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Fic. 4.6. The GMRES convergence history for preconditioners Py, Py and P3 in two dimensions (5122 grid) for
the bubble test problem, for GMRES restart frequency 5 (empty symbols) and 10 (filled symbols). In the left panel we
set the viscosity to zero (unsteady inviscid flow) and in the right panel we set density to zero (steady viscous flow).

three dimensions, for both preconditioners P; and P,. As expected, we see most rapid convergence
for 5 = 0, and slowest convergence for 3 — oco. For the steady state case § = 0, we do not need a
pressure Poisson solve for Py and therefore this preconditioner is somewhat more efficient than P;. For
intermediate 8’s we get somewhat better convergence for Py, although the differereeissmall. In our
experience both preconditioners show rather robust behavior for varying viscous number, viscosity and
density contrast ratios, and different combinations of boundary conditions (periodic, slip, or no-slip).

4.4.3. Changing problem size. An important goal in designing solvers suitable for large-scale
CFD calculations is to ensure that the total number of multigrid cycles remains essentially independent
of the grid size (cquivalently, grid refinement). Theoretically one expects a mild logarithmic growth for
any method based on multigrid, however, in practice, this growth is barely visible for computationally-
feasible system sizes. In Fig. 4.8 we show convergence histories of GMRES for varying grid sizes for
the steady state bubble problem in both two and three dimensions. In the left panels we show results
for P; and the right panels for P». For this challenging variable-viscosity problem (recall that the
viscosity and density contrast ratio is r, = r, = 100), P; shows robust convergence for all of the grid
sizes tested here in both two and three dimensions, requiring no more than 200 multigrid V cycles
(i.e., no more than 200/4 = 50 GMRES iterations) to reduce the residual to essentially roundoff
tolerance even for a 5122 grid. The convergence for preconditioner P, shows a very mild deterioration
with increasing system size, although the overall efficiency is still somewhat higher than P; for all
system sizes tested here. Similar results were obtained using P3 (not shown). We have confirmed that
improving the subsolvers, i.e., performing more multigrid cycles per application of the preconditioners,
does not aid the overall GMRES convergence, despite the substantial increase in the computational
cost.

It is important to point out that the exact convergence and its behavior on system size depends
sensitively on the details of the multigrid algorithm (e.g., how the bottom level of the multigrid
hicrarchy is handled, which is typically affected by parallelization), and, most importantly, on the
contrast ratio. In Fig. 4.9 we show scaling results in three dimensions for a much weaker contrast
ratio r, = 7, = 2. In this case we see little to no effect of the system size on the convergence rate.
and the total number of GMRES iterations is less than 30.

5. Conclusions. We studied several preconditioners for solving time-dependent and steady dis-
crete Stokes problems arising when solving fluid flow problems on a staggered finite-volume grid. All
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vary 0 to change the viscous CFL number 3 from the inviscid limit B = 0 to the steady limit 8 — co.

of theslyFreconditioners we studied

finite-element schemes or adaptive mesh finite-volume discretizations.

are based on approximating the inverse of the Schur com-
plement iwith a simple local operator and have been proposed before, though often limited to either
constant coefficient or steady flow. By suitably approximating the inverse of the Schur complement
in the case of time-dependent variable-viscosity flow we were able to easily generalize these precondi-
tioners and thus substantially enlarge their practical applicability. We slightly modified and extended
a previously proposed projection-based preconditioner P; to variable-coefficient flows [18]. We gen-
eralized a well-known lower triangular preconditioner Py to variable-coefficient flow. We extended a
previously-studied “fully coupled” solver with a “local viscosity” preconditioner [16] to time-dependent
flows to obtain an upper triangular preconditioner Pj. The preconditioners investigated here can
be generalized to other stable spatial discretizations of the time-dependent Stokes equations, such as

N R

Our primary focus was on studying the performance of these preconditioners whenpttie pressure and

velocity subsolvers are performed on a uniform staggered grid using geometric
We showed that optimal convergence rates of the GMRES Stokes solver j

ultigrid algorithms.
obtained when a single

multigrid V cycle is employed as an inexact subdomain solver. We numerically observed that all three
preconditioners are effective for both time-dependent and steady flow problems, with the lower and
upper triangular preconditioners being more efficient for steady problems and P; being somewhat
more cfficient for time-dependent problems. All three preconditioners were found to handle variable-
coefficient problems rather well, with little deterioration in convergence from the case of constant-
coefficient problems. Our observations are consistent with the conclusion of the authors of Ref. [16],
who “find that it is advantageous to use the FC |fully-coupled| approach utilizing relaxed tolerances
for solution of the sub-problems, combined with the LV [local viscosity| preconditioner.”

All of our empirical observations are consistent with the general observation that solving the
coupled Stokes problem is no more than 2-3 times more expensive than a single step of a fractional
step method. We believe that this mild increase in g
advantages of the the coupled approach when solvflz) the Navier-Stokes equations. Furthermore, we
observed robust behavior of the projection and lower triangular preconditioners for large systems
with relatively frequent restarts. This demonstrates that GMRES with preconditioners P; and Py
provides a robust solver for large-scale computations. In future studies, the robustness of these
preconditioners with respect to the variability of viscosity and density should be studied more carefully.
One aspect of this is whether the spectrum of the preconditioned operator can be provably bounded for
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Fic. 4.8. The GMRES convergence history for preconditioners Py (left panels) and Pa (rTight panels) in two
dimensions (top panels) and in three dimensions (bottom panels) for the steady-state bubble test problem with contrast
ratio r, =1, = 100, as the grid size is varied.

arbitrary contrast ratios. More importantly, however, the p;acfZ@l performance of the preconditioners
in practical applications, should be accessed. Experience with steady Stokes geodynamics applications,
which have extreme viscosity contrasts, are very promising [16].
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Appendix A. Fourier Analysis of Schur Complement.

The most important element in the preconditioners we study here is the approximation of the Schur
complement inverse. In previous workg, Fourier an is [8], operator mapping properties and PDE
theory in [26, 27|, and commutator properties (2.4) 25| have been used to justify approximations
to the Schur complement inverse. Here we use Foutier/analysis to justify our approximation to the
Schur complement inverse for the stress form of theviscous operator (3.1). This analysis assumes
periodic boundaries but should also inform the case with physical boundary conditions.

simplicity, we usetwo Wensional steady state Stokes equationsk\illustration but extensions

to three dimensions are trivial\\lenote the discrete Fourier transform of velocity as v = [, ﬁ]T, and
denote the Fourier symbol of the’staggered divergence operator as D= [IA):L. Dy], where D, and D,
represent the staggered finite difference operator along the x and y axes. The Fourier transform of
the staggered gradient operator is G :‘ﬁT, and similarly, fl,, =DG QED,Z + ﬁg j

Our goal is to approximate the Schur complement inverse with a Laplacian-like local operator
Lg, i.e., to find

(A.1) (DL,'G)™"' = Ls.

This is only an approximation in general but should be exact for periodic constant-coeflicient problems.
In Fourier space,

. om0
(A.2) Ls=(DL;'G) .
When the Laplacian form of the viscous term is used, L, = poL, we have

;o[22\ o
= 0 4133.+D§)

)

which combined with (A.2) gives Ls = . Applying an inverse Fourier transform, (A.1) becomes the
well-known

Ls=(DL;'G)™" = pol.
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When L,, is the discrete operator for the stress tensor form of the viscous term (3.1) and the
viscosity is constant, we have
sy ..
'tﬂ = ,U’O 2D,\1“ J’_,\ Dy N ‘QDyD‘EA 9 ,
D.D, D; +2D;
which gives Lg= 2110, and therefore Lg = 2upI. This motivates our variable-viscosity generalization

2.6. When L, is the discrete operator for the viscous term with bulk viscosity and assuming both the
shear viscosity and the bulk viscosities are constant, we have

i, -

(%'LLO + ’Yo)b% ,\+ ,lf(jD,g (A%,u() + ’)VO)byD:cA
(310 +v0) D, D,y D2 + (00 +%0)DZ |’

. , 4
which gives Lg = (% o + 70) and therefore Lg = <§ o + 70> I. This motivates our variable-viscosity
generalization 2.7.
Appendix B. Analysis of preconditioners with exact subsolvers.
In this Appendix we give some analysis of the spectrum of the preconditioned operators when exact

pressure and velocity subsolvers are used. To see how well the different preconditioners approximate
the original saddle point form (2.1), we formally calculate

s (I (I-p 'GL;'D)A'G
(B.1) P'M = ( 0 s :
., (I A7'G
(B.2) P; M_<0 s-1g |
i, [ I-A"'GS'D A"'G
(B.3) p; M*( S-1p 0 :

and lastly

I A7lG
/] —1 —
(B.4) P, M_<SID 0 >
Recall that for constant-coefficient problems with exact subsolvers, S7! = —HpOL;l + pol. For

periodic domains, the finite-difference operators G, D, L and L, commute,
(B.5) GL,=LG and L,D=DL,

and therefore PflM is exactly the discrete identity operator, and similarly, the (1,1) diagonal block
of P3_1M is zero.
From (B.1), we see that the preconditioned system is block upper triangular. Therefore,

(B.6) det (\I — P['M) = det (A — 1)I) det (AI — S7'S),

which shows that the eigenvalues of the preconditioned system are either unity or the eigenvalues of
S~18. Similarly, we can derive the eigenvalues of the preconditioned system using (B.2) and (B.3).
Alternatively, one can write down the generalized eigenvalue system, for instance,

u(z)-m(3)

Again, one can see that the eigenvalues are either 1 or the eigenvalues of S71S.
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When pp = 0, or equivalently, At — 0, we get the inviscid operator

K1 G
— At
v-(% 7))

and therefore PflM = I, regardless of the boundary conditions. If P, is used, we have

I &g
B.7 P'M = 12
( ) 2 ( 0 0I >7

and therefore (P;'M — I)?2 = 0. This proves that in the inviscid case, the GMRES algorithm
converges in 1 iteration when preconditioner P is used, and in 2 iterations when Py or P3 are used.
When inexact subsolvers are used our numerical results showed that all three preconditioners exhibit
exactly the same convergence rate in the inviscid case.

Furthermore, for constant viscosity (; = 1) steady state (6 = 0) problems on a two-dimensional
domain of n, x n, grid cells with no-slip boundaries, one can prove the following property for the
eigenvalues of the Schur complement S = DL™1G:

1. A(S) € {0} U [?,1], where 7 is the inf-sup constant independent of grid size [15, 31].

2. The multiplicity of the 0 eigenvalue is 1.

3. There are at most 2(n, — 1) + 2(n, — 1) non-unit eigenvalues' of S.
This is a quantitative statement of the intuitive expectation that a few cells away from the boundaries
S is close to an identity operator, just as for a periodic system (see Eq. (B.5)). The proof of these
statements will be given in futurc publications, and extensions to variable-coefficient problems will be
considered (21, 20]. The lower bound of the eigenvalues is a consequence of the uniform div-stability
[14, 15, 41]. From (B.1) and (B.6) (and also (B.2) and (B.3)), we see that the same conclusions hold
for the preconditioned systems. This analysis explains the good performance of the simple Schur
complement approximation even in the presence of nontrivial boundary conditions [18].

Appendix C. Multigrid algorithms.

We employ a standard V-cycle multigrid approach [6] for both the cell-centered multigrid subsolver
for the weighted Poisson operator L, and the staggered velocity multigrid subsolver for the viscous
operator L,,. We use the standard residual formulation, so that on all coarsened levels we are solving
for the error in the coarsened residual from the next-finer level. In our implementation, the multigrid
coarsening factor is 2, and coarsening continues until the coarsest grid contains two grid points (with
respect to cell-centers) 'Ofi any given spatial direction (for parallel computations, this applies to the
subgrid owned by each.6f the processors). At the coarsest level of the multigrid hierarchy, we perform a
large (8 or more) number of relaxations, to ensure that the preconditioner is a constant linear operator.
Alternatively, one can use an cxact (to within roundoff) coarse solver (e.g.. another iterative solver
with tight tolerance or a serialized direct sparse solver).

Multigrid consists of 3 major components: (i) choice of relaxation at a particular level, (ii) coars-
ening,/restriction operator, and (iii) interpolation/prolongation operator.

Relaxation. Both the staggered and cell-centered solvers use multicolored Gauss-Seidel smooth-
ing. The cell-centered solver uses standard red-black relaxation, whereas the staggered solver uses a
2d-colored relaxation, where d is the dimensionality of the problem. DBecause the coupling between
the DOFs corresponding to a given component of velocity is the same as for the cell-centered Pois-
son equation, by coloring each component of the velocity separately, as in the standard red-black
coloring (i.e., coloring odd grid points with a different color from the even grid points), we obtain
decoupling between the 2d colors so that each color can be relaxed separately (improving convergence
and aiding parallelization). We relax the components of velocity in turn (i.e., in three dimensions, we
order the relaxations as red-x, black-x, red-y, black-y, red-z, black-z), although other orderings of the
colors are possible. Refer to Figure C.1 for a physical representation of the viscous operator stencils.

IFor boundary condition with x— direction periodic and y— direction Dirichlet [32], there are at most 2n; non-unit
eigenvalues of S.
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Fic. C.1. (Left panel) The stencils for the x-component of V - BV ¢ (left) and V - B(Vp)T (right). The black
circles indicate locations of u. The black triangles indicate locations of v. The red dots indicate the location of the
and the gradients of velocity. (Right panel) The stencils for the z-component of V-8V (left) and V-B(V )T (right).
The black circles indicate locations of w. The black triangles indicate locations of v and w. The red dots indicate the
location of the B and the gradients of velocity.

Given a cell-centered operator of the form, V - V¢ = L¢ = r, or a staggered operator of the form,
ap -V -B[Vod+ (Ve)T] = Lo = r, the relaxation takes the form

(C.1) ¢+l = ¢k L WD — Lo¥)

for each color in turn, where the superscript represents the iterate, and D~! is the inverse of the
diagonal elements of £. We use unit weighting factor?, w = 1 (suggested to be near-optimal in
numerical experiments) for both subsolvers.

Restriction. For the cell-centered solver, restriction is a simple averaging of the 2¢ finc cells. For
the staggered solver, we use a slightly more complicated 6-point (d = 2) or 12-point (d = 3) stencil.
For example, for x-faces we use [Donev: I have not checked these, Andy, please double check|

Ly £ £ £ Lrg £
(C.2) &5 = 3 (szi—lczj + boi1 2541 F Paig12; T ¢2'i+1,2j+1) =t 1 (4521,2] + ‘/’2i,2j+1)

As seen in Figure C.1, for the staggered solver we require «v at faces, and 8 at both cell-centers and
nodes (d = 2) or edges (d = 3). When creating coefficients at coarser levels, we obtain a by averaging
the overlaying fine faces, cell-centered 3 by averaging the overlaying fine cell-centered values, /3 on
nodes through direct injection, and 8 on edges by averaging the overlaying fine edges.

Prolongation. For the cell-centered solver, prolongation is simply direct injection from the coarse
cell to the overlaying 2¢ fine cells. For the staggered solver, we use a slightly more complicated stencil
that involves linear interpolation for fine faces that overlay coarse faces, and bilinear interpolation for
fine faces that do not overlay coarse faces. For example, for x-faces we use

3 1 . ,
(C.3) ¢£,j = $/2.4/2 T 1‘2)?/2.1/2—1* for ¢ and j both even,

- 3 R 1/, c ) .
(C4) Q*)EJ =3 (d)?/gvj/g + ¢i/2+1,j/2> + 3 (q’?/'z,j/%l + ¢i/2+1.j/2_1) , for i odd and j even,

where we use integer division in the index subscripts.
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