

AMReX - a new framework for block-structured adaptive mesh refinement calculations

Andy Nonaka

Lawrence Berkeley National Laboratory

SciDAC-TEAMS Collaboration Meeting: August 22, 2018

What is AMReX?

- AMReX is a <u>block-structured Adaptive Mesh Refinement</u> (AMR) framework for solving systems of nonlinear PDEs for a variety of US Department of Energy applications.
 - DOE Exascale Computing Project (ECP) Co-Design Center
- Mission of the Co-Design Center
 - Support applications
 - Evaluate new software technologies
 - Interact with vendors
 - Much of the algorithmic methodology is developed as part of the DOE Applied Math Program

Cast

Ann Almgren

- John Bell
- Weiqun Zhang
- Marcus Day
- Andy Nonaka
- Brian Friesen
- Kevin Gott
- Andrew Myers
- Steven Reeves
- Tan Nguyen
- Cy Chan
- Sam Williams
- Anshu Dubey (ANL)
- Petros Tzeferacos (U Chicago)
- Klaus Weide (U Chicago)
- Ray Grout (NREL)
- Shashank Yellapantula (NREL)

More About AMReX

- Supports the development of block-structured AMR applications for current and next-generation architectures
 - Doesn't dictate anything about the physics, the discretization, or the numerics other than fundamentally uses block-structured mesh
- Provides support for
 - Explicit & implicit mesh operations
 - Multilevel synchronization operations
 - Particle and particle/mesh algorithms
 - Solution of parabolic and elliptic systems using geometric multigrid solvers
 - Embedded boundary (cut-cell) representation of geometry

What is Block-Structured AMR?

 In block-structured AMR, the solution is defined on a hierarchy of levels of resolution, each of which is composed of a union of logically rectangular grids/patches

- Patches can change dynamically
- Oct-tree refinement with fixed size grids is special case
- More generally, patches need not be fixed size and do not have a unique parent-child relationship

AMReX Widely Used in DOE Applications

Five ECP application projects that partner with AMReX:

Accelerators

Cosmology

Multiphase flow

Other applications

- Clouds / Atmospheric dynamics
- Fluctuating hydrodynamics (stochastic PDEs)
- **Fluid-structure interaction**
- Solid mechanics
- Low Mach Number Astrophysics (MAESTRO)

Additional Features

- Implemented in C++11 / Fortran90
- Open development model
 - Publicly available on Github; anybody can see the latest changes
 - Issues, pull requests encouraged (bug fixes, new features, documentation, etc...)
 - All branches public. Bleeding edge development branch, merged into master monthly.
 - Most ECP application codes and many other applications also publicly available.
- Extensive documentation
 - Sphinx, doxygen documentation hosted on Github pages, autogenerated with Travis.
 - Large number of tutorial codes to help you get started.
 - Github issues for user questions prompt responses.

Additional Features

- Built in performance measurement tools
 - Simple summary characterization and/or highly detailed measurements
 - Measure both computation and communication
 - Ability to localize detailed measurements

	bl_prof.Hyper aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	*
File <u>V</u> iew Help		
Elle Alen Helb		regions - "timeStep STEP 2" - "timeStep STEP 1" - "amr_level,advance" - "timeStep STEP 0" - "Rwr::coarseTimeStep()" - "Rwr::writePlotFile()" - "Rwr::writePlotFile()" - "Rwr::init()" - "main()" - "NoRegion"
		∼not in region ∼active time intervals
		region time [0, 23,9602]
Function Name NCalls Nin Awr::FinalizeInit() 1 0.0000 Awr::InitAwr() 1 0.0339 Awr::InitAlizeInit() 1 0.0000 Awr::DifFineLevels() 1 0.0003 Over::DefEnietPoint() 2 0.735	Avg Max StdBev CoeffVar Percent % 0.0001 0.0033 0.0006 460.2139 0.00 % 0.0693 0.1039 0.0167 24.0904 0.30 % 0.0000 0.0000 28.1660 0.00 % 0.0003 0.0004 0.0000 28.1660 0.00 % 0.0003 0.0004 0.0000 5.0645 0.00 %	Generate Function List

Additional Features

- Interfacing with other Libraries
 - SUNDIALS ODE solvers
 - Hypre, HPGMG solvers
 - FFTW and other FFT libraries
 - In-situ and in-transit analytics Sensei, ALPINE, Henson
- Visualization and I/O
 - In-house data format with efficient parallel I/O for both restart and plotfiles (has been much faster than HDF5 ... although that is changing)
 - Visualization format supported by Vislt, Paraview, yt

Basic Data Structures

- Invect
 - Mesh point at a given level
- Box
 - Rectangular collection of mesh points at a level
- FArrayBox
 - Data defined on a box (double, integer, etc.)
 - Stored in column-major order (Fortran)
 - Optional contains space for boundary (ghost) data
- BoxArray
 - List of boxes at a level
- MultiFAB
 - List of FArrayBoxes associated with a BoxArray

Core Parallelization Strategy

- DistributionMapping maintains an mapping between Boxes in a BoxArray and MPI rank
 - Several data distribution strategies such as knapsack and spacefilling curve
 - Load-balancing based on work estimates
- Parallel operations defined on MultiFabs
 - MultiFabs can be operated on using add, divide, saxpy, etc..
 - Also provide MFIter for looping over the FArrayBoxes in a MultiFab.
 - Owner computes rule
 - Each proc loops only over the data it owns, details are hidden in application code

MultiFab phi(boxArray, distributionMap, Ncomp, Nghost);

```
// loop over grids - owner computes
for ( MFIter mfi(phi); mfi.isValid(); ++mfi ) {
    const Box& bx = mfi.validbox(); // valid region
```

subroutine work_on_phi(lo, hi, phi, philo, phihi) bind(C, name="work_on_phi")

```
integer , intent(in ) :: lo(2), hi(2), philo(2), phihi(2)
real(amrex_real), intent(inout) :: phi(philo(1):phihi(1),philo(2):phihi(2))
integer i,j
do j = lo(2), hi(2)
do i = lo(1), hi(1)
    phi(i,j) = phi(i,j) + 1.d0
end do
end do
end do
```

end subroutine work on phi

Core Parallelization Strategy

- Supports a variety of programming models MPI, OpenMP, Hybrid, and (increasingly) GPUs (more on this later)
- OpenMP implemented via fortran loop directives or logical tiling
 - Tililng improves cache performance, even if using pure MPI

Multi-Level Tools

- All data structures are level aware
 - Well-defined mapping between levels
- Interpolation / Restriction
 - Filling boundary conditions on fine levels from coarse level data
 - Representing fine solution on the coarse level
- Flux Registers
 - Used to store data on coarse / fine interfaces
 - Used to enforce conservation for
 - e.g. hyperbolic systems
- Tagging / Regridding
 - Accumulate sets of points
 - Generating BoxArrays that cover those points

Linear Solvers

- AMReX provides native geometric Multigrid solvers for parabolic and elliptic systems
 - Currently also building a Stokes solver
- Cell-centered and nodal solvers
- Single-level and multi-level "composite" solvers
- Box agglomeration to avoid coarsening limitations
- Consolidation strategy to reduce ranks at coarser level
- Current work extension to EB
 - Makes the bottom solve much more complex
 - Exploring transition to algebraic multigrid

Embedded Boundaries – Walls in Outer Space?

- Use a cut cell approach to complex geometries.
- Still block-structured, but cells labelled covered, cut, or regular
- Within an MFIter loop, ask whether the tile contains any cut cells.
- If not, treat in normally.
- If it does, pass in extra geometric, connectivity information.
- All data structures fully inter-operable with Fortran
- Doesn't sacrifice essential regularity far from domain boundaries.
- Much more work to do near boundaries, benefits from dynamic OpenMP scheduling

Prototype injector for gas turbine

Shock reflection test

Particles in AMReX

- Another core data type is the particle. In AMReX, particles live on and interact with an adaptive hierarchy of meshes.
- Additional challenges:
 - Inherently irregular amount of data varies
 - Connectivity is hard, e.g. finding neighbors.
 - Always changing, data structures adapt every time step or more
- Several different kinds of applications:
 - Passive tracers
 - Particle-particle, particle-wall collisions
 - Particle-in-cell (electro-magnetic, dark matter, drag)

Nyx Code Cosmology – Dark Matter Particles

Particle-Wall Collisions (for Astrophysics?)

New Programming Models and Architectures

- Programming models
 - Fork-join model for coarse-grained asynchronous execution
 - Interface using C++11 lambda's
 - Asynchronous iterators for fine-grained asynchronous execution
 - Tasked graph derived from AMR metadata
 - Runtime scheduling support
 - Investigating use of PGAS communication layer
- Much current work focuses on porting AMReX to GPUs
 - Cuda's Unified Memory for data motion
 - Kernels offloaded through a variety of strategies
 - CUDA C/Fortran
 - OpenACC
 - OpenMP
 - NVIDIA's thrust library for sorting and searching (particles)
 - Mini-App versions of Castro hydro (StarLord) and WarpX (Electromagnetic PIC) exist

3 Ways That Applications Use AMReX

- Core (library)
 - Application owns main
 - Support for single-level structured grid methods and particles
 - AMReX provides data containers and iterators for distributed data, as well as ghost cell exchange and communication
 - "User never types MPI..."
- AMRCore (library)
 - Application owns main
 - Support for block-structured AMR
 - Inter-level operations Interpolation, restriction, refluxing (level synchronization)
 - AMR time step controlled by application
 - Application must understand how to specify multilevel algorithm
- AMRLevel (framework)
 - AMReX owns main
 - AMReX controls time step (particularly useful to support subcycling)
 - Stubs provided for time advance at single level as well as synchronization operations

END