AMReX - a new framework for block-structured
adaptive mesh refinement calculations

Andy Nonaka
Lawrence Berkeley National Laboratory
SciDAC-TEAMS Collaboration Meeting: August 22, 2018

BERKELEY LAB

EEEEEEEEEEEEEEEEEEEEEEEE

What is AMReX?

 AMReX is a block-structured Adaptive Mesh Refinement (AMR)
framework for solving systems of nonlinear PDEs for a variety of
US Department of Energy applications.

— DOE Exascale Computing Project (ECP) Co-Design Center

* Mission of the Co-Design Center

— Support applications

— Evaluate new software
technologies

— Interact with vendors

— Much of the algorithmic

methodology is developed as
part of the DOE Applied Math
Program

Cast

 Ann Almgren

e John Bell

* Weiqun Zhang

* Marcus Day

 Andy Nonaka

* Brian Friesen

* Kevin Gott

* Andrew Myers

* Steven Reeves

* Tan Nguyen

* CyChan

 Sam Williams

* Anshu Dubey (ANL)

e Petros Tzeferacos (U Chicago)
e Klaus Weide (U Chicago)

e Ray Grout (NREL)

e Shashank Yellapantula (NREL)

More About AMReX

e Supports the development of block-structured AMR
applications for current and next-generation architectures

Doesn’t dictate anything about the physics, the discretization, or

the numerics other than fundamentally uses block-structured

mesh

* Provides support for

Explicit & implicit mesh operations

Multilevel synchronization operations

Particle and particle/mesh algorithms

Solution of parabolic and elliptic systems using geometric
multigrid solvers

Embedded boundary (cut-cell) representation of geometry

What is Block-Structured AMR?

In block-structured AMR,
the solution is defined on a
hierarchy of levels of
resolution, each of which is
composed of a union of
logically rectangular
grids/patches

* Patches can change dynamically

e QOct-tree refinement with fixed

size grids is special case

 More generally, patches need

not be fixed size and do not have

a unique parent-child

relationship

AMReX Widely Used in DOE Applications

* Five ECP application projects that partner with AMReX:

Cosmology Multiphase flow

Other applications

e Clouds / Atmospheric dynamics

* Fluctuating hydrodynamics (stochastic
PDEs)

* Fluid-structure interaction

* Solid mechanics

* Low Mach Number Astrophysics
(MAESTRO)

Combustion

Additional Features

* Implemented in C++11 / Fortran90
* Open development model

— Publicly available on Github; anybody can see the latest changes

— Issues, pull requests encouraged (bug fixes, new features,
documentation, etc...)

— All branches public. Bleeding edge development branch, merged
into master monthly.

— Most ECP application codes and many other applications also
publicly available.

 Extensive documentation

— Sphinx, doxygen documentation hosted on Github pages, auto-
generated with Travis.

— Large number of tutorial codes to help you get started.
— Github issues for user questions — prompt responses.

Additional Features

e Built in performance measurement tools

e Simple summary characterization and/or highly detailed
measurements

 Measure both computation and communication

* Ability to localize detailed measurements

Additional Features

* Interfacing with other Libraries

 SUNDIALS ODE solvers

* Hypre, HPGMG solvers

 FFTW and other FFT libraries

* In-situ and in-transit analytics - Sensei, ALPINE, Henson
* Visualization and I/O

* In-house data format with efficient parallel I/O for both restart

and plotfiles (has been much faster than HDF5 ... although that is
changing)

* Visualization format supported by Vislt, Paraview, yt

Basic Data Structures

* Invect
— Mesh point at a given level
* Box

— Rectangular collection of mesh points at a level

* FArrayBox
— Data defined on a box (double, integer, etc.)
— Stored in column-major order (Fortran)
— Optional contains space for boundary (ghost) data

* BoxArray
— List of boxes at a level
e MultiFAB

— List of FArrayBoxes associated with a BoxArray

Core Parallelization Strategy

* DistributionMapping maintains an mapping between Boxes in a

BoxArray and MPI rank

— Several data distribution strategies such as knapsack and space-
filling curve

— Load-balancing based on work estimates

* Parallel operations defined on MultiFabs
— MultiFabs can be operated on using add, divide, saxpy, etc..

— Also provide MFlter for looping over the FArrayBoxes in a
MultiFab.

* Owner computes rule
* Each proc loops only over the data it owns, details are hidden in application
code

MultiFab phi({boxArray, distributionMap, MNcomp, Nghost);

// loop over grids - owner computes
for { MFIter mfi(phi); mfi.isValid(); ++mfi) {
const Box& bx = mfi.validbox(); // valid [jegion

work on phi(bx.loVect(), // coordinates of valid reglon
bx.hiVect(),
phi{mfi].dataPtr(), // polnter to data
phi[mfi].loVect(), // coordinates of data (including ghost cells)
phi[mfi].hiVect());

subroutine work on phi(lo, hi, phi, philo, phihi) bind(C, name="work on phi")

integer . intent(in) :: lo(2), hi(2), philo(2), phihi(2)
real (amrex real), intent({inout) :: phi(phile(l):phihi(1},philo(2):phihi(2}]

integer 1i,]

do j = lo(2), hi(2)
do 1 = lo(l), hi(1)
phi(i,]) = phi(1,7) + 1.d@
end do
end do

end subroutine work on phi

Core Parallelization Strategy

e Supports a variety of programming models - MPI, OpenMP, Hybrid,
and (increasingly) GPUs (more on this later)

* OpenMP implemented via fortran loop directives or logical tiling
* Tililng improves cache performance, even if using pure MPI

E B B E B B B ® A A A A+ + ¢+

[N BN BN BN BN BN BN | A A A A 4+ 4+ ¢ o
® ¢ »# ¢ o & & o|FN B B B E N EH B A A A A 4 4+ ¢ A A A 4 e+ s
.....‘O...IIIIIIIII A A A A ¢ ¢ ¢ S|A A A A s e e+ o
oo-coo-. .‘.llllll.ll A A A A ¢ ¢ ¢ ¢|e o o o E B B &=
.....l..lll-l I-I-II A A A A 4+ ¢ ¢ ¢|e o o o B B EH &=
..-..0-. .-.lll.l l.l.ll ®¢ ¢ ¢ ¢ H E E E|® & ¢ ® E E E &
..C..'..Ill-l III-II ® @ # ¢ E N E E|® o ® ® E N E =
e & & o @ o o | 0 1 1 |e & & o =z = ==
oo-coo-. olo ® ¢ ¢ ¢ E ®E ®E =&

Multi-Level Tools

All data structures are level aware

— Well-defined mapping between levels

Interpolation / Restriction
— Filling boundary conditions on fine levels from coarse level data

— Representing fine solution on the coarse level

Flux Registers

— Used to store data on
coarse / fine interfaces

— Used to enforce conservation for
— e.g. hyperbolic systems

Tagging / Regridding

— Accumulate sets of points

— Generating BoxArrays that
cover those points

|l Inear Solvers

 AMReX provides native geometric Multigrid solvers for parabolic and
elliptic systems
* Currently also building a Stokes solver

* Cell-centered and nodal solvers

* Single-level and multi-level “composite” solvers

* Box agglomeration to avoid coarsening limitations

* Consolidation strategy to reduce ranks at coarser level

e Current work - extension to EB
* Makes the bottom solve much more complex
* Exploring transition to algebraic multigrid

Embedded Boundaries — Walls in Outer Space?

Use a cut cell approach to complex geometries.

Still block-structured, but cells labelled covered, cut,
or regular

Within an MFlter loop, ask whether the tile
contains any cut cells.

If not, treat in normally.

If it does, pass in extra geometric, connectivity
information.

All data structures fully inter-operable Prototype injector for gas turbine
with Fortran

Doesn’t sacrifice essential regularity
far from domain boundaries.

Much more work to do near
boundaries, benefits from dynamic
OpenMP scheduling

Shock reflection test

Particles iIn AMReX

* Another core data type is the particle. In AMReX, particles live
on and interact with an adaptive hierarchy of meshes.

e Additional challenges:
— Inherently irregular - amount of data varies
— Connectivity is hard, e.g. finding neighbors.
— Always changing, data structures adapt every time step or more

* Several different kinds of applications:
— Passive tracers
— Particle-particle, particle-wall collisions
— Particle-in-cell (electro-magnetic, dark matter, drag)

Nyx Code Cosmology — Dark Matter Particles

Particle-Wall Collisions (for Astrophysics?)

New Programming Models and Architectures

* Programming models
* Fork-join model for coarse-grained asynchronous execution
* |Interface using C++11 lambda’s
e Asynchronous iterators for fine-grained asynchronous execution
e Tasked graph derived from AMR metadata
* Runtime scheduling support
* Investigating use of PGAS communication layer

 Much current work focuses on porting AMReX to GPUs
* Cuda’s Unified Memory for data motion

» Kernels offloaded through a variety of strategies
— CUDA C/Fortran
— OpenACC
— OpenMP
* NVIDIA’s thrust library for sorting and searching (particles)

* Mini-App versions of Castro hydro (StarLord) and WarpX (Electromagnetic
PIC) exist

3 Ways That Applications Use AMReX

e Core (library)
— Application owns main
— Support for single-level structured grid methods and particles
— AMReX provides data containers and iterators for distributed data, as well as
ghost cell exchange and communication
— “User never types MPI...”
« AMRCore (library)
— Application owns main

— Support for block-structured AMR
* Inter-level operations — Interpolation, restriction, refluxing (level synchronization)
* AMR time step controlled by application

— Application must understand how to specify multilevel algorithm
e AMRLevel (framework)
— AMReX owns main
— AMReX controls time step (particularly useful to support subcycling)
— Stubs provided for time advance at single level as well as synchronization
operations

END

