3.2. Krylov Solver. Having defined the discrete operators appearing in the Stokes system (2.1),
we briefly discuss some issues that arise when solving this saddle-point problem using an iterative
Krylov solver. The basic operation required the Krylov solver is the multiplication of a given vector
x with the matrix M. This consists of a straightforward direct evaluation of the appropriate ﬁnite->
difference stencils at every interior face and every cell center in the computational grid.

Application of any of the preconditioners requires implementing approximate pressure (i.e., ap-
plication of E;l) and velocity (i.e., application of A‘l) solvers. Here we employ geometric multigrid
techniques to implement these solvers. For the pressure solver, which estimates cell-centered pressure
DOFs, we use standard variable-coefficient Poisson multigrid solvers [2]. For the velocity solver, whicly
estimates face-centered velocity DOFs, we develop a vector variant of a standard scalaf (pressure
Helmholtz solver based on a generalized red-black Gauss-Seidel smoother. The details of the multi-
grid algorithms are given in Appendix ')’md‘the implementation is based on the Fortran version
of the BoxLib library [34]. Note that be/cause in Krylov methods GMRES solvers are applied to a
residual correction system, zero is an appropriate initial guess for the multigrid subsolvers. Note also
that the pressure subproblem has a null space of constant vectors (since only the gradient of the pres-
sure matters) for periodic, slip and no-slip boundary conditions. Similarly, for periodic steady-state
problems the velocity equation has a (d-dimensional) null-space of all constant velocity fields. In these
cases some care is needed in the preconditioners to ensure that the null-space is handled consistently
and the mean pressure and momentum are kept constant at certain prescribed values (e.g., zero).
Handling inhomogeneous boundary conditions, such as a prescribed non-zero tangential velocity
along a given physical boundary, requires some care. When non-homogeneous velocity boundary .
conditions are specified, the viscous operator is + operator because the viscous stencils near )3,.[ 1\
the boundary use semeof'the specified boundpry values. Mu_this case the viscous operator L, is an

affine operator 'dﬁ’e‘ ] LN o ‘X .%’ﬁr
Ly (w) = L™u + L, (0), k T “}w \{”

where u denote the velocity unknowns (interior velocity degrees of freedom), and LL‘L‘"“ is the corre- J ¢
sponding linear operator when homogeneous boundary conditions are specified. Similar considerations

apply to the discrete divergence operator D (u) = D"™y + D (0). The discrete gradient operator e\). Q’DLf/
acts on pressure unknowns which are restricted to the interior of the domain for the staggered-grid
discretization, and is therefore unaffected by the velocity boundary conditions, G = — (Dl“““)*. Be-

cause Krylov solvers require a linear rather than an affine operator, we apply the Krylov solver to the

homogeneous form of the Stokes problem by correcting the right hand side in a pre-processing step,

9p Lh()m G Ty _ b, + Lll' (0) QFV '
< D )<w1'>~< b, + D (0) >QL/‘- 5
Another issue that arises when solving saddle-point problems is that-of scaling of the system. ,\}.
Numerical experiments indicate that solving (2.1) when the grid-spacing h or the viscosity u if very
different from unity can lead to inaccurate solutions despite apparent convergence of the linear bOlvte
The velocity and the pressure degrees of freedom have differentcphysical units, and may have very \/\,«h\/"
different magnitudes in practice. The @EIE/lc/aI% of the right hand sides b,, ahd b, are also different.

Krylov solvers require as input a natural dot produc
have used the weighted dot product

residual space. In our\implementation, we

(3.8) b1 b = b b3 + w? (b 5P, Yils

where w,, is a weighting factor for the pressure residual. Numerically we have found this weighting
factor to have little influence on the speed of the convergence or the accuracy of the result, and we
have found it to be of little help in handling “badly scaled” problems.

Instead, we consider re-scaling the velocity equations by some constant ¢ and re-scaling the pres-
sure unknowns by the same factor, to obtain the rescaled system

(3.9) <%§>(§vu>:(cgf>
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This simply amounts to rescaling the viscosity and 6 and right-hand side by a factor ¢ at the beginning
of the solve, and rescaling the result for the pressure by ¢! after the solve. Intuitively, a well-s
Stokes system is one in which both velocity and “pressure” unknowns have elements with the s

Si d similar typical magnitude. In order not to loose precision when evaluating the
t-hamd-side of the velocity equation, we would like the viscous cAx,, and pressure contributions
G, to have similar magnitude. This suggests choosing cpioh™2 ~ h™1, giving ¢ ~ h/ug, where g is
the typical magnitude of viscosity. Note that for ¢ ~ h/f the physical units of the rescaled pressure
cx, are indeed the same as the units of the velocity @,,. Numerical experiments conf trescaling
the viscosity from typical value py to cpg ~ h can dramatically impr Note that no
rescaling of the divergence constraint is necessary since Dx,, has magnitude ~ h™" as the rest of the
terms. Similarly, using equal weighting for velocity and pressure residuals, w, = 1 in (3.8), will not
pose any problems because the two components of the residual cb,, and b, already have the-same
units-and-similar magnitude.

The simple scaling correction (3.9) with ¢ ~ h/ug is easy to apply as a pre/post-processing step
and requires no changi#e to the core algorithm. If there is a very broad range of viscosities present in
the problem, a uniform rescaling of the equations will not be sufficient and diagonal scaling matrices
should be used to rescale the velocity and pressure separately, see Eq. (31) in Ref. [16] for a specific
formulation. [Donev: The scaling I work out here is similar but not exactly the same as
the one used in (31) in Ref. [16] even for constant viscosity (the scaling of pressure is the
same but they also scale velocity). I don’t quite understand which one is better and why,
nor do I understand their argument for the scaling they use — they actually attribute
their inspiration to [35].] To avoid loss of accuracy, in extreme cases extended precision arithmetic
may need to be used in the solver [16].

[Donev: If we want to cut length much of this para can go, I just wanted to add it
for completeness.| A final issue that we discuss is the choice of the convergence criterion for the
iterative solver for the system (2.1). Here we employ left preconditioning and apply the iterative solver
to the preconditioned system P~!Maz = P~'b. The convergence criterion is therefore most naturally
expressed in terms of either the absolute or relative reduction in the magnitude of the preconditioned

residual rp = HP’1 (Mzx — b)||2, where the Lo norm is defined in terms of the weighted inner product
(3.8). A more robust alternative is to base convergence criteria on the value of the unpreconditioned
(true) residual r = | Mz — b||,. Each residual also contains two components, a velocity residual and

a pressure residual, which may converge at different rates. These issues make it difficult to construct
a general robust convergence criterion for the Krylov solver. In our implementation, which employs
the GMRES method, we terminate the inner (non-restarted) GMRES iteration whenever the GMRES
estimate of the preconditioned residual falls below some tolerance, rp < € min (||P‘1bH2 , r(}g), where
r% is the initial preconditioned residual. The actual (rather than estimated) preconditioned residual
is verified and the true residual computed before terminating the outer (restart) GMRES iteration.
For the problems studies here we observe all three residuals to exhibit similar convergence.

4. Results. In this section we perform detailed numerical experiments to determine the most
robust and efficient preconditioner over a broad range of parameters. Because the preconditioned
system is not necessarily symmetric, as a Krylov solver for the saddle-point system (2.1) we use the
left-preconditioned GMRES (Generalized Minimal Residual) method with a fixed restart frequency
m [37, 36]. GMRES requires the storage of m vectors like . For a d-dimensional regular grid with
N cells, the memory storage requirement is thus at least (d + 1)mN floating-point numbers since
there are d velocity degrees of freedom (DOFs) and one pressure DOF per grid cell. It is therefore
important to explore the use of restarts to reduce the memory requirements of the Krylov solver. A
more robust and flexible method is FGMRES (Flexible GMRES), in particular, FGMRES allows the
use preconditioners that are not necessarily constant linear operators (e.g., another Krylov solver).
A notable downside of FGMRES is that it requires twice the storage of GMRES. In the numerical
experiments reported in the next section we utilize dimensionless well-scaled values (h = 1, po=1,
po = 1) for all of the coefficients, so that no explicit rescaling of the unknowns or the equations is
required.

The multigrid algorithms used in the pressure and velocity subsolvers iteratively apply V cycles,
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each of which consists of successive hierarchical restriction (coarsening), smoothing, and prolongation
[6]. In our tests, we will use a constant number n of V cycles in both the pressure and the velocity
solvers. This ensures that the preconditioners are constant linear operators and allows for the use of
the GMRES method. The velocity (vector) multigrid V cycle has a cost very similar to d independent
pressure (scalar) V cycles. Therefore, as a proxy for the CPU cost of a single application of the
preconditioner we will use the number of scalar multigrid cycles. The cost of the pressure subsolver
(application of L 5 1) is n scalar V cycles, and the cost of the velocity subsolver (application of A- ) is
dn scalar V cycles. All preconditioners require at least one velocity solve per application, however, they
differ in whether they require a pressure Poisson solve. For unsteady flow (6 # 0), all preconditioners
require the application of S —1. which requires the application of E;l. For steady flow (6 = 0), Ps,
P; and P, do not require a pressure Poisson solve.

A fundamental “easy” test problem we employ is constant coefficient steady Stokes flow in a
periodic domain or a domain with no-slip condition along all boundaries. As a more challenging
variable-coefficient test problem we use a bubble test, in which we embed a sphere (disk in two di-
mensions) of one fluid in another fluid with different viscosity and density. The bubble is placed in
the center of a cubic (square) domain of length L. cells with no-slip boundaries along all domain
boundaries. For the bubble problem, the viscous stress is taken to be 7(u) = pu [Vu + (Vu)T]; and
the diagonal elements of the viscosity matrix p and the density matrix p at cell centers are generated
from the spatially-dependent functions

(4.1) () /1o = % (r+1) + % (r — 1) tanh (d(m,F)

> +0.1R,
€

(4.2) p(x)/po

| =

1 dfaw, L
(rp+1)+ B (r, — 1) tanh (M) +0.1R,
€

respectively. Here 1, and r, are the viscosity and density contrast ratios, I is the interface, a circle of
radius L/4 placed at the center of a cube with side of length L = L.h, d(z,T') is the distance function
to the interface, ¢ = h is a smoothing width used to avoid discontinuous jumps in the cocflicients, and
R is a random number uniformly distributed in (0,1). Unless otherwise indicated, we use a relatively
large contrast ratio to make the problem more challenging, 7, = r, = 100.

4.1. Spectrum of Preconditioned Operator. Convergence analysis of the preconditioned
GMRES method is not straightforward and there is no simple link to the spectrum of the eigenvalues.
Nevertheless, standard wisdom says that having closely clustered eigenvalues of the preconditioned
operator P~'M leads to faster convergence. Furthermore, the ratio of the largest to the smallest
eigenvalue (excluding the trivial zero eigenvalue arising from the fact pressure is only determined up
to a constant) should be bounded from above by a constant essentially independent of grid size, and,
possibly, viscosity and density contrast ratio.

We focus on the steady-flow case # = 0 in two dimensions, for a square domain of L2 cells with
four no-slip boundaries. In order to quickly gain 11191ght into the behavior of the spectrum, we consider
using exact subdomain solvers, Al=A"'and L,"=L, ! instead of multigrid, relying on the fact
that a well-designed multigrid cycle is (essent.ially) spectrally equivalent to an exact solver (this is
difficult to prove however).

An analysis of the spectlum of the pzeconditioned operators is given in Appendix B. As demon-
strated in that appendix, P, 'M and P; LM have an eigenvalue A = 1 for each velocity DOF, and
the remaining eigenvalues, couespondlng to the pressure DOFs, are equal to the eigenvalues of S7'8S.
For the constant coefficient case, we find that in two dimensions S!S has all but 4 (L. — 1) eigen-
values equal to unity, i.e., there is a non-zero eigenvalue for each cell that touches a single no-slip

boundary. The remainder of the nonzero eigenvalues are shown to be bounded between n% and 1,
where the inf-sup constant 7 is independent of the grid resolution. For the variable-coefficient case,
theoretical calculations are difficult and we turn to numerical experiments to access the impact of
viscosity contrast on the spectrum of the eigenvalues.
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Fic. 4.1. Histogram of the eigenvalues of M (left panels) and P~YM (more precisely, S~1S) (right panels) for
a steady Stokes problem on a grid of 32 x 32 cells with four no-slip boundaries. The vertical azis gives the number of
eigenvalues, truncated for the eigenvalue A = 1 in the right panels due to the large number of unit eigenvalues. The
case of constant viscosity is shown in the upper panels, and the case of variable viscosity with contrast ratio 100 is

shown in the lower panels. \ ) WVbe/

We explicitly form M in MATLAB as a sparse matrix, and use Cholesky factq{zation to factorize
A and form S—'S. We then use-dense linear algebra to compute the eigenvalues (which are all real-
valued) of M and S~'S. This is only computationally feasible in two dimensions for relatively small
grids. In Fig. 4.1, we show a histogram of the eigenvalues of the unpreconditioned and preconditioned
operators for a square domain of length L. = 32 cells with no-slip boundaries. In the upper row
of panels in Fig. 4.1 we study the constant viscosity case. The total number of DOFs is Nqor =
L? +2L.(L.—1) = 3008. Since the original Stokes system is of saddle point type, M has both
positive eigenvalues and negative eigenvalues, and there are L? = 1024 eigenvalues that are smaller
than or equal to zero. While the unpreconditioned spectrum shows a broad spectrum of eigenvalues
with conditioning number that grows with the grid size, the preconditioned spectrum shows that most
eigenvalues are unity, with the remaining 4 (L. — 1) /N([Of ~ 4% nonzero eigenvalues clustered around
0.7.
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In the lower row in Fig. 4.1 we study the variable viscosity case for the bubble prob-
lem with viscosity contrast ratio 7, = 100. The unpreconditioned system is seen to be very badly
conditioned, with a broad spectrum of eigenvalues. At the same time, the preconditioned operator is
well-conditioned, with around 87% of the eigenvalues in the interval (0.99, 1.01). While some eigen-
values are larger than unity in this case, the spread in the cigenvalues is not much different from
the constant-coefficient case. This suggests that the spectrum remains localized around unity and
bounded away from zero even for rather large contrast ratios. It may be possible to extend the finite-
element theory developed in Refs. [21, 20] to prove that S!S is spectrally-equivalent to the identity
matrix for the staggered grid discretization we employ here.

4.2. Multigrid Subsolvers. Before comparing the different preconditioners, we optimize the
key parameters in the multigrid pressure and velocity approximate subsolvers, specifically, the number
of smoothing (relaxation) sweeps per V cycle and the number of V cycles per application of the

preconditioner. ,
4.2.1. Number of smoothing sweeps. One of the key aspects of geometric multigrid is the H_{ ;
J\l’

smoother used to perform relaxation of the error at each level of the multigrid hierarchy. As explained
in more detail in Appendix C, we employ a red-black Gauss-Seidel smoother. This ensures that allP/
components of the error are damped to some extent for constant-coefficient problems. The optimal
number of smoothing (relaxation) sweeps to be performed at each multigrid level (we use the same
number of sweeps going down and up the multigrid hierarchy) has to be determined by numerical
experimentation.

In Fig. 4.2 we show the convergence of the pressure (left panels) and velocity multigrid solvers
(right panels) for constant viscosity but for the stress-tensor form of the viscous term (3.1). In the
upper row we show results in two dimensions, and 4Jle in the lower row we show results for three
dimensions. Similar results are obtained for different types of boundary conditions. We sce a large
increase in the rate of convergence when increasing the number of smoothing sweeps from one to two,

and only a modest increase there after. Since the cost of geometric multigrid is in large dominated by fi .
smoother, henceforth we do two applications of the smoother at each level of the multigrid hierarchy W
in each V cycle. wv“ab AN ’&N' (,Q'W‘M & AV

The speed of convergence of the ptdin multigrid iteratjon, v
Krylov)-iterative-selver s the standard against which one oug measure convergence of the Krylov
solver for the Stokes problem. As we can see in Fig. 4.2, each V cycle reduces the residual by an
order of magnitude or more (this is the signature of “good” multigrid), so that only about a dozen V
cycles are needed to reduce the residual to near roundoff. Therefore, a Stokes solver that uses only
10(d + 1) scalar multigrid cycles to reduce the residual by more then 10 orders of magnitude should
be considered excellent.

4.2.2. Number of multigrid cycles. For constant-coefficient Stokes problems with periodic
boundaries, as explained in Appendix B, for both time dependent and steady state problems, if exact
subdomain solvers are employed, GMRES converges in a single iteration with preconditioner P; and
in two iterations with Py and P3. The same applies for any boundary condition for inviscid time-
dependent problems. However, in the majority of cases of interest, multiple GMRES iterations will
be required even if the subsolvers are exact. It is therefore important to explore the use of inexact
pressure and velocity solvers. Specifically, it is important to determine the optimal number of multigrid
V cycles per application of the preconditioner.

In the left panels of Fig. 4.3 we show the convergence of the relative preconditioned residual,
as estimated by the GMRES algorithm, for steady Stokes problems in two and three dimensions, as
a function of the total number of scalar V cycles. We recall that the number of V cycles is a good
proxy for the total computational effort, so that the most rapid convergence in these plots corresponds
to the most efficient solvers. In the top left panel we show results for constant viscosity but for the
stress-tensor form of the viscous term (3.1) for a periodic system, and in the bottom left panel we show
results for the variable-viscosity bubble problem described earlier. In the corresponding right panels
we show the convergence of the pressure and velocity multigrid subsolvers on the same problem, to
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Fic. 4.2. The log of the relative residual for the pressure (left) and velocity (right) multigrid solvers as a function
of the number of multigrid V cycles, for different numbers of smoothing (relazation) sweeps. A constant coefficient
steady Stokes problem is solved on a 5122 grid in two dimensions (top panels), and 1283 grid in three dimensions
(bottom panels), with no-slip conditions at all domain boundaries.

serve as a reference point for what one may expect in terms of optimal convergence for the GMRES
solver.

The top left panel in Fig. 4.3 shows that for periodic constant coefficient problems there is no real
difference between using an exact subsolver (many V cycles per application of the preconditioner),
and using only a single V cycle in the preconditioner but doing more GMRES iterations. This is not
unexpected since multigrid itself is a form of a (non-Krylov) Richardson iterative solver and we expect
GMRES to do at least as well. Note that for more difficult Poisson problems, such as problems with
large jumps in the coefficients, it is well-known that a Krylov solver preconditioned with multigrid is
more robust than plain multigrid, see for example the discussion in Ref. [16].

In the bottom left panel in Fig. 4.3 we show the convergence of GMRES for the variable-coeflicient
bubble problem, which is typical behavior we observe when there are non trivial boundary conditions
or variable coefficients. Similar behavior is observed for the other preconditioners (not shown). The
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FiG. 4.3. The relative residual (on a log scale) as a function of the total number of scalar multigrid V cycles,
for different number of multigrid cycles per application of the pressure and velocity subsolvers. GMRES convergence
is shown in the left panels, and pressure (squares) and velocity (triangles) multigrid convergence is shown in the right
panels, in both two (5122 grid, empty symbols) and three (1283 grid, filled symbols) dimensions. Restarts are not
employed in the GMRES solver. The top panels show results for a constant-coefficient periodic steady-state Stokes
problem, and the bottom panels show results for the bubble test problem.

results clearly demonstrate that when using exact subsolvers does not give an exact solver, the extra
cost of performing more than a single V cycle of multigrid does not pay off in terms of overall efficiency.
The optimal rate of convergence is observed when using only a single V cycle in the preconditioner.
We have observed 1o advantage to using a different number of cycles in the pressure and velocity
solvers. By comparison with the lower right panel, we see that when using a single multigrid cycle in
the preconditioner the total number of scalar V cycles is at most 2-3 times larger than that used in
fractional step (projection) methods (for example, ~ 50 + 15 = 65 in three dimensions for projection
methods as seen in the right panel, and ~ 0 cycles for coupled solver as seen in the left panel).

Based on these observations, hencefoxth v ploy only a single multigrid cycle in the subsolvers
employed by the preconditioners.
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4.3. Comparison of Preconditioners. Having determined the optimal settings for the pressure
and velocity subsolvers, we now turn to exploring the performance of the different preconditioners.
We begin by settling an issue regarding the proper choice of sign in the upper/lower triangular and
block-diagonal preconditioners.

—A— P2 - —A— P2 -
—8—P3 - —8—P3 -
—6— P4 - —6— P4 -
—h— P2 + —h— P2 +
—a— P3 + —8— P3 +
—o— P4 + —o— P4 +
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Iog(rn/ro) Iog(rn/r

o

-10f -101
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FiG. 4.4. The GMRES convergence history for preconditioners Py, P3 and Py with negative (empty symbols) and
positive (filled symbols) sign in front of the Schur complement, in three dimensions (1283 grid). The left panel show
results for a constant-coefficient steady-state Stokes problem with no-slip boundaries, and the right panel shows results
for the bubble test problem.

4.3.1. Sign of Schur complement. In this subsection, we show that the choice of sign in front
of the Schur complement approximation in Py, P53 and Py plays an important rule. In the literature
[24, 28], the following Schur complement based preconditioners have been proposed and studied,

Py = ( i) i(—D(,)crlG) )

where the sign of the lower diagonal block can be either positive or negative. It was proven that
T, = P;'M satisfies (T} —I)(Ty +I) =0and T_ = P~ M satisfies (T- —1I)? = 0 [24, 28]. Because
the GMRES method possesses a Galerkin property [12], the total number of GMRES iterations is
equal to the degrees of the characteristic polynomials of the preconditioned systems. Therefore,
GMRES method, using both P;lM and P~ M, converges in 2 iterations if the inverses of A and the
Schur complement are exact. However, when inexact subsolvers are employed, we observe significant
difference between the two choic& of the sign of the Schur complement. The GMRES convergence

/\histories shown in Fig. 4.4 demonstrate that the preconditioners with "-" sign in front of Schur
complement give much better convergence than those with "+" sign. This is consistent with our
original choice in Egs. (2.12) and (2.14).

4.3.2. Comparisons of different preconditioners. Having determined the optimal subsolver
settings and the optimal sign of the Schur complement in the lower diagonal block of the precondi-
tioners, we can now compare the performance of the five preconditioners on the bubble test problem
in two and three dimensions. The GMRES convergence results shown in Fig. 4.5 demonstrate that
for steady Stokes problem the lower and upper triangular preconditioners P, and Pj yield the most
efficient GMRE ver. The projection preconditioner Py is seen to give £ robust convergence but is
less efficient fof steady flow case because it requires one more scalar (pressure) V cycle per GMRES
iteration. The results in the figure also clearly show that Py and Ps are much less efficient. This shows
that including an upper or lower triangular block in the Schur complement based block preconditioners
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Fic. 4.5. The GMRES convergence history for preconditioners Py, Py, P3, Py and Ps in two (left panel, 5122
grid) and three (right panel, 1283 grid) dimensions, for the bubble test problem.

improves convergence, and also shows that the extra work in P over Pj is not justified in terms of
overall efficiency, similarly to how the additional pressure solve in P; does not yield improvemen
Based on these observations, henceforth we do not consider P, and P;.

4.4. Robustness. In this section we examine in more detail the robustness of P; aad™ P un:;r
GMRES restarts, varying importance of the viscous contribution to A, and changing problem size.

4.4.1. The effects of restarts. For large-scale problems, particularly in three dimensions, the
memory requirements of the GMRES algorithm can be excessive. Restarts of the GMRES iteration
offer a simple way not only to avoid convergence stalls, but also to limit the memory use. In Fig. 4.6
we compare the behavior of P;, P, and P for relatively small restart frequencies, 5 or 10 GMRES
iterations. In the left panel of the figure we show the behavior for an inviscid time-dependent problem
(L, = 0, relevant to simulations of large Reynolds number flows) and in the right panel we show the
behavior for a steady Stokes problem (relevant to small Reynolds number flows). A two dimensional
calculation is shown in the figure but similar results are observed in three dimensions as well. In
the left panel of Fig. 4.6 we see that the performance of P3 significantly deteriorates for the small
restart frequency for the inviscid problem. In the right panel of the figure we see some deterioration
of the convergence for the small restart frequency for P, and Pj, while P; shows robust monotonic
convergence even for frequent restarts.

Based on these results, henceforth we use a restart frequency of 10 iterations and focus on exam-
ining in more detail the performance of P; and Ps.

Pl

4.4.2. Changing viscous' number. One of the goals of our study is to design preconditioners
that work not just in the steady state limit but also for time-dependent problems. While one can use
a suitably-defined Reynolds number to measure the importance of the inertial term 0p in A relative
to the viscous term L, the best dimensionless number to use for this is the viscous CFL number

_
Oh2  Opoh?’

I5)

A small 8 <« 1 indicates an easier problem where inertial effects dominate, with 3 = 0 corresponding
to inviscid flow. A large 3 > L2 indicates a viscous-dominated problem, where L. is the grid size, with
the hardest case being a steady-state problem  — oo. In Fig. 4.7 we study the performance of the
GMRES Stokes solver for varying viscous CFL numbers for the bubble test problem, in both two and
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