
AMReX - a new framework for block-structured

adaptive mesh refinement calculations

Andy Nonaka

Lawrence Berkeley National Laboratory

SciDAC-TEAMS Collaboration Meeting: August 22, 2018

What is AMReX?

• AMReX is a block-structured Adaptive Mesh Refinement (AMR)
framework for solving systems of nonlinear PDEs for a variety of
US Department of Energy applications.

– DOE Exascale Computing Project (ECP) Co-Design Center

• Mission of the Co-Design Center

– Support applications

– Evaluate new software
technologies

– Interact with vendors

– Much of the algorithmic
methodology is developed as
part of the DOE Applied Math
Program

Cast

• Ann Almgren
• John Bell
• Weiqun Zhang
• Marcus Day
• Andy Nonaka
• Brian Friesen
• Kevin Gott
• Andrew Myers
• Steven Reeves
• Tan Nguyen
• Cy Chan
• Sam Williams
• Anshu Dubey (ANL)
• Petros Tzeferacos (U Chicago)
• Klaus Weide (U Chicago)
• Ray Grout (NREL)
• Shashank Yellapantula (NREL)

More About AMReX

• Supports the development of block-structured AMR

applications for current and next-generation architectures
• Doesn’t dictate anything about the physics, the discretization, or

the numerics other than fundamentally uses block-structured

mesh

• Provides support for
• Explicit & implicit mesh operations

• Multilevel synchronization operations

• Particle and particle/mesh algorithms

• Solution of parabolic and elliptic systems using geometric

multigrid solvers

• Embedded boundary (cut-cell) representation of geometry

What is Block-Structured AMR?

• In block-structured AMR,
the solution is defined on a
hierarchy of levels of
resolution, each of which is
composed of a union of
logically rectangular
grids/patches

 • Patches can change dynamically

• Oct-tree refinement with fixed

size grids is special case

• More generally, patches need

not be fixed size and do not have

a unique parent-child

relationship

AMReX Widely Used in DOE Applications

Combustion

Astrophysics Cosmology Accelerators Multiphase flow

Other applications
• Clouds / Atmospheric dynamics
• Fluctuating hydrodynamics (stochastic

PDEs)
• Fluid-structure interaction
• Solid mechanics
• Low Mach Number Astrophysics

(MAESTRO)

• Five ECP application projects that partner with AMReX:

Additional Features

• Implemented in C++11 / Fortran90

• Open development model

– Publicly available on Github; anybody can see the latest changes

– Issues, pull requests encouraged (bug fixes, new features,
documentation, etc...)

– All branches public. Bleeding edge development branch, merged
into master monthly.

– Most ECP application codes and many other applications also
publicly available.

• Extensive documentation

– Sphinx, doxygen documentation hosted on Github pages, auto-
generated with Travis.

– Large number of tutorial codes to help you get started.

– Github issues for user questions – prompt responses.

Additional Features

• Built in performance measurement tools

• Simple summary characterization and/or highly detailed
measurements

• Measure both computation and communication

• Ability to localize detailed measurements

Additional Features

• Interfacing with other Libraries

• SUNDIALS ODE solvers

• Hypre, HPGMG solvers

• FFTW and other FFT libraries

• In-situ and in-transit analytics - Sensei, ALPINE, Henson

• Visualization and I/O

• In-house data format with efficient parallel I/O for both restart
and plotfiles (has been much faster than HDF5 … although that is
changing)

• Visualization format supported by VisIt, Paraview, yt

Basic Data Structures

• Invect
– Mesh point at a given level

• Box
– Rectangular collection of mesh points at a level

• FArrayBox
– Data defined on a box (double, integer, etc.)
– Stored in column-major order (Fortran)
– Optional contains space for boundary (ghost) data

• BoxArray
– List of boxes at a level

• MultiFAB
– List of FArrayBoxes associated with a BoxArray

Core Parallelization Strategy

• DistributionMapping maintains an mapping between Boxes in a

BoxArray and MPI rank
– Several data distribution strategies such as knapsack and space-

filling curve

– Load-balancing based on work estimates

• Parallel operations defined on MultiFabs
– MultiFabs can be operated on using add, divide, saxpy, etc..

– Also provide MFIter for looping over the FArrayBoxes in a

MultiFab.
• Owner computes rule

• Each proc loops only over the data it owns, details are hidden in application

code

Core Parallelization Strategy

• Supports a variety of programming models - MPI, OpenMP, Hybrid,
and (increasingly) GPUs (more on this later)

• OpenMP implemented via fortran loop directives or logical tiling

• Tililng improves cache performance, even if using pure MPI

Multi-Level Tools

• All data structures are level aware

– Well-defined mapping between levels

• Interpolation / Restriction

– Filling boundary conditions on fine levels from coarse level data

– Representing fine solution on the coarse level

• Flux Registers

– Used to store data on
coarse / fine interfaces

– Used to enforce conservation for

– e.g. hyperbolic systems

• Tagging / Regridding

– Accumulate sets of points

– Generating BoxArrays that

cover those points

Linear Solvers

• AMReX provides native geometric Multigrid solvers for parabolic and
elliptic systems

• Currently also building a Stokes solver

• Cell-centered and nodal solvers

• Single-level and multi-level “composite” solvers

• Box agglomeration to avoid coarsening limitations

• Consolidation strategy to reduce ranks at coarser level

• Current work - extension to EB

• Makes the bottom solve much more complex

• Exploring transition to algebraic multigrid

Embedded Boundaries – Walls in Outer Space?

• Use a cut cell approach to complex geometries.

• Still block-structured, but cells labelled covered, cut,
or regular

• Within an MFIter loop, ask whether the tile
contains any cut cells.

• If not, treat in normally.

• If it does, pass in extra geometric, connectivity
information.

• All data structures fully inter-operable
with Fortran

• Doesn’t sacrifice essential regularity
far from domain boundaries.

• Much more work to do near
boundaries, benefits from dynamic
OpenMP scheduling

Prototype injector for gas turbine

Shock reflection test

Particles in AMReX

• Another core data type is the particle. In AMReX, particles live
on and interact with an adaptive hierarchy of meshes.

• Additional challenges:

– Inherently irregular - amount of data varies

– Connectivity is hard, e.g. finding neighbors.

– Always changing, data structures adapt every time step or more

• Several different kinds of applications:

– Passive tracers

– Particle-particle, particle-wall collisions

– Particle-in-cell (electro-magnetic, dark matter, drag)

Nyx Code Cosmology – Dark Matter Particles

Particle-Wall Collisions (for Astrophysics?)

New Programming Models and Architectures

• Programming models

• Fork-join model for coarse-grained asynchronous execution

• Interface using C++11 lambda’s

• Asynchronous iterators for fine-grained asynchronous execution

• Tasked graph derived from AMR metadata

• Runtime scheduling support

• Investigating use of PGAS communication layer

• Much current work focuses on porting AMReX to GPUs

• Cuda’s Unified Memory for data motion

• Kernels offloaded through a variety of strategies

– CUDA C/Fortran

– OpenACC

– OpenMP

• NVIDIA’s thrust library for sorting and searching (particles)

• Mini-App versions of Castro hydro (StarLord) and WarpX (Electromagnetic
PIC) exist

3 Ways That Applications Use AMReX

• Core (library)

– Application owns main

– Support for single-level structured grid methods and particles

– AMReX provides data containers and iterators for distributed data, as well as

ghost cell exchange and communication

– “User never types MPI…”

• AMRCore (library)

– Application owns main

– Support for block-structured AMR
• Inter-level operations – Interpolation, restriction, refluxing (level synchronization)

• AMR time step controlled by application

– Application must understand how to specify multilevel algorithm

• AMRLevel (framework)

– AMReX owns main

– AMReX controls time step (particularly useful to support subcycling)

– Stubs provided for time advance at single level as well as synchronization

operations

END

