control method using eeq

T0
− τV g ·

∇xe
eq
T0

as a control. The uncertainty associated with the latter is proportional to Kn
and goes to zero as Kn→ 0.

Monte Carlo methods have historically been preferred over deterministic methods for
solving the Boltzmann equation because they combine efficiency with simplicity and
versatility. Although in some cases deterministic methods can be taylor built to tackle
specific (and usually highly idealized) problems more accurately than MC methods
(e.g. see [74–76]), such methods typically cannot compete with MC methods over the
whole range of problems of interest that includes transient, three-dimensional prob-
lems in complex geometries at both high and low Kn. One of the most important, but
rarely mentioned, advantages of MC methods is their ability to deal with discontinuities
in the distribution function naturally and efficiently without numerical instabilities or
associated restrictive timesteps, or artificial numerical constructs such as flux limiters.
Deviational methods have addressed one of the most important limitations of MC meth-
ods, making them generally more efficient but also extending their applicability to even

9. Final remarks 
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more complex problems.
From the developments discussed in this review, two are still in their infancy and

present considerable potential for development and computational gains in the future,
namely, the simulation of the ab initio collision operator (Section 7) and the adjoint
formulation (see Sections 6 and 8). In the case of the ab initio collision operator, we
note that the method developed in [65–67] is general and does not rely on assumptions
about the material dimensionality. In other words, we expect that deviational simu-
lation methods with ab initio scattering reviewed here should directly extend to 3D
materials, making ab initio simulations of all materials of interest possible, provided
suitable material information is available (i.e. second and third order force constants
for calculation of the scattering matrix B). The cost of the method will clearly be larger
in three dimensions. The largest computational cost increase is expected to be due to
the increase in the number of states in the reciprocal space discretization (each spatial
cell requires an independent representation of reciprocal space), but we note that these
calculations are already being performed in three dimensions for spatially homogeneous
problems [34,63]. Algorithmic improvements such as the ones, but not limited to those,
discussed in Section 7 will go a long way towards making three dimensional simulations
using ab initio scattering possible in the near future.
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[73] J.-P. M. Péraud and N. G. Hadjiconstantinou. In preparation.

[74] Y. Sone, T. Ohwada, and K. Aoki. Temperature jump and Knudsen layer in a rarefied gas
over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere
molecules. Physics of Fluids A, 1(2):363–370, 1989.

[75] Y. Sone, T. Ohwada, and K. Aoki. Numerical analysis of the shear and thermal creep flows
of a rarefied gas over a plane wall on the basis of the linearized Boltzmann equation for
hard-sphere molecules. Physics of Fluids A, 1(9):1588–1599, 1989.

[76] T. Ohwada, Y. Sone, and K. Aoki. Numerical analysis of the Poiseuille and thermal transpi-
ration flows between 2 parallel plates on the basis of the Boltzmann equation for hard-sphere
molecules. Physics of Fluids A, 1(12):2042–2049, 1989.


